
An Empirical Study of Android Test Generation Tools in
Industrial Cases

Wenyu Wang
University of Illinois at
Urbana-Champaign, USA
wenyu2@illinois.edu

Dengfeng Li
University of Illinois at
Urbana-Champaign, USA

dli46@illinois.edu

Wei Yang
University of Texas at Dallas, USA

weiyang.utd@gmail.com

Yurui Cao
University of Illinois at
Urbana-Champaign, USA
yuruic2@illinois.edu

Zhenwen Zhang
Yuetang Deng

adazhang@tencent.com
yuetangdeng@tencent.com

Tencent Inc., China

Tao Xie
University of Illinois at
Urbana-Champaign, USA

taoxie@illinois.edu

ABSTRACT
User Interface (UI) testing is a popular approach to ensure the
quality of mobile apps. Numerous test generation tools have been
developed to support UI testing on mobile apps, especially for An-
droid apps. Previous work evaluates and compares different test
generation tools using only relatively simple open-source apps,
while real-world industrial apps tend to have more complex func-
tionalities and implementations. There is no direct comparison
among test generation tools with regard to effectiveness and ease-
of-use on these industrial apps. To address such limitation, we
study existing state-of-the-art or state-of-the-practice test genera-
tion tools on 68 widely-used industrial apps. We directly compare
the tools with regard to code coverage and fault-detection abil-
ity. According to our results, Monkey, a state-of-the-practice tool
from Google, achieves the highest method coverage on 22 of 41
apps whose method coverage data can be obtained. Of all 68 apps
under study, Monkey also achieves the highest activity coverage
on 35 apps, while Stoat, a state-of-the-art tool, is able to trigger
the highest number of unique crashes on 23 apps. By analyzing
the experimental results, we provide suggestions for combining
different test generation tools to achieve better performance. We
also report our experience in applying these tools to industrial apps
under study. Our study results give insights on how Android UI
test generation tools could be improved to better handle complex
industrial apps.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240465

KEYWORDS
Android UI testing, test generation, empirical study

ACM Reference Format:
Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An Empirical Study of Android Test Genera-
tion Tools in Industrial Cases. In Proceedings of the 2018 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE ’18), Sep-
tember 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3238147.3240465

1 INTRODUCTION
As the fast pace of Android app development and evolution con-
tinues, effective quality assurance for industrial Android apps be-
comes increasingly necessary and demanding. User Interface (UI)
testing, aiming to uncover potential app defects (e.g., crashing)
by mimicking human interactions, has long been an important
approach to ensure the quality of Android apps before their de-
livery to end users. To facilitate UI test automation, the Android
developer toolkit from Google provides Monkey [17], an automatic
test generation tool that sends randomly generated UI event se-
quences to an app under test. In addition, researchers have also
proposed various test generation tools to automate Android UI
testing [1, 3, 6, 7, 23, 24, 26, 27, 29, 31–33].

These industrial or academic test generation tools all show satis-
factory performance according to their own respective evaluation
on various open-source or industrial apps. Table 1 shows the statis-
tics of subjects used for evaluating existing Android test generation
tools (published in major software engineering conferences). The
last row of the table also shows a study conducted by Choudhary et
al. [8] in 2015 by comparing different Android test generation tools.
In the table, coverage comparison (denoted as ‘Emp. Comp.’) shows
the numbers of open-source apps (denoted as ‘#Opn.’) and indus-
trial apps (denoted as ‘#Ind.’) used in evaluating the proposed tool’s
capability in terms of code coverage or/and fault detection (against
other tools). By default, the code coverage is compared across tools.
We mark with ♣ these entries where both code coverage and fault
detection are compared. ‘Case #Ind.’ shows the numbers of indus-
trial apps used in case studies for the proposed tools. These case
studies does not report code coverage or compare the proposed
tool against other related previous tools. The sole purpose of these

https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3238147.3240465

ASE ’18, September 3–7, 2018, Montpellier, France W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie

Table 1: Overview of existing Android test generation tools
and their evaluation subjects

Tool/Study Venue Emp. Comp. Case
#Ind. #Opn. #Ind.

A3E [6] OOPSLA’13 0 0 ^28
ACTEve [3] FSE’12 0 5 0
DroidBot [24] ICSE-C’17 0 2 0
Dynodroid [26] FSE’13 0 50 1000
GUIRipper [1] ASE’12 0 ♣1 0
Monkey [17] - - - -
Sapienz [27] ISSTA’16 0 ♣68 1000
Stoat [29] FSE’17 0 ♣93 1661

SwiftHand [7] OOPSLA’13 0 10 0
WCTester [32] FSE-Ind’16 △1 0 0
Study by [8] ASE’15 0 ♣68 0

♣: Both code coverage and fault detection are compared across
tools on open source apps.

^ : Only code coverage is measured whereas fault detection is not
measured on industrial apps.

△: The tool is compared with only Monkey but no other tools.
studies is to evaluate the proposed tools’ applicability on indus-
trial Android testing tasks (by reporting the results of only fault
detection). One exception there is A3E [6], which is evaluated on
only code coverage without on fault detection (note that no tool
comparison is conducted there).

As shown in Table 1, there exists no comparison among exist-
ing tools over industrial apps in terms of both code coverage
and fault detection. Subjects for empirical tool comparison (in
the ‘Emp. Comp.’ column) include only open-source apps, with one
exception (WCTester [32]) where the proposed tool is compared
with only one baseline tool (Monkey) on only one industrial app
(WeChat). In addition, although the case-study evaluation of a few
tools includes industrial apps (in the ‘#Case Ind.’ column), no tool
comparison is conducted there, and no case studies on industrial
apps measure both code coverage and fault detection. There exist
a gap and yet a strong need to investigate and compare how well
these proposed tools perform on industrial apps that, in contrast to
open-source apps, are usually (1) much more complex with regard
to functionalities and implementations, (2) better maintained and
tested, and (3) with much larger user bases and higher impacts.

To fill this gap and give practitioners and researchers insights
on how existing tools perform on industrial apps, in this paper, we
present the first empirical study that conducts comparison among
existing tools on industrial apps in terms of both code coverage and
fault detection. In particular, we investigate how existing available
state-of-the-art or state-of-the-practice test generation tools per-
form on 68 widely-used industrial apps in terms of code coverage
(method and activity coverage) and fault detection (the number
of distinct triggered crashes). These apps span across 30 different
categories and each of these apps has at least 1 million installs
according to Google Play [15]. We empirically study the coverage
and fault-detection results to gain insights on each tool’s strengths
and weaknesses. We also study how to efficiently combine some of
these tools to achieve better code coverage or fault detection capa-
bilities on testing industrial apps. We also report our experience in
applying these tools to testing tasks for industrial Android apps.

In this paper, our empirical study provides app developers and
tool researchers/vendors with insights on the strengths and weak-
nesses of existing test generation tools, helping them improve their
tools’ design and implementation and their handling of realistic
tasks for industrial apps. In particular, we address four main re-
search questions in our study:

• RQ1:What is the code coverage (method coverage and ac-
tivity coverage) achieved by each test generation tool under
study on applicable industrial apps?

• RQ2: How many unique crashes can each test generation
tool trigger on each applicable industrial app? What are the
causes of these crashes?

• RQ3: How to efficiently combine multiple test generation
tools on applicable industrial apps to achieve better coverage
and fault detection than applying these tools individually?

• RQ4: How much effort does it require to set up each test
generation tool for testing industrial apps?

We run different test generation tools under study on selected
industrial apps to study the effectiveness of these tools. According to
our results, Monkey achieves the highest method coverage on 22 of
41 apps whose method coverage data can be obtained. Of all 68 apps
under study, Monkey also achieves the highest activity coverage on
35 apps, while Stoat is able to trigger the highest number of unique
crashes on 23 apps.

To gain better understanding of the tool performance on indus-
trial apps, similar to a previous study methodology [21], we rank
each covered method/activity or triggered unique crash in each
industrial app based on the number of test generation tools that
have covered the method/activity or triggered the unique crash. For
instance, a method/activity or unique crash is considered rank-1
if only one test generation tool has covered the method/activity
or triggered the unique crash. Our results show that, on many in-
dustrial apps, Monkey has the highest numbers of rank-1 methods
and activities, and Stoat is able to trigger the highest numbers of
rank-1 unique crashes. Our analysis also provides suggestions for
combining multiple tools for better coverage and/or fault detection
than applying these tools individually.

In summary, this paper makes the following main contributions:

• Empirical investigation on the effectiveness of existing avail-
able Android UI test generation tools when being applied on
industrial apps.

• Detailed analysis of the coverage results achieved by each
tool to provide insights on the strengths and weaknesses of
the test generation tools under study and on how to better
leverage these tools.

• Hands-on experience report of applying multiple state-of-
the-art or state-of-the-practice test generation tools on com-
plex industrial apps.

• A strong implication that testing researchers for Android
test generation tools should empirically compare a newly
proposed tool with related previous tools on industrial apps
besides open-source apps, going beyond the current common
research practice of comparing tools on only open-source
apps.

An Empirical Study of Android Test Generation Tools in Industrial Cases ASE ’18, September 3–7, 2018, Montpellier, France

2 BACKGROUND
In this section, we present an overview of the Android app compo-
nents and the Android OS architecture.

2.1 Android App Components
From the view of users and other apps, an Android app consists of
four types of components: Activities, Intent Filters, Services, and
Content Providers [14].

