
Autom Softw Eng (2015) 22:333–366
DOI 10.1007/s10515-014-0166-y

User-aware privacy control via extended
static-information-flow analysis

Xusheng Xiao · Nikolai Tillmann ·
Manuel Fahndrich · Jonathan de Halleux ·
Michal Moskal · Tao Xie

Received: 3 September 2013 / Accepted: 7 August 2014 / Published online: 12 September 2014
© Springer Science+Business Media New York 2014

Abstract Applications in mobile marketplaces may leak private user information
without notification. Existing mobile platforms provide little information on how
applications use private user data, making it difficult for experts to validate appli-
cations and for users to grant applications access to their private data. We propose a
user-aware-privacy-control approach, which reveals how private information is used
inside applications. We compute static information flows and classify them as safe/un-
safe based on a tamper analysis that tracks whether private data is obscured before
escaping through output channels. This flow information enables platforms to provide

This work was primarily done when Xusheng Xiao was at Microsoft Research as an intern.

This paper is an extended version of our previous work published at ASE 2012 (Xiao et al. 2012). Our
previous work introduced the concept of user-aware privacy control via extended-information-flow
analysis. In this work, we present a performance evaluation of our analysis and a user survey of the
deployed system built based on our analysis.

X. Xiao (B)
NEC Laboratories America, Princeton, NJ, USA
e-mail: xsxiao@nec-labs.com

N. Tillmann · M. Fahndrich · J. de Halleux · M. Moskal
Microsoft Research, Redmond, WA, USA
e-mail: nikolait@microsoft.com

J. de Halleux
e-mail: jhalleux@microsoft.com

M. Moskal
e-mail: micmo@microsoft.com

T. Xie
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: taoxie@illinois.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-014-0166-y&domain=pdf

334 Autom Softw Eng (2015) 22:333–366

default settings that expose private data for only safe flows, thereby preserving privacy
and minimizing decisions required from users. We build our approach into TouchDe-
velop, an application-creation environment that allows users to write scripts on mobile
devices and install scripts published by other users. We evaluate our approach by
studying 546 scripts published by 194 users, and the results show that our approach
effectively reduces the need to make access-granting choices to only 10.1 % (54) of all
scripts. We also conduct a user survey that involves 50 TouchDevelop users to assess
the effectiveness and usability of our approach. The results show that 90% of the users
consider our approach useful in protecting their privacy, and 54 % prefer our approach
over other privacy-control approaches.

Keywords Mobile Application · Privacy Control · Information Flow Analysis ·
Static Analysis

1 Introduction

Modern mobile-device platforms like iOS, Android, and Windows Phone provide a
central place, called app stores or marketplaces, for finding and downloading third-
party applications. A common problem faced by these mobile-device platforms is
that the published applications in the marketplace may leak private user information
through output channels. Many of these applications access mobile-device resources,
such as pictures and GPS that may contain and expose private information, and share
them using remote cloud services or web services without notifying users (Enck et al.
2010).

To mitigate these problems, privacy control mechanisms employed by mobile-
device platforms include twomajor parts: (1)manual app validation by experts: experts
employed by an app store manually exercise the functionality provided by an app
and observe its behaviors for validation; (2) access-control granting by users: app
stores ask for permissions before users can install applications (Android andWindows
Phone), or an app requests permissions before it can access users’ private information
(iOS). The manual validation process is costly and delays publishing of apps. It is
also incomplete, since it cannot examine every execution path to detect violations of
privacy policies (Gilbert et al. 2011). Access-control granting provides information
about what private information these applications may access, rather than how these
applications use private information, causing users to make uninformed decisions on
how to control their privacy. These privacy controlmechanism lead to a situationwhere
users simply install applications without questioning the requested permissions, even
if the applications may silently leak private information (Felt et al. 2011c; Vidas et al.
2011; Enck et al. 2010).

To improve the privacy-control mechanism of these mobile platforms, we pro-
vide a user-aware-privacy-control approach that reduces efforts for app validation and
access-granting by computing information flows and classifying information flows as
safe/unsafe.