Activities.Activities are designed to showUI screens consisting of
sets of layouts and UI widgets (e.g., buttons). Widgets are associated
with sets of attributes (e.g., sizes and positions) and can be bound to
callback methods to handle UI events (e.g., short clicks). An activity
is typically used for a single specific scenario such as logging in
and user registration.

Intent Filters. Intents are messaging objects used by components
within an app or across different apps to communicate with each
other. Intent filters are used to allow only the designated intent
types to be received and processed by the components. Launching
an app, for instance, is achieved by sending a specific intent to the
app main activity that intercepts such intents.

Services. Services are intended to perform tasks in the back-
ground without being attached to a UI screen. Downloading tasks,
for example, are usually implemented using services to avoid block-
ing the usage of app main functionalities.

Content Providers. Content providers enable apps to expose and
manage a globally shared set of data. For instance, a user’s contact
information is stored in an Android system app andmay be accessed
by other apps using the specific content provider.

2.2 Android OS Architecture
The Android OS is an open-source Linux-based software stack [18].
Android apps run within individual sandboxes, namely instances
of the Dalvik Virtual Machine (DalvikVM) [12], on top of native
libraries and the Linux kernel. Android frameworks, which are
responsible for low-level functionalities of the Android OS includ-
ing UI and activity management, also run within instances of the
DalvikVM and can be reached by apps via Android APIs. System
apps are pre-installed on the Android OS to provide users with
basic features such as phone calling and SMS sending.

The Java source code of an Android app is compiled into dex-
code [11] and subsequently packaged as an Android Package (APK)
file along with other resource files. Developers are also allowed to
write their app libraries in C/C++ as native libraries and invoke
them through the Java Native Interface (JNI). The app can then
be installed on a compatible Android OS. At runtime, the system’s
DalvikVM reads the app’s dex-code and executes it. Starting from
Android 4.4, the Android Runtime (ART) is included with the An-
droid OS, where the ART translates and optimizes dex-code to
native machine code during installation to enable faster execution.
Note that both DalvikVM and ART have the 64K reference limitation
(i.e., there cannot be more than 65,536 methods in a single .dex file
that contains an app’s dex-code) due to the design of the DalvikVM
instruction set. Android provides multidex support [13] to mitigate
this limitation.

3 SELECTION OF ANDROID TEST
GENERATION TOOLS

We choose 6 state-of-the-art or state-of-the-practice UI test genera-
tion tools for our study. Monkey [17] is the official test generation
tool shipped with all Android devices, while the rest are all pub-
lished at top venues of software engineering. We select tools that
are applicable on at least half of the industrial apps under study.
Table 2 presents an overview of the test generation tools that we
examine and our decision on tool selection.

In this section, we first present the selected tools for our study.
We then illustrate the excluded tools along with the reasons why
these tools cannot be included for the study.

3.1 Selected Tools under Study
3.1.1 Monkey. Monkey [17] is a purely randomized Android

test generation tool (from Google) that generates pseudo-random
streams of UI events (e.g., clicks, touches, and gestures on UI) and
limited types of system-level events (such as volume controls) to
unmodified Android apps. Monkey is the most widely used tool in
industrial settings due to its applicability to a variety of application
settings (e.g., ease of use and compatibility with different Android
platforms) [8].

3.1.2 WCTester. To inherit the advantages of Monkey while ad-
dressing its major limitations, the WeChat team develops a new ap-
proach [32, 33] incorporating three main strategies. First, WCTester
finds and triggers only enabled events on each UI screen. Second,
WCTester focuses on generating events with higher chances to
change current UI states. Third, WCTester considers the UI state
history and avoids repetitions during exploration. The new ap-
proach leads to significant performance improvements on testing
the WeChat app, one of the most popular messenger apps in the
world with over 1 billion monthly active users [22].

3.1.3 Sapienz. Sapienz [27, 28] is an evolutionary-testing-based
test generation tool for Android UI testing. It leverages a genetic
algorithm [9] to evolve generated seed input sequences to search
for the optimized test suites containing short input sequences while
maximizing code coverage and fault revelation. Pre-defined input
sequences (i.e., motif genes) are leveraged to complement the ran-
dom exploration and provide local exercise for different types of
UI widgets. String resources inside apps are extracted as seeds for
text inputs. Multi-level instrumentation is supported to accommo-
date various apps. Test suites can be evaluated simultaneously on
multiple devices to speed up the search process.

3.1.4 Stoat. Stoat [29] is a UI test generation tool for Android
apps, with model-based evolutionary testing. It constructs a prob-
abilistic UI state-transition model through dynamic exploration
and optional static analysis at the first stage. It then evolves the
model to search for the optimized model with regard to compre-
hensive fitness scores of the concrete input sequences derived from
Gibbs sampling [4] on models. Code coverage, model coverage, and
test-suite diversity are reflected in the fitness score. System-level
events are also randomly injected to further enhance the testing
effectiveness.

ASE ’18, September 3–7, 2018, Montpellier, France W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie

Table 2: Overview of Android test generation tools under study

Tool Open Source No Need of Modification Exploration
Strategy

No Need of App
Source CodeApp Platform

Monkey [17] ✓ ✓ ✓ Random ✓

WCTester [32, 33] ✗ ✓ ✓ Random ✓

Sapienz [27] ✓ ✓* ✗ Evolutionary ✓

Stoat [29] ✓ ✓* ✓ Model-based Evolutionary ✓

DroidBot [24] ✓ ✓ ✓ Model-based ✓

A3E-Depth-First [6] ✓ ✗ ✓ Systematic ✓

* Instrumentation is optional for Sapienz and Stoat.

3.1.5 DroidBot. DroidBot [24] is a programmable, light-weight,
and model-based Android UI testing tool. It generates UI-guided
test inputs based on a state-transition model constructed on the
fly. It also allows developers to write testing scripts to customize
the exploration strategy. Detailed testing reports are provided after
each test to help developers understand apps’ behavior. DroidBot
has received over 300 stars on GitHub [25] at the time of writing.

3.1.6 A3E-Depth-First. A3E [6] includes a systematic testing
tool (i.e., A3E-Depth-First) that performs a depth-first search strat-
egy during exploration. Such a search strategy mimics user actions
and aims to thoroughly cover app functionalities. Another strategy
named Targeted Exploration is also proposed for fast, direct explo-
ration of activities (as opposed to the general-purpose exploration
that aims for higher code coverage or fault detection) in A3E. The
strategy is based on high-level control flow graphs capturing ac-
tivity transitions and constructed by performing static dataflow
analysis on apps’ bytecode.

3.2 Excluded Tools and Reasons
This section describes the Android test generation tools that are
published in top venues but are not included in our study. We
further provide reasons why these Android test generation tools
are not applicable for the study.

3.2.1 Dynodroid. Dynodroid [26] is a guided random testing
tool that generates user UI events and system-level events. By instru-
menting the Android OS, Dynodroid computes the set of relevant
events that can execute code of the app under test. Furthermore,
Dynodroid generates more system-level events than Monkey such
as incoming phone calls and geolocation changes.

Reason. Dynodroid works on only emulators with Android OS
version 2.3 due to the requirement of instrumenting the Android
platform, and the authors of Dynodroid publish only the instru-
mented version for Android 2.3. Very few industrial apps under
our study still support such an outdated Android system that was
released in 2010.

3.2.2 GUIRipper. GUIRipper [1] is a model-based testing tool.
It constructs a finite-state-machine (FSM) model of the UI and
performs the depth-first search (DFS) exploration strategy. To build
the model, GUIRipper instruments the APK file of the app under
test and dynamically analyzes the app UI to obtain relevant events
related to UI widgets. The tool then systematically traverses the
app UI, generating and executing obtained relevant events when
new states are encountered.

Reason.We fail to adapt GUIRipper to real devices (note that only
a binary version of GUIRipper for the Windows OS is available). In
addition, even on emulators, GUIRipper works on only Android 4.0
and it fails to process most industrial apps under study.

3.2.3 SwiftHand. SwiftHand [7] is a model-based testing tool.
It features a specialized active learning algorithm to approximate a
model of the app under test to guide exploration into unexplored
parts of the app’s state space. Unlike traditional active learning
algorithms such as L∗ [5], such design minimizes the number of
restarts during exploration. SwiftHand requires to instrument the
APK file of the app under test to obtain the app UI information
during testing.

Reason. Due to possible implementation defects, SwiftHand fails
on most of the industrial apps under study during instrumentation
with error messages such as ArrayIndexOutOfBoundsException,
or simply never finishes instrumentation and produces GiB-sized
log files.

3.2.4 ACTEve. ACTEve [3] is a concolic-testing [10] tool for
Android apps. By instrumenting both the Android SDK and the app
under test, ACTEve symbolically tracks events from the originating
points (e.g., tap coordinates on screen) to the code handling the
events. Such approach limits the search space for feasible events
and avoids generating redundant inputs. The tool also identifies
read-only or ineffective events to further reduce the sizes of event
sequences.

Reason. Similar to Dynodroid, ACTEve works on only Android
2.3 and it requires to instrument both the Android SDK and Android
apps.

4 STUDY METHODOLOGY
In this section, we present our study methodology including the
industrial-app selection, coverage/crash measurement, and study
setup.

4.1 Industrial-App Selection
We choose to obtain industrial apps from Google Play, the official
Android app market by Google with huge user base. We sample
multiple top-recommended apps with the highest numbers of down-
loads from each category, and manage to harvest 68 industrial apps
that are compatible with Android 4.4, the most recent version of
Android supported by most of the top-recommended apps and all
test generation tools under study. Note that the WeChat app is
specifically excluded due to the fact that WCTester, one of the tools

An Empirical Study of Android Test Generation Tools in Industrial Cases ASE ’18, September 3–7, 2018, Montpellier, France

Table 3: Overview of industrial apps under study and their applicability on selected test generation tools

App Name Version Category #Install Login #Method #Activity Applicability
M. W. Sa. St. D. A.

Abs 4.2.0 Health & Fitness 10m+ ✗ 47217 31 ✓ ✓ ✓ ✓ ✓ ✗
AccuWeather 5.3.5-free Weather 50m+ ✗ 59429 43 ✓ ✓ ✓ ✓ ✓ ✓
Adobe Acrobat 18.1.0 Productivity 100m+ ✗ - 42 ✓ ✓ ✓ ✓ ✓ ✓
Amazon Kindle 8.5.0.77 Books & Reference 100m+ ✓ - 123 ✓ ✓ ✓ ✓ ✓ ✓
Autolist 5.2.2 Auto & Vehicles 1m+ ✗ - 30 ✓ ✓ ✓ ✓ ✓ ✓
AutoScout24 9.3.14 Auto & Vehicles 10m+ ✓ 104043 40 ✓ ✓ ✓ ✓ ✓ ✓
Best Hairstyles 1.17 Beauty 1m+ ✗ 5703 4 ✓ ✓ ✓ ✓ ✓ ✓
CNN 5.1 News & Magazines 10m+ ✗ 52677 31 ✓ ✓ ✓ ✓ ✓ ✓
Crackle 5.2.1 Entertainment 10m+ ✗ 52393 16 ✓ ✓ ✓ ✓ ✓ ✓
Duolingo 3.75.1 Education 100m+ ✗ 60702 55 ✓ ✓ ✓ ✓ ✓ ✓
ES File Explorer 4.1.6 Productivity 100m+ ✓ 96067 105 ✓ ✓ ✓ ✓ ✓ ✓
Evernote 7.12 Productivity 100m+ ✓ 89512 160 ✓ ✓ ✓ ✓ ✓ ✓
Excel 16.0.9126 Productivity 100m+ ✗ 84138 27 ✓ ✓ ✓ ✓ ✓ ✗
Facebook 164.0.0 Social 1b+ ✓ - 587 ✓ ✓ ✓ ✓ ✗ ✗
Filters For Selfie 1.0.0 Beauty 1m+ ✗ 2883 8 ✓ ✓ ✓ ✓ ✓ ✓
Flipboard 4.1.1 News & Magazines 500m+ ✓ 27527 74 ✓ ✓ ✓ ✓ ✓ ✗
Floor Plan Creator 3.2 Art & Design 5m+ ✗ 8847 13 ✓ ✓ ✓ ✓ ✓ ✓
Fox News 3.0.0 News & Magazines 10m+ ✗ - 31 ✓ ✓ ✓ ✓ ✓ ✓
G.P. Books 4.0.47 Books & Reference 1b+ ✗ - 33 ✓ ✓ ✓ ✓ ✓ ✓
G.P. Music 8.7.6773 Music & Audio 1b+ ✗ 23713 65 ✓ ✓ ✓ ✓ ✓ ✓
G.P. Newsstand 4.7.0 News & Magazines 1b+ ✗ 70514 32 ✓ ✓ ✓ ✓ ✓ ✓
Gmail 8.3.12 Communication 1b+ ✗ - 60 ✓ ✓ ✓ ✓ ✓ ✗
GO Launcher Z 2.51 Personalization 100m+ ✗ 170699 182 ✓ ✓ ✓ ✓ ✓ ✓
GoodRx 5.3.6 Medical 1m+ ✗ 50105 61 ✓ ✓ ✓ ✓ ✓ ✓
Google 7.24.32 Tools 1b+ ✗ - 117 ✓ ✓ ✓ ✓ ✓ ✗
Google Calendar 5.8.24 Business 500m+ ✓ - 32 ✓ ✓ ✓ ✓ ✓ ✗
Google Chrome 65.0.3325 Communication 1b+ ✗ - 84 ✓ ✓ ✓ ✓ ✓ ✗
ibisPaint X 5.1.5 Art & Design 10m+ ✗ 28106 36 ✓ ✓ ✓ ✓ ✓ ✓
Instagram 38.0.0 Social 1b+ ✓ - 40 ✓ ✓ ✓ ✓ ✓ ✗
inStar 0.9.8 Art & Design 5m+ ✗ 52911 23 ✓ ✓ ✓ ✓ ✓ ✓
LINE Camera 14.2.4 Photography 100m+ ✗ 83214 64 ✓ ✓ ✓ ✓ ✓ ✗
Marvel Comics 3.10.3 Comics 5m+ ✗ 25563 44 ✓ ✓ ✓ ✓ ✓ ✓
Match 18.03.01 Dating 10m+ ✗ 52519 66 ✓ ✓ ✓ ✓ ✓ ✓
McDonald 5.12.0 Food & Drink 10m+ ✓ - 62 ✓ ✓ ✓ ✓ ✓ ✓
Merriam-Webster 4.1.2 Books & Reference 10m+ ✗ 25554 17 ✓ ✓ ✓ ✓ ✓ ✓
Messenger 160.0.0 Communication 1b+ ✓ - 310 ✓ ✓ ✓ ✓ ✓ ✗
Mirror 30 Beauty 1m+ ✗ 7215 12 ✓ ✓ ✓ ✓ ✓ ✓
My baby Piano 2.22.2614 Parenting 5m+ ✗ 726 3 ✓ ✓ ✓ ✓ ✓ ✓
NFL 14.3.46 Sports 50m+ ✗ - 46 ✓ ✓ ✓ ✓ ✓ ✓
Nike Run Club 2.14.1 Health & Fitness 10m+ ✓ - 113 ✓ ✓ ✓ ✓ ✓ ✗
NOOK 4.7.0.39 Books & Reference 10m+ ✗ 91032 132 ✓ ✓ ✓ ✓ ✓ ✓
OfficeSuite 9.3.11997 Business 100m+ ✗ - 126 ✓ ✓ ✓ ✓ ✓ ✓
OneNote 16.0.9126 Business 100m+ ✓ - 76 ✓ ✓ ✓ ✓ ✓ ✗
Photos 3.18.0 Photography 1b+ ✗ - 114 ✓ ✓ ✓ ✓ ✓ ✗
Pinterest 6.59.0 Lifestyle 100m+ ✓ 100420 33 ✓ ✓ ✓ ✓ ✓ ✓
Quizlet 3.15.2 Education 10m+ ✓ 71511 58 ✓ ✓ ✓ ✓ ✓ ✓
realtor.com 8.13.2 House & Home 10m+ ✗ 44723 34 ✓ ✓ ✓ ✓ ✓ ✓
Sing! 5.4.1 Music & Audio 100m+ ✓ - 53 ✓ ✓ ✓ ✓ ✓ ✗
Sketch 8.0.A.0.2 Art & Design 50m+ ✗ - 46 ✓ ✓ ✓ ✓ ✓ ✓
Speedometer 3.6 Auto & Vehicles 1m+ ✗ 17030 11 ✓ ✓ ✓ ✓ ✓ ✓
Spotify 8.4.48 Music & Audio 100m+ ✓ 206474 113 ✓ ✓ ✓ ✓ ✓ ✗
TED 3.1.16 Education 10m+ ✗ - 27 ✓ ✓ ✓ ✓ ✓ ✓
The Weather Chnl. 8.10.0 Weather 50m+ ✗ - 99 ✓ ✓ ✓ ✓ ✓ ✓
Ticketmaster 1.11.0 Events 5m+ ✗ - 121 ✓ ✓ ✓ ✓ ✓ ✗
Translate 5.18.0 Tools 500m+ ✗ 29666 33 ✓ ✓ ✓ ✓ ✓ ✓
TripAdvisor 25.6.1 Food & Drink 100m+ ✓ 106519 213 ✓ ✓ ✓ ✓ ✓ ✓
trivago 4.9.4 Travel & Local 10m+ ✗ 34790 29 ✓ ✓ ✓ ✓ ✓ ✓
UC Browser 11.5.0 Communication 500m+ ✗ - 63 ✓ ✓ ✓ ✓ ✓ ✓
WatchESPN 2.5.1 Sports 10m+ ✗ 22686 16 ✓ ✓ ✓ ✓ ✓ ✓
Wattpad 6.82.0 Books & Reference 100m+ ✓ 89639 93 ✓ ✓ ✓ ✓ ✓ ✓
Waze 4.36.0.1 Maps & Navigation 100m+ ✗ - 203 ✓ ✓ ✓ ✓ ✓ ✓
WEBTOON 2.0.4 Comics 10m+ ✓ 81503 62 ✓ ✓ ✓ ✓ ✓ ✗
Wish 4.16.5 Shopping 100m+ ✓ 31512 74 ✓ ✓ ✓ ✓ ✓ ✗
Word 16.0.9126 Productivity 100m+ ✗ 77895 27 ✓ ✓ ✓ ✓ ✓ ✗
Yelp 9.33.0 Food & Drink 10m+ ✓ 204308 277 ✓ ✓ ✓ ✓ ✓ ✓
YouTube 13.12.60 Video Player & Editor 1b+ ✗ - 48 ✓ ✓ ✓ ✓ ✓ ✗
Zedge 5.38.7 Personalization 100m+ ✗ 138309 35 ✓ ✓ ✓ ✓ ✓ ✓
Zillow 9.4.2 House & Home 10m+ ✗ - 82 ✓ ✓ ✓ ✓ ✓ ✓

under study, is specifically optimized for the app and could poten-
tially cause bias in the result. We also manually register accounts
for apps that require logging in to access their major functionalities.
In addition, apps requiring special/sensitive information (e.g., bank-
ing) or related to real-world services (e.g., taxi calling) are skipped
to minimize undesirable side effects in the study.