Our approach automatically computes information flows of private information via
static analysis and visualizes the flows, as shown in Fig. 1. We use the term Source to

123

Autom Softw Eng (2015) 22:333–366 335

Fig. 1 Information flow view of a sample script

refer to an origin of private information and Sink to refer to a point where information
may leak from an app. The example in Fig. 1 shows that the app uses 5 capabilities
(Camera, Location, Pictures, Media, and Sharing). Among these, the first 3 are
sources, and the last two are sinks. Among the 6 possible flows (3 sources to 2 sinks),
our analysis shows that the Location flows to the Sharing sink, and that Camera and
Location flow to the Media sink.

Given the computed information flows, our approach employs the mechanism of
user-driven access control (Roesner 2011). When the application is executed for the
first time, our approach allows users to choose among real information, anonymized
information, or abort execution, as shown in Fig. 2 (the abort option is not yet imple-
mented in TouchDevelop). These settings provide flexible choices for users: (1) using
anonymized information (e.g., a fixed picture or a fixed geolocation), users can exper-
iment with applications before granting access to real information; (2) aborting an
execution prevents unintended access to a resource and is helpful for diagnosis.

To assist experts and users in better understanding how apps handle private infor-
mation and improve privacy control, our approach further classifies information flows
based on a tamper analysis. We define a policy to classify information flows as safe
or unsafe: an information flow is safe if only untampered private information flows
to a vetted sink. A vetted sink is a sink that presents an explicit dialog requesting
the user’s permissions before the information being shown escapes. In Myer’s termi-
nology (Askarov and Myers 2010), this dialog corresponds to a declassify step and
tampered data has low integrity. For example, in TouchDevelop (2011), the sharing
of a picture taken camera shows a dialog for users to review the picture before it leaks
from the device. Such information flows do not leak private information without noti-
fying users and should be safe. However, a malicious app could encode the user’s
phone number into the color intensity of some pixels inside a picture to be shared.
The information flow will reveal that private information from the camera and contact

sources flow to the share sink, but a user may be hard pressed to recognize any changed
pixels in the picture being posted. Our analysis detects such obscure flow by observ-
ing whether the information is tampered with before reaching the sinks. Based on the
safe/unsafe classification of flows, our policy is to use real information for sources
only appearing in safe flows, and anonymized information for all other sources.

123

336 Autom Softw Eng (2015) 22:333–366

Fig. 2 Grant access to private information

Our privacy-control approach strives for a balance between security and user
involvement. By employing user-driven access control, our approach ensures that
apps gain permissions from users for private information accessed by apps. To avoid
overwhelming the userswith access granting—whichmay annoy users and cause users
to blindly grant every permission—our approach does not ask users to grant access
to private information accessed by an app but not flowing to sinks. Furthermore, our
technique provides default settings that are safe to run a script without further user
decisions, thereby reducing risk and user burden.

We build a prototype of our privacy control into TouchDevelop, a novel mobile plat-
form that enables users to write apps directly using touch screens. In TouchDevelop,
apps are written using a scripting language that is expressive enough to create appli-
cations or games, utilizing most features of mobile devices (Tillmann et al. 2011). We
call apps written in TouchDevelop “scripts”. Users can publish their scripts in a “script
bazaar”, where other users can install and run them on their own devices. TouchDe-
velop is thus similar to other mobile-device platforms, except that we use no manual
validation, only automatic information flow analysis. Our approach works well with
the TouchDevelop platform for several reasons: (1) all code is made available through
the script bazaar as source; (2) the expressiveness of the language enables apps to
be created in fewer lines, allowing efficient static analysis on whole scripts; (3) the
language does not allow reflection, eval, or native calls to platform APIs, making code
analysis easier (Howard 2011).

To evaluate the usability and effectiveness of our approach, we conduct a user
survey with TouchDevelop users who have been using the TouchDevelop App. Our
survey involves 161 users, and 50 of them answer all the questions. Each participant
of the survey is asked to complete questions regarding the effectiveness of different
techniques in our approach and provide comments on how to improve our approach.

This paper makes the following contributions:

– We propose a user-aware-privacy-control approach, which reveals information
flows and their classification to users to assist app validation and user-driven access
control. Our approach is a first step towards improving privacy control on mobile
devices via automatic analysis.

123

Autom Softw Eng (2015) 22:333–366 337

– We present an extended static analysis to compute information flows and check
tamper information for classifying information flows as safe/unsafe flows.

– The automatic computation and classification of information flows and resuling
safe default settings enable our script bazaar to operate without any manual script
validation.

– We built a prototype of our privacy control into TouchDevelop, both for analyzing
published scripts, and to present user privacy settings to the user based on our
analysis and policy.

– We studied 546 scripts published by 194 users to evaluate the effectiveness and
performance of our information flow analysis. The results show that among the
546 scripts, 172 use a private source, but only 78 scripts (14.29 %) flow private
information to a sink. Among these 78 scripts, our approach classifies 24 as safe,
reducing the need to make access granting choices to a mere 10.1 % (54) of all
scripts. Alternatively, users need to grant access to only 63 sources (41.4%) among
152 sources appearing in scripts together with sinks.

– We conducted a user survey that involves 50 users who have been using TouchDe-
velop App built with our privacy control approach. The results show that 90 % of
the users consider our approach useful in protecting their privacy, and 54 % prefer
our approach over other privacy-control approaches. We also summarized users’
feedback on the future improvement of our approach.

2 TouchDevelop language

TouchDevelop allows users to create applications using an imperative and statically
typed language (Tillmann et al. 2011). A TouchDevelop script consists of a number of
actions (procedures) and global variables. The body of actions consists of: (1) expres-
sions that either update local or global variables (assignments), invoke another action,
or invoke a predefined property; (2) conditional statements if−then−else, (3) loop state-
ments, for, while, and foreach, that iteratively execute a block of statements. The global
variables are statically typed and their current value is persisted and accessible across
multiple script invocations.

As a statically typed language, TouchDevelop defines a number of data types (e.g.,
Number or String for s, or Picture for p in Fig. 3). Each data type provides a number
of properties (e.g., p → share). For the sake of the simplicity, the language does not
provide features that allow users to define new types or properties.

2.1 Classified information flow

In this section, we illustrate several examples to show how scripts written in TouchDe-
velop may leak private information (referred to as classified information). Figure 3
shows an example of how classified information flows among values, such as Number

and String. At line 4, variable loc becomes classified since it contains the geolocation
information obtained via the GPS. Here, we refer to the property senses→current

location as a Source of geolocation information. At line 5, the location is transformed
into a string and assigned to s, therebymaking s classified. At line 6, the location string

123

338 Autom Softw Eng (2015) 22:333–366

Fig. 3 Example of classified information flow

Fig. 4 Implicit and reference-type information flow

s is rendered as text into the picture p, causing p to be classified. At line 7, the share

action of p leaks the classified information of the user’s geolocation to facebook. Here
we refer to the property share as a Sink. One thing to note is that if line 5 were moved
to after line 6, then p would not be classified. The later update of s would not affect p.

Now let’s look at another example shown in Fig. 4. At line 5, the message msg is
added to the message collection msgs. The message collection msgs keeps a reference
to msg, which means that msg can be accessed from msgs at a later time. At line 6, msg

becomes classified, which causes msgs to be classified indirectly. At line 7, msg2, the
i-th message in msgs, may contain the information of msg or other messages. Thus,
msg2 should also be considered as classified. We refer to this type of information flow
as reference-type flow, since it occurs through objects such as message collections that
contain references to other objects.

Another type of information flow that can potentially leak private information is
implicit flow (Denning 1976; Denning and Denning 1977). Implicit flow arises from
conditional control structures such as if statements where the condition depends on
classified information. The statements in the branches of the conditional statement can
leak the outcome of the condition, which allows later code to determine the classified
information indirectly. Consider the example of implicit flow shown in Fig. 4. The

123

Autom Softw Eng (2015) 22:333–366 339

Table 1 Capabilities provided by the TouchDevelop APIs

Capability Description

Source Camera Takes a picture through the camera

Location Gets the geo location, possibly using GPS

Picture Accesses the picture libraries

Music Accesses the music library

Microphone Accesses the microphone

Contacts Accesses emails or phone numbers of contacts

Sink Contacts Saves an email or phone number of a contact to the device

Media Saves pictures to the phone

Sharing Share information through social services, email or short messages

Web Accesses the web, downloading or uploading data

classified local s is used at the if statement at line 10. By observing the values of y,
users can guess whether the geolocation information stored in s contains the substring
Seattle. Thus, to track implicit information flows, we need to consider y as classified.