Table 3 shows the detailed information of each selected industrial
app and its applicability on the selected test generation tools. ‘#In-
stall’ shows the number of installs of the app according to Google
Play. ‘Login’ denotes whether logging in is required by the app for
its majority functionalities to be available. ‘#Method’ indicates the
number of methods in each app as reported by the instrumentation
tool, for which ‘-’ indicates that we do not instrument the app for
method coverage (more details are available in Section 4.2). ‘#Ac-
tivity’ shows the number of activities in each app as extracted from
AndroidManifest.xml. In the ‘Availability’ header section, ‘M.’,

‘W.’, ‘Sa.’, ‘St.’, ‘D.’, and ‘A.’ stand for Monkey, WCTester, Sapienz,
Stoat, DroidBot, and A3E-Depth-First, respectively. Note that the
same abbreviation convention is used in subsequent analysis. As
shown in the table, most of the selected apps have more than 100
million installs, while each app has at least 1 million installs. These
apps span across 30 different categories and are popularly used by
Android users everyday. Such factors distinguish these industrial
apps from open-source apps, which often have only a few users
and very limited functionalities.

4.2 Coverage/Crash Measurement
For code-coverage measurement, we use Ella [2] to instrument all
the industrial apps, and collect statistics of method coverage dur-
ing testing. To avoid potential issues by dual-instrumentation (i.e.,
instrumentation duplicately conducted by both Ella and a test gen-
eration tool under study to collect method coverage), we share the

ASE ’18, September 3–7, 2018, Montpellier, France W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie

Ella-collected method coverage information with test generation
tools that need the coverage information during testing instead of
letting the tools instrument the app again. Note that we focus on
coverage of only Java code without considering the native code
because Android apps’ main functionalities are typically imple-
mented in Java5. In practice, we find that Ella fails to instrument
some large industrial apps under study due to the 64K reference
limitation of DalvikVM (see Section 2.2 for details), and some suc-
cessfully instrumented apps fail to run properly on Android devices
due to self-protection mechanisms. To avoid potential bias on app
selection caused by instrumentation, we still keep all these apps in
the study without collecting their method coverage information.
Table 3 also shows whether each app is actually instrumented in the
experiments as indicated by the ‘#Method’ column. In addition, we
measure activity coverage by periodically monitoring the activity
stack on the testing device and extracting all activity names from
AndroidManifest.xml in each app.

For crash measurement, we monitor the Logcat [19] on target
devices during testing and record error messages related to stack
traces. We filter out stack traces that are not related to the app
under test by checking whether the app’s package name is present.
Only unique stack traces are counted, achieved by hashing all code
locations in each stack trace (instead of the entire stack trace, which
might contain environment related information).

4.3 Study Setup
We run each test generation tool continuously for 3 hours on each
of their applicable industrial apps under study. Note that for Stoat,
we follow the settings described in the tool’s corresponding pa-
per [29] by allocating 1 hour for model construction and 2 hours
for model evolution. Each test (i.e., a combination of one test gen-
eration tool and one applicable app) is run 3 times to compensate
potential influence brought by randomness during testing. All tests
of the same app are run on the same device. For the fairness of
comparison, when we run each test, the tool is allowed to use only
one device. For apps requiring logging in to expose most of their
functionalities, we choose to manually log in to these apps before
each test begins in order to facilitate in-depth testing (note that the
code coverage before the test begins is not included in the analysis).
In addition, the original implementation of Sapienz clears app data
before evaluating each input sequence, reverting the efforts of man-
ual logging in. In order to set up a normalized testing environment
while keeping the tool’s original design as much as possible, we
modify the tool so that it backs up the app data right after manual
logging in and later restores the app data instead of clearing them.

We conduct our study on official Android x86 emulators and 4
real phones, all running Android 4.4. Each emulator is configured
with 4 CPU cores, 2 GiB of RAM, and 1 GiB of SD card. For each
app under study, if the app supports x86 devices, it is tested on a
standard emulator each time; otherwise, it is tested on a certain real
phone. Apps’ data and modifications to the SD card are all reverted
after each test. Such design serves as an effort to keep the testing
environment efficient, unified, yet versatile to allow testing various
industrial apps. Note that Android ARM emulators are not used
due to their poor performance, which could potentially limit the
power of test generation tools given a bounded amount of time.

According to our observation during testing, most x86 emulators
seldom use up all dedicated CPU cores, indicating their good per-
formance. Also note that we modify each tool’s implementation in
only two situations: adapting the tool to our testing environment,
or dealing with an easy-to-fix implementation defect that prevents
the tool from functioning properly (with reference to the tool’s
corresponding document or paper).

5 CODE COVERAGE RESULTS ON
INDUSTRIAL APPS

In this section, we answer RQ1 (what is the code coverage achieved
by each test generation tool under study on applicable industrial apps)
by measuring and comparing the method and activity coverage
achieved by each testing tool on industrial apps in our experiments.

Table 4 shows the statistics of method and activity coverage on
each app achieved by each test generation tool under study after 3
hours of testing. ‘-’ in a table cell indicates that the corresponding
tool is not applicable on the corresponding industrial app (due to
instrumentation or tool applicability issues). Table cells with gray
backgrounds indicate the highest values compared with other tools
for the same app and coverage type, and multiple tools might have
the same highest coverage on the same app (as shown by multiple
table cells with gray backgrounds for the same app and coverage
type). All coverage percentage numbers are the averaged values of
3 repetitions and are rounded to the nearest integer. Note that due
to the number rounding, there might be two tools achieving the
same percentage number but only one having the gray background.
Also note that we use the same convention in subsequent analysis.

As can be seen from Table 4, Monkeymanages to gain the highest
method coverage on 22 of 41 apps whose method coverage data
can be obtained, although the tool does not achieve much higher
method coverage compared with other tools (especially Sapienz) on
multiple apps. Sapienz comes after Monkey by gaining the highest
method coverage on 14 apps, while other tools perform the best
with regard to method coverage on fewer than three apps. Such
finding is different from the evaluation results on open-source apps
conducted by the authors of some of these tools. According to these
authors’ evaluation results, they find that their tools achieve higher
code coverage on more apps compared with Monkey. It can also be
seen that no toolmanages to covermore than 50% ofmethods on any
app, with the only exception being Sapienz on the app ‘Floor Plan
Creator’. In addition, the majority of the tools achieve less than 30%
of method coverage on most apps even after 3 hours of testing. Such
findings suggest that there is still much space for improving these
tools on industrial apps. Another interesting finding is that an app’s
larger code base is not necessarily more difficult to be covered. For
example, the app ‘Spotify’ has over 200,000 methods, and Sapienz
manages to cover 1/3 of these methods. However, the app ‘Google
Play Music’ (abbreviated as ‘G.P. Music’) has about 23,000 methods,
but none of 6 tools cover more than 5% of these methods. Such
result also suggests that different industrial apps might have very
different characteristics even under the same category.

The statistics of activity coverage are similar to those of method
coverage. Monkey gains the highest activity coverage on 35 of all
68 apps (including 3 ties, i.e., there are 3 apps on which Monkey
has the same activity coverage as another tool), while Sapienz

An Empirical Study of Android Test Generation Tools in Industrial Cases ASE ’18, September 3–7, 2018, Montpellier, France

Table 4: Statistics of code coverage/fault detection on industrial apps by test generation tools under study

App Name Method Coverage (%) Activity Coverage (%) # of Unique Crashes
M. W. Sa. St. D. A. M. W. Sa. St. D. A. M. W. Sa. St. D. A.