3 Capability identification

The application capabilities tell users what kinds of mobile-device resources (such
as personally-sensitive information and wireless network) an application uses, which
is useful information for users to decide whether to install the application. These
resources can be classified as sources (such as camera or geolocation) and sinks (such
as web or facebook sharing). To use these resources, application developers need to
use the APIs provided by the device-specific development environment, also called
software development kit (SDK).Table 1 shows the kinds of sources and sinks provided
by the TouchDevelop APIs. Among these sinks, the sink Sharing prompts users with
the sharing information, whichmakes it a vetted sink. For the other three kinds of sinks,
only the sink Web is considered as an unvetted sink. The reason is that the pictures
from the sink Picture and emails or phone numbers from the sink Contacts are all
considered as sensitive private information, and if these kinds of private information
would flow toWeb, our approach would identify the flow as an unsafe flow.

Automated capability identification To provide the accurate and complete informa-
tion of what resources are accessed by applications, our approach provides a static
analysis that scans through the application script to automatically identify applica-
tion capabilities. We have manually annotated all TouchDevelop APIs with source
and sink information. We use a fixpoint algorithm to compute the capabilities used
by each action of a script. For each action in a script, our approach parses the action
into an abstract syntax tree (AST), and automatically scans each statement node in
the AST to identify what sources and sinks are used. If a statement in an action a1
is a call to another action a2, our approach adds the sources and sinks of a2 to a1. A
fixpoint is reached if the computed sources and sinks for each action do not change.

123

340 Autom Softw Eng (2015) 22:333–366

Since application developers in TouchDevelop can only use the APIs provided by the
device-specific SDK for accessing mobile-device resources, our analysis results are
guaranteed to be accurate and complete.

4 Information flow analysis

In this section, we first present an overview of our static information flow analysis,
and then follow it up with full technical details.

4.1 Overview

Our approach statically computes information flows using abstract interpreta-
tion (Cousot and Cousot 1977). Our approach maintains the abstract state of the script
and updates the state according to the simulated execution of a statement. The state
maps local variables to sets of sources. In addition it maps a single mutable location
for each kind1 to a set of sources. Finally, the state maps sinks to sources flowing to
that sink. Sinks can be thought of as additional mutable locations that accumulate what
flows into them. Information flow from a source s1 to a sink s2 arises whenever source
s1 appears in the abstract state of sink s2. The sources in our maps are represented
as a set of value elements consisting of constant sources and input parameter names.
Input parameter names are used to represent symbolic information that allows us to
determine where parameters flow.

Implicit flows In order to handle implicit flow arising from control flow statements that
branch on classified information, we use an additional special local variable named
pc. The pc variable is assigned (augmented) with source information at conditionals
at the entry of both branches. At each basic block, the pc is defined by the value of pc
at the immediate dominator block instead of all predecessor blocks as is the case for
normal locals.

Inter-procedural analysis Our approach uses a fix-point algorithm to iteratively com-
pute the summaries of basic blocks in an action and then uses these summaries to
compute summaries of actions. At call-sites, summaries are instantiated with concrete
values for symbolic parameter names, thereby computing the effect of the call without
re-analysis of the action. This approach also handles recursive actions.

Mutable and immutable values We map the TouchDevelop concepts to a simpler
model for information flow analysis. We can think of each kind of value as having
two separate parts: (1) an immutable part, and (2) a mutable part. Many types of
values have only an immutable part and no mutable parts, e.g., Number, String, and
GeoLocation. Other types of values have both immutable parts and mutable parts. E.g.,
Picture has an immutable part that is associated with whether the picture is valid (i.e.,

1 Data types in TouchDevelop are called kinds.

123

Autom Softw Eng (2015) 22:333–366 341

whether the pointer is null). The mutable part of a picture consists of the actual pixel
colors at each coordinate of the picture.

We track information flow separately for themutable and immutable parts of values.
The immutable part of an object is copied whenever a value is assigned from one local
to another, passed as parameter, returned from amethod, stored or loaded from a global
variable. The immutable part of a value is tracked precisely at each program point and
assignments are strong assignments that replaces the original values.

The mutable part of an object is affected only by pre-defined property invocations
(i.e., primitive methods). We track the mutable part of values using an abstraction
where we have a single mutable location per kind. Every value of that type shares
that same mutable location in the analysis. All updates to the mutable part are weak
updates, meaning they are accumulated.

Primitive properties are annotated with information that indicates fromwhich para-
meters (and thus which kinds) the mutable state is read, and also what mutable parts
are written (parameters and return values).

Embedded references Because values may have embedded references to other values
that could be mutable, we also keep track of such embedded references using directed
edges from one mutable location to another. The model currently does not accom-
modate references from immutable parts to mutable parts, but we have not found a
need for that. Establishing a reference from one value to another implies a write to the
mutable state of the first.

Globals To simplify the description in the remainder of the paper, we eliminate global
variables from the model. Global variables are treated as extra parameters and return
values from each action. One can easily transform a programwith globals to a program
without globals by adding all globals used in an action (and actions called) as extra
parameters, and all globals modified by an action as extra return values. As a result,
inside an action, accessing a global is no different than accessing a local variable. We
will thus no longer explicitly talk about global variables henceforth.

Parameters Parameters of an action are treated as ordinary locals inside an action.
They are pre-initialized by the action invocation, but otherwise act no differently than
normal local variables.

Results Result variables are treated as ordinary locals inside an action. Upon return,
their immutable parts (values) are copied to the caller’s locals that receive the results
of the invocation.

4.2 Simplified language

We assume that our input program consists of a number of actions, where each action
has any number of parameters and any number of results. The body of an action
consists of a control flow graph of basic blocks, with a distinguished entry block and a
distinguished exit block. Conditionals branching on condition c are transformed into

123

342 Autom Softw Eng (2015) 22:333–366

non-deterministic branches to the then and else blocks, where the target blocks are
augmented with a first instruction of the form assume(c) and assume(not c).

The instructions inside a block have the following forms:

I nstruction : :=x := y | r := p(x1..xn)
| r1..rn := a(x1..xm) | assume(x) | assume(¬x)

An instruction is either a simple assignment from one local to another, a primitive
property invocation of parameters x1..xn binding the result to a variable r , an action
invocation with parameters x1..xm binding the results of the action to r1..rn , or a
special assume statement arising from conditional branches.We assume that primitive
operations always return a value, even if it is the Nothing value.

4.3 Summaries of basic blocks and actions

We separate the state into three parts: (1) local variable information, (2) pc information
for implicit flow, and (3) mutable state information. The first two are program point
specific, but the mutable state is not. The mutable state consists of one classification
per kind, and a set of edges between kinds representing possible references from the
mutable state of objects of one kind to objects of another kind.

Atom ::= Sources(i) | Parameter(i) | PCin

Classi f ication ::= Set o f Atom
LocalMap ::= Block → Local → Classi f ication
SinkMap ::= Block → Sink(i) → Classi f ication
PCMap ::= Block → Classi f ication
MutableState ::= Kinds(i) → Classi f ication
Re f erences ::= Set o f (Kinds(i) × Kinds(i))

The fixpoint computation computes the following data structures:

L pre, L post : LocalMap

PCpre, PCpost : PCMap

Spre, Spost : SinkMap

Mpre, Mpost : Block → MutableState

Rpre, Rpost : Block → Ref erences

L pre contains the local information on entry to a particular block, whereas L post con-
tains the corresponding information at exit of the block, and similarly for PCpre and
PCpost . The sinkmaps Spre and Spost contain the classification of the predefined sinks
on entry and exit of blocks. Mpre and Mpost contain the mutable state classification
and Rpre and Rpost contain the reference links between mutable states.

123

Autom Softw Eng (2015) 22:333–366 343

4.3.1 Block summary

We initialize L pre for entry blocks of actions to map each parameter local i to the
singleton {Parameter(i)} and to the empty set for all other locals. Similarly, we
initialize PCpre for entry blocks to the singleton {PCin} which allows computing
symbolic summaries of actions that can be applied in contextswhere thePC is classified
differently. The sinkmap Spre for the entry block is empty. Thesemapswill not change
during the global fix point of the analysis.

The information for Rpre and Mpre for the entry block keep track under which
assumptions the action has been analyzed. It is initially empty, but may grow as the
action is invoked in a context with larger M or R, causing the blocks of the action to
be re-analyzed.

For non-entry blocks, the starting state is defined as follows:

L pre(b) =
⊔

b′inpred(b)

L post (b
′)

Spre(b) =
⊔

b′inpred(b)

Spost (b
′)

Mpre(b) =
⊔

b′inpred(b)

Mpost (b
′)

Rpre(b) =
⋃

b′inpred(b)

Rpost (b
′)

PCpre(b) = PCpost (dom(b))

The locals on entry to a block are simply the union of the post local state of all
predecessor blocks, where union is defined point-wise on the map (similarly for the
sinks, mutable state, and reference links). For the PC classification is obtained by the
post PC classification of the immediate dominator of block b.