Abs 26 23 25 15 14 - 13 16 10 0 6 - 5 1 3 0 0 -
AccuWeather 24 18 22 13 18 17 30 14 19 9 16 9 13 1 5 1 2 1
Adobe Acrobat - - - - - - 31 2 36 2 2 5 0 0 3 0 0 0
Amazon Kindle - - - - - - 2 3 1 2 2 1 0 0 0 0 0 0
AutoScout24 22 17 17 19 10 6 8 8 5 13 3 5 2 1 0 14 0 2
Autolist - - - - - - 33 67 50 3 3 3 0 0 1 0 0 1
Best Hairstyles 40 35 40 39 35 9 100 100 100 100 100 25 1 0 0 0 0 0
CNN 32 31 23 22 21 12 48 32 26 26 35 6 4 1 3 0 0 0
Crackle 33 25 32 27 27 27 38 25 38 25 25 19 12 0 11 0 1 0
Duolingo 26 24 26 26 28 25 16 16 15 13 22 9 0 1 2 3 0 0
ES File Explorer 20 21 22 13 10 11 22 20 19 10 6 3 1 1 1 5 0 0
Evernote 23 30 26 15 23 14 11 22 14 3 11 2 0 0 1 0 0 1
Excel 23 16 16 6 15 - 7 4 4 4 4 - 0 1 1 0 0 -
Facebook - - - - - - 4 7 3 1 - - 3 7 8 1 - -
Filters For Selfie 50 4 32 1 45 1 50 25 38 13 63 13 9 1 2 0 1 0
Flipboard 32 32 37 28 29 - 12 14 16 8 11 - 4 2 0 4 0 -
Floor Plan Creator 43 36 53 11 32 16 54 38 54 15 31 8 0 0 0 2 0 0
Fox News - - - - - - 29 32 32 3 13 3 5 7 8 0 4 0
G.P. Books - - - - - - 24 15 24 18 15 0 8 2 2 10 1 1
G.P. Music 4 4 4 5 4 3 6 5 3 3 3 2 2 2 4 7 1 1
G.P. Newsstand 5 4 4 4 4 3 6 0 6 0 0 0 1 1 1 1 1 2
GO Launcher Z 23 6 18 11 9 10 14 1 5 1 1 1 0 0 0 0 0 0
Gmail - - - - - - 13 12 17 10 18 - 2 0 3 15 0 -
GoodRx 32 31 31 26 29 22 43 41 31 20 30 7 1 0 17 8 0 1
Google - - - - - - 9 3 4 1 9 - 0 5 1 0 0 -
Google Calendar - - - - - - 22 16 13 9 9 - 7 0 4 14 0 -
Google Chrome - - - - - - 4 2 4 2 2 - 0 0 2 2 0 -
Instagram - - - - - - 25 25 28 10 30 - 3 5 18 0 0 -
LINE Camera 19 28 36 20 7 - 16 28 39 9 9 - 0 0 2 0 0 -
Marvel Comics 19 16 19 14 9 13 50 41 50 30 9 11 5 1 2 9 0 0
Match 10 10 14 12 12 8 9 8 9 3 8 2 0 0 0 0 0 0
McDonald - - - - - - 13 3 15 3 15 8 1 0 0 0 0 0
Merriam-Webster 31 20 34 27 10 19 29 24 24 24 6 6 4 1 4 5 0 0
Messenger - - - - - - 5 9 3 1 1 - 0 0 0 0 0 -
Mirror 22 22 23 21 22 20 33 25 33 17 25 8 4 3 9 5 3 0
My baby Piano 12 3 42 31 30 29 33 33 33 33 33 33 0 0 0 1 0 0
NFL - - - - - - 17 4 13 4 7 4 1 0 1 2 0 1
NOOK 7 3 7 6 13 1 6 2 7 6 12 1 0 0 0 0 0 0
Nike Run Club - - - - - - 30 27 37 1 1 - 3 0 13 0 0 -
OfficeSuite - - - - - - 28 18 11 6 9 1 1 0 0 0 0 0
OneNote - - - - - - 17 20 16 1 13 - 2 0 1 0 0 -
Photos - - - - - - 25 32 25 11 17 - 20 20 13 21 5 -
Pinterest 27 23 26 12 0 6 15 12 21 6 0 3 3 2 3 1 0 0
Quizlet 47 37 46 35 15 32 38 38 40 14 3 9 1 0 1 3 0 0
Sing! - - - - - - 13 19 23 6 15 - 0 0 1 4 0 -
Sketch - - - - - - 37 43 26 13 22 2 8 17 1 5 0 0
Speedometer 29 33 32 24 29 24 73 73 45 18 45 18 2 4 1 0 0 0
Spotify 25 31 33 16 19 - 9 11 12 1 3 - 0 0 0 0 0 -
TED - - - - - - 70 30 56 30 22 15 8 2 2 4 0 0
The Weather Chnl. - - - - - - 9 10 11 10 6 1 1 4 2 5 1 2
Ticketmaster - - - - - - 6 2 7 1 2 - 1 2 1 0 3 -
Translate 32 21 32 14 30 19 58 52 52 12 39 15 0 0 0 2 0 0
TripAdvisor 31 31 29 14 14 1 24 28 24 4 10 0 1 2 5 9 0 1
UC Browser - - - - - - 3 2 3 2 2 2 0 0 0 0 0 0
WEBTOON 26 23 21 19 24 - 50 52 31 16 39 - 1 0 2 1 0 -
WatchESPN 32 21 33 29 13 23 44 31 38 31 13 19 2 0 11 6 0 0
Wattpad 27 37 44 4 30 5 17 32 42 1 16 1 1 2 77 0 0 0
Waze - - - - - - 22 2 8 3 13 1 2 0 0 2 0 0
Wish 33 27 32 21 13 - 35 22 28 5 7 - 0 2 2 0 0 -
Word 23 14 16 6 19 - 7 4 4 0 4 - 0 0 0 0 0 -
Yelp 20 11 20 13 14 4 14 7 12 4 7 0 13 2 26 3 6 2
YouTube - - - - - - 10 6 8 13 2 - 13 2 8 12 0 -
Zedge 36 30 35 21 3 3 23 14 26 6 3 0 12 1 5 9 0 2
Zillow - - - - - - 26 12 20 16 9 4 6 1 2 7 0 1
ibisPaint X 15 18 18 11 16 7 28 28 31 19 31 6 2 3 0 0 2 0
inStar 21 14 21 8 13 3 17 9 17 4 9 4 1 0 1 0 0 1
realtor.com 30 29 30 26 24 19 29 15 24 9 9 6 1 2 1 0 0 0
trivago 40 26 38 18 25 12 41 28 41 17 28 3 1 0 0 5 1 0

gains the highest activity coverage on 28 apps (also including 2
ties). WCTester comes after Sapienz by having the highest activity
coverage on 15 apps (including 3 ties). Such finding suggests that
WCTester might be better at breadth-first exploration than at in-
depth exercising. It can also be seen that, although the overall
activity coverage is higher than the method coverage on industrial
apps under study, many of the apps still have very low activity
coverage. A possible explanation is that many of the apps’ main
functionalities are actually not reached. Thus, it might be helpful
to prioritize unexplored functionalities in order to better saturate
the coverage of industrial apps.

To better understand the tools’ coverage performance, we inves-
tigate into each tool’s behavior over time during testing. Figures 1
and 2 show the trend of average method and activity coverage by
each test generation tool under study with regard to the elapsed
time during testing. Note that we average the coverage percentage

numbers of different apps instead of counts of methods or activities
to avoid imbalanced influence by apps in different sizes. As shown
in Figure 1, Sapienz almost always has the highest average method
coverage, although its advantage over Monkey becomes smaller
as time goes by. When it comes to the activities, as shown in Fig-
ure 2, Monkey constantly has higher average activity coverage than
Sapienz. These two tools both have much higher coverage than the
remaining four tools. The two tools also gain new coverage faster
than all other four tools on average, leading to more significant
advantages over time. It can also be seen that A3E-Depth-First (ab-
breviated as ‘A3E’) has comparable or higher average coverage with
WCTester, Stoat, and DroidBot at the beginning of testing. How-
ever, A3E-Depth-First almost stops gaining new coverage after that.
According to our observation during testing, such result might be
caused by the tool’s outdated implementation, which often causes
the tool to hang completely (see Section 8 for more discussion).

ASE ’18, September 3–7, 2018, Montpellier, France W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 30 60 90 120 150 180

C
ov

er
ag

e

Elapsed Time (min)

Monkey WCTester Sapienz Stoat DroidBot A3E

Figure 1: Trend of average method coverage of industrial
apps achieved by test generation tools under study

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 30 60 90 120 150 180

C
ov

er
ag

e

Elapsed Time (min)

Monkey WCTester Sapienz Stoat DroidBot A3E

Figure 2: Trend of average activity coverage of industrial
apps achieved by test generation tools under study

6 FAULT DETECTION RESULTS ON
INDUSTRIAL APPS

In this section, we answer RQ2 (how many unique crashes can each
test generation tool trigger on each applicable industrial app, and
what are the causes of these crashes) by showing the statistics of
unique crashes triggered by each testing tool on industrial apps in
our experiments.

Table 4 shows the number of unique crashes triggered by each
test generation tool on each applicable industrial app under study.
Note that each number reports the total number of unique crashes
triggered by the tool on the app after 3 repetitions. As shown in
Table 4, Stoat triggers the highest numbers of unique crashes on
23 apps, outperforming all other tools. Sapienz triggers the highest
numbers of unique crashes on 19 apps, while Monkey accomplishes
so on 16 apps. Other three tools trigger the highest numbers of
unique crashes on fewer than 10 apps. Also, the numbers of unique
triggered crashes have much higher deviations across different tools
for the same app, compared with method and activity coverage.

It is somewhat surprising to see that the fault-detection statistics
differ from the method and activity coverage statistics. Aiming to
understand the differences, we manually investigate into a case
involving Stoat and a case involving Sapienz, and examine the
details of crashes with the findings as below.

Stoat on the app ‘Photos’. Stoat has the highest number of unique
crashes on this app. Stoat triggers many NullPointerExceptions
during starting of activities that take an Intent (see Section 2.1 for
details) as input. Meanwhile, Monkey and other tools trigger other
types of exceptions including ArrayIndexOutOfBoundsException
and StackOverflowError. Stoat’s triggering these crashes during

activity starting might benefit from injecting system-level events
during testing.