4.3.2 Action summary

We assume each action has a single exit block. The summary of an action is simply the
post state of the exit block of the action. For each action, we keep track of the initial
M and R under which it was analyzed in the information for its entry block. If we
see a call to the action with a larger M or R, we update that information for the entry
block and propagate the changes through the blocks of the action. For example,the
summary of action foo in Fig. 4 is:

State ={
L = {s → {Location}, pic → {Camera},

y → {Location},msg → {Location},
msg2 → {Location}},

S = {Sharing → {Camera}},

123

344 Autom Softw Eng (2015) 22:333–366

PC = {},
M = {Picture → {Camera},

Message → {Location}}
R = {< MessageCollection, Message >} }

Here the state of locals L shows that the local s contains the geolocation data, pic
contains the camera data, y contains geolocation data due to the implicit flow from
s to y, and the local msg gets geolocation data from s at line 5. The state of mutable
locations M shows that the mutable state of Picture contains the camera data and the
mutable state of Message contains the geolocation data. The state of references R
contains a pair showing that MessageCollection is linked to Message. Due to this link,
msg2 reads the mutable data of msgs and is considered to contain the geolocation data.
The state of sinks S shows that the sharing sink contains camera data. The set PC is
empty, since the pc does not carry the camera data after the if−then−else block.

4.4 Classified information propagation

In this section, we describe how APIs are annotated and how information flow is
tracked at the instruction level.

4.4.1 Property annotations

We assume that every primitive property p is annotated with a set ReadsMutablep
consisting of the parameter indices of parameters whose mutable state is read by p.
Similarly, the setWritesMutablep consists of the indices of parameters whose muta-
ble state is written by p. Additionally, we use index 0 inWritesMutablep to indicate
whether the mutable state of the result depends on the classification of the inputs to
property p. By default, we assume that all immutable parts of all parameters are read
by a property and that all read parts flow into the result’s immutable part. Additionally,
the set EmbedsLinksp contains the set of edges between kinds representing possible
references established by invoking property p.

A set Sourcesp indicates which predefined sources flow into the result value when
invoking property p. Finally, Sinksp contains the set of sinks to which information
flows on invoking p.

4.4.2 Statement-based propagation

The following rules show the propagation of the state for each kind of instruction. We
assume L , PC , M and R are the initial states, and L ′, PC ′, M ′ and R′ are the post
states.

Case x := y

L ′ = L[x �→ L(y) ∪ PC]

123

Autom Softw Eng (2015) 22:333–366 345

PC ′ = PC

M ′ = M

R′ = R

S′ = S

Note how the PC classification flows into the new classification of x . This is needed
to keep track of implicit flow.

Case r := p(x1..xn). First we compute the input classification, which consists of the
classification of all input parameters, the classification of all kinds for which there is
a parameter annotated with ReadsMutable.

Common = PC ∪ Sourcesp ∪
⋃

i

L(xi)

∪
⋃

j∈ReadsMutablep

Cl(M, R, kind(x j))

The helper function Cl(M, R, i) computes the union of the classification of all kinds
j reachable from i via edges in R. Note that Reach(R, i, i) is true for all R.

Cl(M, R, i) = {M(j) | Reach(R, i, j)}

With this information, we update the result and the mutable state.

L ′ = L[r �→ Common]
PC ′ = PC

M ′(i) =
⎧
⎨

⎩

M(i) ∪ Common if ∃ j ∈ WritesMutablep
and Reach(R, kind(x j), i)

M(i) otherwise

R′ = R ∪ EmbedsLinksp

S′(i) =
{
S(i) ∪ Common if i ∈ Sinksp
S(i) otherwise

Case assume(x) or assume(not x).

L ′ = L

PC ′ = PC ∪ L(x)

M ′ = M

R′ = R

S′ = S

Assume statements cause the PC classification to be augmented with the classification
of the condition.

123

346 Autom Softw Eng (2015) 22:333–366

Case r1..rn = a(x1..xm). First, we update Mpre(entr ya) to M � Mpre(entr ya) and
Rpre(entr ya) to R � Rpre(entr ya). If necessary, propagate changes through blocks
of a. We use the state at the exit block of a as the summary of a to be applied
at the current invocation. Since the summary contains some symbolic information
for parameter classification and pc classification, we first instantiate the exit block
information with the invocation site information. Let σ be the substitution

σ = [PCin �→ PC, Parameter(i) �→ L(xi)]

Now we compute instantiated versions of the exit block summaries:

Ls = σ(L post (exi ta))

Ms = σ(Mpost (exi ta))

Rs = σ(Rpost (exi ta))

Ss = σ(Spost (exi ta))

Note that no PC information flows out of the action. Let r ′
1..r

′
n be the result locals in

action a. The final states after the invocation of action a is then:

L ′ = L[ri �→ Ls(r
′
i)]

PC ′ = PC

M ′ = M � Ms

R′ = R ∪ Rs

S′ = S � Ss

5 Tampered information

The source to sink information flow we compute so far may not be enough to make
good policy decisions about which scripts are good and which scripts are bad. For
example, a script taking a picture with the camera and then posting it to facebook may
be a reasonable script, especially since posting to facebook will prompt the user and
display the text and picture that will be posted. The user thus has a way to vet the
information being posted.

However, a malicious script could try to encode the user’s phone number into the
color intensity of some pixels in the posted picture. From an information flow perspec-
tive, we would simply see that sourcesCamera andContacts flow toSharing. Users
looking at the picture being posted will likely not notice changed pixels containing
the hidden phone number.

Can we distinguish somehow between these two cases? Our attempt to do so is
based on the following assumption: for sinks that prompt the user to review the infor-
mation (e.g., emails, sms, phone calls, facebook posts), we want to distinguish if the
information being posted is recognizable by the user as containing sensitive informa-
tion or not. In the case where pixels in the picture taken by the camera are modified

123

Autom Softw Eng (2015) 22:333–366 347

based on classified contact information, we want to consider the information in the
picture as tampered and thus apply a harsher policy than if the information is not
tampered with.

In order to track tampering, we introduce an operator Tamper that can be applied
to the existing sources.

Atom: := Sources(i) | Parameter(i)
| PCin | Tamper(Atom)

Note that the set of atoms is not unbounded, as this is not a free algebra. Indeed,
Tamper(Tamper(s)) = Tamper(s) for all s. Additionally, we annotate all prop-
erties p with a single bit Tampersp, indicating whether any input classifications are
transformed into tampered output classifications for the result andwrites to themutable
store.

The rule for handling the flow at property invocations then needs to be modified
insofar as the classification Common now becomes:

I nFlow = PC ∪
⋃

i

L(xi)

∪
⋃

j∈ReadsMutablep

Cl(M, R, kind(x j))

Common = Sourcesp ∪
{
I nFlow if ¬Tampersp
T amper(I nFlow) if Tampersp

Applying Tamper to an entire classification, just means applying the operator point-
wise to the set elements.

6 User-aware privacy control

By applying the static analysis, we compute information flows on a per action and per
script basis and show summaries of which sources flow to which sinks in each action
and in the script as a whole. As an example, Fig. 1 shows the summary of the script
named location and maps, which can send a text message containing the user’s current
location or take a picture with the user’s current location embedded in it and save the
picture into the media storage library of the mobile device. This flow summary shows
the information flows of the application: by looking at the information flows at install
time, users can understand what private information the application uses and where
this private information may escape to. To minimize the efforts of experts in validating
applications and users in granting accesses to sources, we further define a policy that
classifies flows into safe and unsafe flows.

Classificationof safe andunsafe flows Ourpolicy is basedon the assumptiondescribed
in Sect. 5: we consider a flow as a safe flow if it is an untampered flow to a vetted sink.
Recall that a vetted sink results in an explicit dialog at runtime, presenting the particular
information flowing to the sink and requesting permissions from the user before the

123

348 Autom Softw Eng (2015) 22:333–366

information escapes from the mobile-device. For example, a post to facebook would
prompt the user to review the information before the actual sharing happens. Our
approach considers all other flows as unsafe, including untampered flows to unvetted
sinks (Web) and all tampered flows. We may evolve the policy of what constitutes a
safe flow based on user feedback, and update the policy when more sources and sinks
are added into the system.

Granting accesses When running the script for the first time, the user is presentedwith
all sources appearing in information flows along with a radio button group for each
source that allows the user to choose among anonymized or real information (Fig. 2).
Anonymized information means that the runtime provides the script with anonymized
information (a fixed picture or a fixed geolocation etc.), real information means the
script gets access to the real information on the users’ device, and abort execution
means that the runtime stops the execution at the access point. By using anonymized
information, a user can safely experiment with an application to determine if it does
something useful prior to even consideringwhether to allow access to real information.