Sapienz on the app ‘Wattpad’. This combination has much more
unique crashes than any other combinations. We find that Sapienz
triggers numerous SQLiteExceptions on this app for each of the
three runs. The exception causes are mostly about querying on
multiple non-existent tables in the app’s SQLite database. As the
app seems to heavily rely on the SQLite database but does not
properly handle related exceptions, these fatal SQL queries are
frequently triggered from multiple locations of the app, causing
different stack traces. None of other tools is able to trigger such
number of exceptions during testing. A possible explanation is
that triggering such crashes requires special preconditions (e.g.,
forcibly terminating the app during initialization, which involves
SQL operations for creating these tables) that other tools might not
be able to create.

7 RANK-1 ANALYSIS ON EXPERIMENT
RESULTS

In this section, in order to provide additional insights for answer-
ing RQ3 (how to efficiently combine multiple test generation tools
on applicable industrial apps to achieve better coverage and fault
detection), we measure and analyze the statistics of rank-1 method
and activity coverage plus rank-1 unique crashes achieved by each
test generation tool on industrial apps in our experiments. We also
analyze the results from previous sections to answer RQ3.

A rank-nmethod/activity or unique crash indicates that there are
n test generation tools being able to cover the method/activity or
unique crash [21]. Specifically, a rank-1 method/activity or unique
crash indicates that only one test generation tool under study covers
the method/activity or trigger the unique crash in at least one run
of our experiments. For each tool under study, the numbers of
its covered rank-1 methods/activities and triggered rank-1 unique
crashes reflect the tool’s unique value to testing an app.

Table 5 shows the statistics of rank-1 methods, activities, and
unique crashes on applicable industrial apps by the test generation
tools under study. A table cell with ‘m/n’ indicates that, on the
corresponding app, the rank-1methods/activities or unique crashes
covered by the corresponding test generation tool account form
percent of covered methods/activities or triggered unique crashes
by all the six test generation tools, and all of the tool’s covered
methods/activities or triggered unique crashes are n percent of
covered methods/activities or triggered unique crashes by all the
six test generation tools. With such definition, we know that on a
specific app, if test generation tool A’s method/activity or unique
crash statistic is ‘a/b’ and tool B’s method/activity or unique crash
statistic is ‘c/d’, by running both tool A and tool B (i.e., combining
tool A and tool B) we could achieve at leastmax(a+d,b+c) percent
coverage of methods/activities or unique crashes that are covered
or triggered by all the six test generation tools.

As shown in Table 5, for many industrial apps under study, com-
bining Monkey and Sapienz facilitates good saturation of covering
the app code as they together contribute to over 90% of all covered
methods by all the six tools on these apps. These two tools also
have the highest numbers of rank-1 covered methods on many
apps. When it comes to activities, combining Monkey with Sapienz

An Empirical Study of Android Test Generation Tools in Industrial Cases ASE ’18, September 3–7, 2018, Montpellier, France

Table 5: Statistics of rank-1 methods, activities, and unique crashes on industrial apps by test generation tools under study

App Name % of Rank-1 Covered Methods % of Rank-1 Covered Activities % of Rank-1 Unique Crashes
M. W. Sa. St. D. A. M. W. Sa. St. D. A. M. W. Sa. St. D. A.

Abs 4/76 16/88 1/74 0/46 0/63 - 0/57 43/100 0/57 0/14 0/29 - 56/56 11/11 33/33 0/0 0/0 -
AccuWeather 5/98 0/75 1/93 1/51 0/74 0/66 33/83 0/39 0/50 17/44 0/44 0/22 47/87 0/7 0/33 7/7 0/13 7/7
Adobe Acrobat - - - - - - 6/88 0/12 12/94 0/12 0/12 0/12 0/0 0/0 100/100 0/0 0/0 0/0
Amazon Kindle - - - - - - 14/50 43/79 0/7 0/21 0/14 0/7 0/0 0/0 0/0 0/0 0/0 0/0
AutoScout24 9/91 1/66 0/73 3/81 3/46 0/23 9/36 0/36 0/36 55/82 0/9 0/18 11/11 5/5 0/0 74/74 0/0 11/11
Autolist - - - - - - 0/73 9/91 0/82 0/5 0/5 0/5 0/0 0/0 50/50 0/0 0/0 50/50
Best Hairstyles 0/95 0/95 0/96 0/95 2/87 0/30 0/100 0/100 0/100 0/100 0/100 0/50 100/100 0/0 0/0 0/0 0/0 0/0
CNN 6/91 1/91 1/62 0/65 0/81 0/34 13/100 0/75 0/69 0/63 0/81 0/13 50/50 13/13 38/38 0/0 0/0 0/0
Crackle 1/98 0/78 1/97 0/86 0/92 0/82 0/86 0/57 0/86 14/71 0/57 0/57 43/57 0/0 43/52 0/0 0/5 0/0
Duolingo 0/90 1/93 1/88 2/90 2/93 0/87 6/65 6/71 0/59 12/65 0/71 0/47 0/0 17/17 33/33 50/50 0/0 0/0
ES File Explorer 4/79 6/82 4/76 4/55 0/54 0/37 5/74 0/69 3/64 13/51 0/33 0/8 13/13 13/13 13/13 63/63 0/0 0/0
Evernote 3/75 7/86 4/78 0/43 1/71 0/35 2/55 14/86 6/61 0/18 0/55 0/6 0/0 0/0 50/50 0/0 0/0 50/50
Excel 17/98 1/77 1/69 0/25 0/67 - 50/100 0/50 0/50 0/50 0/50 - 0/0 50/50 50/50 0/0 0/0 -
Facebook - - - - - - 9/38 50/83 0/36 0/9 - - 11/17 33/39 44/44 6/6 - -
Filters For Selfie 8/96 0/8 0/84 0/2 4/86 0/2 0/80 0/40 0/80 0/20 20/100 0/20 80/90 0/10 10/20 0/0 0/10 0/0
Flipboard 2/72 2/76 11/88 1/65 1/66 - 4/52 0/61 22/70 4/39 0/39 - 40/40 20/20 0/0 40/40 0/0 -
Floor Plan Creator 2/79 0/63 11/95 1/36 1/64 0/40 0/88 0/75 0/88 13/63 0/63 0/25 0/0 0/0 0/0 100/100 0/0 0/0
Fox News - - - - - - 8/85 8/92 0/85 0/8 0/23 0/8 7/36 36/50 14/57 0/0 0/29 0/0
G.P. Books - - - - - - 0/80 0/60 0/80 20/80 0/60 0/0 26/42 0/11 0/11 53/53 0/5 5/5
G.P. Music 9/86 0/89 1/90 0/87 0/88 0/74 0/100 0/100 0/50 0/50 0/50 0/25 8/17 8/17 25/33 50/58 0/8 0/8
G.P. Newsstand 19/96 0/78 1/78 0/78 0/74 0/74 0/100 0/0 0/100 0/0 0/0 0/0 0/50 0/50 0/50 0/50 0/50 50/100
GO Launcher Z 31/89 0/29 5/63 0/36 4/48 0/35 62/88 0/3 6/32 0/3 6/9 0/3 0/0 0/0 0/0 0/0 0/0 0/0
Gmail - - - - - - 0/60 0/47 0/73 20/47 7/80 - 5/11 0/0 11/16 79/79 0/0 -
GoodRx 1/96 0/94 1/93 0/86 0/89 0/66 0/81 3/76 0/51 14/62 0/62 0/11 0/4 0/0 62/65 31/31 0/0 4/4
Google - - - - - - 13/87 0/67 0/47 0/7 0/73 - 0/0 83/83 17/17 0/0 0/0 -
Google Calendar - - - - - - 0/78 0/56 0/56 0/33 11/67 - 28/28 0/0 16/16 56/56 0/0 -
Google Chrome - - - - - - 0/75 0/50 0/75 25/75 0/50 - 0/0 0/0 50/50 50/50 0/0 -
Instagram - - - - - - 0/81 0/81 0/81 13/38 0/75 - 4/13 17/22 65/78 0/0 0/0 -
LINE Camera 1/66 5/81 15/92 0/53 0/29 - 4/61 0/75 21/96 0/21 0/21 - 0/0 0/0 100/100 0/0 0/0 -
Marvel Comics 2/91 0/80 5/94 3/78 0/45 0/61 3/79 0/66 0/76 17/76 0/21 0/17 20/33 0/7 7/13 60/60 0/0 0/0
Match 0/95 0/84 2/97 0/83 0/85 2/54 0/100 0/83 0/100 0/33 0/83 0/17 0/0 0/0 0/0 0/0 0/0 0/0
McDonald - - - - - - 14/86 0/14 0/64 0/21 0/64 14/57 100/100 0/0 0/0 0/0 0/0 0/0
Merriam-Webster 1/83 0/83 15/91 0/68 0/26 0/51 0/75 0/75 13/63 13/50 0/13 0/13 29/29 7/7 29/29 36/36 0/0 0/0
Messenger - - - - - - 0/37 53/95 5/26 0/11 0/11 - 0/0 0/0 0/0 0/0 0/0 -
Mirror 0/94 1/94 3/98 1/92 0/92 0/83 0/100 0/75 0/100 0/75 0/75 0/25 0/31 0/23 31/69 23/38 0/23 0/0
My baby Piano 10/25 0/6 19/87 2/67 0/63 0/61 0/100 0/100 0/100 0/100 0/100 0/100 0/0 0/0 0/0 100/100 0/0 0/0
NFL - - - - - - 45/100 0/36 0/55 0/36 0/45 0/18 20/20 0/0 20/20 40/40 0/0 20/20
NOOK 0/40 0/21 2/41 5/48 46/79 0/5 0/32 0/20 8/40 16/56 32/76 0/4 0/0 0/0 0/0 0/0 0/0 0/0
Nike Run Club - - - - - - 4/84 0/71 12/88 0/2 0/6 - 13/20 0/0 80/87 0/0 0/0 -
OfficeSuite - - - - - - 22/84 8/67 4/31 0/24 0/24 0/2 100/100 0/0 0/0 0/0 0/0 0/0
OneNote - - - - - - 6/83 6/83 6/72 0/6 0/56 - 67/67 0/0 33/33 0/0 0/0 -
Photos - - - - - - 2/77 2/89 0/75 7/55 0/55 - 15/30 18/30 17/20 30/32 3/8 -
Pinterest 6/81 12/85 2/77 0/38 0/0 0/19 0/55 9/64 9/64 9/36 0/0 0/9 33/33 22/22 33/33 11/11 0/0 0/0
Quizlet 1/88 1/69 7/95 1/67 0/28 0/70 0/64 0/69 25/92 3/28 0/6 0/25 20/20 0/0 20/20 60/60 0/0 0/0
Sing! - - - - - - 0/44 11/78 6/83 6/28 0/56 - 0/0 0/0 20/20 80/80 0/0 -
Sketch - - - - - - 0/64 18/82 0/50 7/32 4/46 0/4 26/26 55/55 3/3 16/16 0/0 0/0
Speedometer 2/87 0/90 7/87 0/63 0/79 0/72 0/100 0/100 0/75 0/25 0/63 0/38 0/50 25/100 0/25 0/0 0/0 0/0
Spotify 6/91 1/87 3/91 0/44 0/66 - 22/78 4/65 4/65 0/4 0/17 - 0/0 0/0 0/0 0/0 0/0 -
TED - - - - - - 4/83 0/50 0/67 17/67 0/21 0/21 47/53 13/13 7/13 27/27 0/0 0/0
The Weather Chnl. - - - - - - 11/59 7/52 0/48 26/63 0/26 0/4 0/8 15/31 15/15 38/38 0/8 15/15
Ticketmaster - - - - - - 0/20 0/20 80/100 0/10 0/20 - 0/33 0/67 0/33 0/0 0/100 -
Translate 2/96 0/89 1/96 0/57 1/90 0/56 0/95 0/90 0/100 0/15 0/75 0/25 0/0 0/0 0/0 100/100 0/0 0/0
TripAdvisor 7/88 4/85 2/81 0/43 0/38 0/0 6/78 8/86 3/74 1/19 0/34 0/0 6/6 6/12 24/29 53/53 0/0 6/6
UC Browser - - - - - - 20/60 0/40 40/80 0/20 0/20 0/20 0/0 0/0 0/0 0/0 0/0 0/0
WEBTOON 12/96 0/68 2/76 0/63 0/72 - 3/97 0/92 0/71 0/39 0/63 - 25/25 0/0 50/50 25/25 0/0 -
WatchESPN 1/96 0/63 3/98 1/94 0/37 0/68 11/89 0/56 0/78 11/78 0/22 0/33 11/11 0/0 58/58 32/32 0/0 0/0
Wattpad 4/76 1/83 7/92 0/8 1/65 0/14 5/39 4/65 16/86 0/2 5/35 0/2 1/1 3/3 96/96 0/0 0/0 0/0
Waze - - - - - - 45/93 0/9 2/32 0/20 2/52 0/9 50/50 0/0 0/0 50/50 0/0 0/0
Wish 12/90 2/77 4/85 0/56 0/38 - 25/86 3/53 8/72 0/17 0/19 - 0/0 50/50 50/50 0/0 0/0 -
Word 6/94 3/88 1/68 0/26 1/81 - 0/100 0/100 0/50 0/50 0/50 - 0/0 0/0 0/0 0/0 0/0 -
Yelp 16/94 1/36 2/77 1/61 1/66 0/17 31/87 4/26 1/54 1/24 1/36 0/3 12/32 5/5 39/63 0/7 12/15 5/5
YouTube - - - - - - 18/55 0/27 0/36 45/64 0/9 - 29/42 6/6 13/26 39/39 0/0 -
Zedge 6/96 0/81 2/90 1/58 0/8 0/11 8/83 0/50 8/83 8/42 0/8 0/8 26/52 0/4 0/22 39/39 0/0 9/9
Zillow - - - - - - 20/77 9/46 0/51 9/43 3/20 0/11 33/40 0/7 7/13 40/47 0/0 7/7
ibisPaint X 4/86 1/81 3/73 1/67 0/79 0/29 6/94 0/81 0/69 0/63 0/81 0/13 20/40 40/60 0/0 0/0 0/40 0/0
inStar 1/96 0/69 3/98 0/55 0/60 0/16 0/80 0/40 20/100 0/40 0/40 0/20 33/33 0/0 33/33 0/0 0/0 33/33
realtor.com 5/94 1/79 2/90 0/76 0/66 0/52 36/100 0/36 0/64 0/29 0/21 0/14 33/33 33/67 0/33 0/0 0/0 0/0
trivago 4/96 0/60 1/93 2/58 0/65 0/29 0/65 5/50 0/65 30/60 0/45 0/5 14/14 0/0 0/0 71/71 14/14 0/0

and/or Stoat seems to be a good option for most of the apps, because
Monkey has the highest numbers of covered activities (regardless
of ranking) on many apps while Sapienz and/or Stoat can be good
complements when Monkey is not able to cover most activities.
For fault detection, combining Stoat with Sapienz and/or Monkey
seems to be more effective for most of the apps, as Stoat has the
highest numbers of unique crashes (regardless of ranking) on many
apps while Sapienz and/or Monkey can be good complements. Such
suggestion is consistent with the results of manual investigation
from Section 6, where we find that Stoat and Sapienz/Monkey can
trigger very different types of crashes. Also, according to the fact
that WCTester is designed for WeChat, the tool might be a good
complement with Monkey when the app under test involves similar
scenarios as those in WeChat (e.g., chatting, social, and information
browsing). Rank-1 activity statistics also show hints on this sug-
gestion: WCTester covers the highest numbers of unique activities

on ‘Facebook’, ‘Messenger’, ‘Pinterest’, and ‘TripAdvisor’. All these
apps share similar usage scenarios with some functionalities of
WeChat.

8 EXPERIENCE IN APPLYING TEST
GENERATION TOOLS ON INDUSTRIAL
APPS

In this section, we answer RQ4 (how much effort does it require to set
up each test generation tool for testing industrial apps) by reporting
our experience on setting up each test generation tool under study
and applying them on selected industrial apps. We additionally
report our experience with Ella [2] and the Android Framework
(illustrated in Section 2).

ASE ’18, September 3–7, 2018, Montpellier, France W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie

8.1 Test Generation Tools
Monkey. As the built-in test generation tool shipped with each
Android device, Monkey can be invoked directly using the Android
Debug Bridge [16] shell interface. We spend no effort on setting up
Monkey for industrial apps under study.

WCTester. Due to defects in the UIAutomator Python wrap-
per [20] being used, WCTester often halts during exploration and
produces error messages such as “RPC server not connected”. We
spend about 5 hours investigating and fixing the defects, and after
that WCTester becomes much more stable.

Sapienz. The original implementation of Sapienz supports only
emulators. Given that many apps under study include native li-
braries compiled against only ARM processors, we modify the
tool’s implementation to add support for real devices. Since the
tool is tested on only Android 4.4 and needs to install MotifCore
to the system partition, for maximum compatibility, we downgrade
all real devices to Android 4.4 and acquire the root privileges on
all of them. We also modify the tool’s implementation so that it
restores the app data to the point right after manual logging in
instead of clearing them. Finally, we spend more than 10 hours
getting Sapienz to work in our settings.

Stoat. The original implementation of Stoat has multiple issues
with our testing infrastructure. For example, it forcibly kills all Java
and ADB processes on the underlying computer to clean up the
environment, unexpectedly terminating our tools for monitoring
the testing. Stoat also uses the problematic UIAutomator Python
wrapper. Overall, we spend about 10 hours investigating and fixing
the implementation of Stoat.

DroidBot. DroidBot needs to run its client app under the acces-
sibility mode, which requires granting the privilege manually in
Android system settings. We also sometimes encounter error mes-
sages such as “Please enable DroidBot manually in accessibility
settings” even if the tool works in previous runs. Overall, we spend
about 2 hours writing a script to mitigate this issue.

A3E-Depth-First. A3E-Depth-First has several issues in the im-
plementation, such as not being able to click buttons with labels
containing special characters. Due to the outdated implementation
and the need of running the target app under its instrumentation,
the tool causes many apps to crash at beginning, preventing them
from being tested. It also hangs during exploration for unknown
reasons even after we try to fix this issue. We spend about 5 hours
trying to fix the issues for the tool.

Note that we have already submitted bug reports on most of
the preceding patches to these existing tools for the original tool
authors to improve the quality and robustness of these tools. Ad-
ditionally, due to the fact that some tool issues appear only after
the experiments have lasted for some time, it takes a lot of manual
efforts to inspect the experiment results to find out such issues, and
the wasted time of running these experiments (with these issues
still existing in the tools) adds up to tens of hours.

8.2 Ella and the Android framework
Ella. Ella has multiple implementation issues in different modules.
In addition, the tool’s original implementation does not support
instrumenting apps with multidex enabled, which is commonly

used by large industrial apps. We spend more than 10 hours fixing
the issues and adding multidex support to Ella.

Android framework. We even encounter an issue in the system
framework on Android 4.4. Specifically, the issue in the UIAutoma-
tor framework causes the service to stop working when there is any
special character (e.g., an Emoji icon) on the screen. We fix the issue
bymodifying the corresponding Android source code plus recompil-
ing and replacing the UIAutomator framework (uiautomator.jar).
We spend about 5 hours addressing this issue.

9 THREATS OF VALIDITY
The main threat to external validity is the representativeness of the
studied subjects (i.e., the degree to which the studied industrial apps
and tools are representative of true practice). Our current tool set
contains only six test generation tools due to not being able to apply
other test generation tools on most industrial apps under study.
However, these six tools are state-of-the-art ones that are already
compared with more state-of-the-art or state-of-the-practice tools
such as Monkey, which is popularly used in industry. These threats
could be reduced by more experiments on wider types of subjects
in future work.

The threats to internal validity are instrumentation effects that
can bias our results. Issues in Ella’s handling of the apps’ binary
code, faults in our modification of the existing tools or in our ex-
periment scripts, etc. might cause such effects. To reduce these
threats, we manually inspect traces of our experiments for sample
apps. In addition, we are not able to obtain method coverage for
about half of the industrial apps under study due to Ella’s failing
to instrument these apps or these apps not running normally after
instrumentation. We also try coverage collection tools based on
Soot [30] and they simply fail or cause problems on more apps. We
are not aware of other tools that can flawlessly instrument these
large, complex, and closed-source apps. Also, it might cause bias to
the selection of apps if we simply discard these apps that fail to be
instrumented.

10 CONCLUSION
In this paper, we have presented an empirical study of existing
Android test generation tools’ applicability on industrial apps. We
directly compare the tools with regard to code coverage and fault-
detection ability. By analyzing the study results, we provide sugges-
tions for combining different test generation tools to achieve better
performance. We also report our experience in applying these tools
to industrial apps under study. Our study results give insights on
how Android UI test generation tools could be improved to better
handle industrial apps.

Our study results offer a strong implication that testing researchers
for Android test generation tools should empirically compare a
newly proposed tool with related previous tools on industrial apps
besides open-source apps, going beyond the current common re-
search practice of comparing tools on only open-source apps.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation
under grants no. CNS-1513939 and CNS-1564274.

An Empirical Study of Android Test Generation Tools in Industrial Cases ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated
Testing of Android Applications. In Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2012). ACM, New York,
NY, USA, 258–261. https://doi.org/10.1145/2351676.2351717

[2] Saswat Anand. 2016. ELLA: A Tool for Binary Instrumentation of Android Apps.
https://github.com/saswatanand/ella

[3] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012.
Automated Concolic Testing of Smartphone Apps. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engi-
neering (FSE ’12). ACM, New York, NY, USA, Article 59, 11 pages. https:
//doi.org/10.1145/2393596.2393666

[4] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.
2003. An Introduction to MCMC for Machine Learning. Machine Learning 50, 1
(01 Jan 2003), 5–43. https://doi.org/10.1023/A:1020281327116

[5] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.
Information and Computation 75, 2 (1987), 87 – 106. https://doi.org/10.1016/
0890-5401(87)90052-6

[6] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration
for Systematic Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA ’13). ACM, New York, NY, USA, 641–660. https://doi.org/
10.1145/2509136.2509549

[7] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of
Android Apps with Minimal Restart and Approximate Learning. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’13). ACM, New York, NY, USA,
623–640. https://doi.org/10.1145/2509136.2509552

[8] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) (ASE ’15). IEEE Computer Society, Washington, DC, USA, 429–440.
https://doi.org/10.1109/ASE.2015.89

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multiob-
jective Genetic Algorithm: NSGA-II. Trans. Evol. Comp 6, 2 (April 2002), 182–197.
https://doi.org/10.1109/4235.996017

[10] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

[11] Google. 2017. Android Dalvik Executable format. https://source.android.com/
devices/tech/dalvik/dex-format

[12] Google. 2017. ART and Dalvik. https://source.android.com/devices/tech/dalvik/
[13] Google. 2018. Android 64K Method limit. https://developer.android.com/studio/

build/multidex
[14] Google. 2018. Android App Components. https://developer.android.com/guide/

components/fundamentals#Components
[15] Google. 2018. Android Apps on Play Store. https://play.google.com/store/apps
[16] Google. 2018. Android Debug Bridge (adb). https://developer.android.com/

studio/command-line/adb
[17] Google. 2018. Android Monkey. https://developer.android.com/studio/test/

monkey
[18] Google. 2018. Android Platform Architecture. https://developer.android.com/

guide/platform/
[19] Google. 2018. Logcat command-line tool. https://developer.android.com/studio/

command-line/logcat

[20] Xiaocong He. 2018. Python wrapper of Android uiautomator test tool. https:
//github.com/xiaocong/uiautomator

[21] K. Inkumsah and T. Xie. 2008. Improving Structural Testing of Object-Oriented
Programs via Integrating Evolutionary Testing and Symbolic Execution. In 2008
23rd IEEE/ACM International Conference on Automated Software Engineering. 297–
306. https://doi.org/10.1109/ASE.2008.40

[22] Business Insider. 2018. WeChat has hit 1 billionmonthly active users. http://www.
businessinsider.com/wechat-has-hit-1-billion-monthly-active-users-2018-3

[23] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,
Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and Replay for Android: Are
We There Yet in Industrial Cases?. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE ’17). ACM, New York, NY, USA,
854–859. https://doi.org/10.1145/3106237.3117769

[24] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: A
Lightweight UI-guided Test Input Generator for Android. In Proceedings of the
39th International Conference on Software Engineering Companion (ICSE-C ’17).
IEEE Press, Piscataway, NJ, USA, 23–26. https://doi.org/10.1109/ICSE-C.2017.8

[25] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2018. DroidBot: A
lightweight test input generator for Android. https://github.com/honeynet/
droidbot

[26] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input
Generation System for Android Apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE ’13). ACM, New York, NY, USA,
224–234. https://doi.org/10.1145/2491411.2491450

[27] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis (ISSTA ’16). ACM, New York, NY, USA,
94–105. https://doi.org/10.1145/2931037.2931054

[28] Ke Mao, Mark Harman, and Yue Jia. 2017. Crowd Intelligence Enhances Auto-
mated Mobile Testing. In Proceedings of the 32Nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’17). IEEE Press, Piscataway, NJ,
USA, 16–26. http://dl.acm.org/citation.cfm?id=3155562.3155569

[29] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE ’17). ACM, New York, NY, USA, 245–256.
https://doi.org/10.1145/3106237.3106298

[30] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. (1999),
13–. http://dl.acm.org/citation.cfm?id=781995.782008

[31] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-box Approach for Au-
tomated GUI-model Generation of Mobile Applications. In Proceedings of the
16th International Conference on Fundamental Approaches to Software Engineering
(FASE ’13). Springer-Verlag, Berlin, Heidelberg, 250–265. https://doi.org/10.1007/
978-3-642-37057-1_19

[32] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated Test Input Generation for Android: Are
We Really There Yet in an Industrial Case?. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
’16). ACM, New York, NY, USA, 987–992. https://doi.org/10.1145/2950290.2983958

[33] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated Test Input Generation
for Android: Towards Getting There in an Industrial Case. In Proceedings of the
39th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP ’17). IEEE Press, Piscataway, NJ, USA, 253–262. https:
//doi.org/10.1109/ICSE-SEIP.2017.32

https://doi.org/10.1145/2351676.2351717
https://github.com/saswatanand/ella
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1065010.1065036
https://source.android.com/devices/tech/dalvik/dex-format
https://source.android.com/devices/tech/dalvik/dex-format
https://source.android.com/devices/tech/dalvik/
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
https://developer.android.com/guide/components/fundamentals#Components
https://developer.android.com/guide/components/fundamentals#Components
https://play.google.com/store/apps
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://github.com/xiaocong/uiautomator
https://github.com/xiaocong/uiautomator
https://doi.org/10.1109/ASE.2008.40
http://www.businessinsider.com/wechat-has-hit-1-billion-monthly-active-users-2018-3
http://www.businessinsider.com/wechat-has-hit-1-billion-monthly-active-users-2018-3
https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1109/ICSE-C.2017.8
https://github.com/honeynet/droidbot
https://github.com/honeynet/droidbot
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2931037.2931054
http://dl.acm.org/citation.cfm?id=3155562.3155569
https://doi.org/10.1145/3106237.3106298
http://dl.acm.org/citation.cfm?id=781995.782008
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1145/2950290.2983958
https://doi.org/10.1109/ICSE-SEIP.2017.32
https://doi.org/10.1109/ICSE-SEIP.2017.32

	Abstract
	1 Introduction
	2 Background
	2.1 Android App Components
	2.2 Android OS Architecture

	3 Selection of Android Test Generation Tools
	3.1 Selected Tools under Study
	3.2 Excluded Tools and Reasons

	4 Study Methodology
	4.1 Industrial-App Selection
	4.2 Coverage/Crash Measurement
	4.3 Study Setup

	5 Code Coverage Results on Industrial Apps
	6 Fault Detection Results on Industrial Apps
	7 Rank-1 Analysis on Experiment Results
	8 Experience in Applying Test Generation Tools on Industrial Apps
	8.1 Test Generation Tools
	8.2 Ella and the Android framework

	9 Threats of Validity
	10 Conclusion
	References