Default settings To keep users safe and minimize efforts in granting access, our
approach provides default settings. We guarantee that running a script with the default
settings does not leak private information, except through vetted sinks where the user
is presented untampered information to review. Sources appearing in no flows use real
information and are not shown. For sources that appear only in safe flows, the default
setting is to use real information; for other sources appearing in flows, the default
setting is to use anonymized information.

7 Evaluation

This section presents experiments we conducted to evaluate the effectiveness and per-
formance of our extended static information flow analysis.We chose TouchDevelop as
a platform for our evaluations due to threemajor reasons: (1)privacy concerns: scripts
written in TouchDevelop can access private information on the phone, and scripts can
be downloaded easily by other (unsuspecting) users through the script bazaar; (2)
source code availability: the source code of a script is made available as part of the
publishing process; (3) simplicity: the expressiveness of the TouchDevelop languages
enables applications to be created in much fewer lines, reducing the complexity of
static analysis; the TouchDevelop language does not allow reflection or native calls
to platform APIs, enabling complete annotation of the APIs with source, sink, and
flow information; TouchDevelop only allows importing of external scripts through the
script bazaar and does not allow generating code at runtime.

7.1 Subjects and evaluation setup

To conduct the experiments, we collected 546 scripts (all publications prior to Oct 6th,
2011) published by 194TouchDevelop users, excluding scripts published by ourselves.

123

Autom Softw Eng (2015) 22:333–366 349

Fig. 5 Sizes of 546 published scripts in TouchDevelop

Figure 5 shows the number of scripts in different ranges of lines of code (LOC) 2 and the
average LOCs in these ranges. Among these scripts, 395 (72.34 %) scripts have LOCs
ranging from 0-80, and the scripts Termini 3 Final3 and Termini 3 Beta 1.44) have the
maximum LOCs of 738. The major reason why these scripts are of relatively small
size is that the expressiveness of the TouchDevelop language enables users to create
applications using fewer lines of code than using traditional programming languages
for mobile devices. For example, the script Termini Include Edition 1.0.25 published
by the user Pouya Animation6 creates a UNIX emulator (Terminal) for TouchDevelop
in just 407 LOC.

7.2 Information flow evaluations

To show the effectiveness of our information flow analysis, we posed the following
three research questions about the 546 subject scripts:

– RQ1: What is the advantage of using information flow from sources to sinks
to classify scripts, as opposed to the mere presence of both sources and sink
(capability usage)?

– RQ2: How many more scripts can we classify as safe using our tamper analysis,
thus eliminating the need to ask users to grant access?

– RQ3: How many more sources can we classify as safe using our tamper analysis,
further reducing the number of sources that require users’ decisions?

2 Meta data and comment statements are excluded for LOC computation.
3 http://touchdevelop.com/pycw
4 http://touchdevelop.com/xwgl
5 http://touchdevelop.com/hllw
6 https://www.touchdevelop.com/ntqe

123

http://touchdevelop.com/pycw
http://touchdevelop.com/xwgl
http://touchdevelop.com/hllw
https://www.touchdevelop.com/ntqe

350 Autom Softw Eng (2015) 22:333–366

Table 2 Information flow
summary of 546 published
scripts

Total # Cap (242) # Flow

/w Source /w Sink /w Both

546 172 159 89 78

Fig. 6 Code snippet of OpenBarcode 1.0.2

7.2.1 RQ1: Information flow summary

To address RQ1, we compare the number of scripts that are classified as information-
leaking using information flows with the number of scripts that are classified as
information-leaking using capabilities. Table 2 shows the information flow summary
of the published scripts. Column “# Total” shows the total number of scripts. Column
“# Cap” shows the number of scripts that either have at least one source or one sink.
Column “/w Source” shows the number of scripts that have at least one source. Col-
umn “/w Sink” shows the number of scripts that have at least one sink. Column “/w
Both” shows the number of scripts that have both sources and sinks. Column “# Flow”
shows the number of scripts that have computed information flows.

The results show that in 546 published scripts, 242 (44.32 %) either have sources
(access private information) or have sinks (can leak information from the script). To
form an information flow, a script must have at least one source and one sink. As shown
in Table 2, 457 (83.70 %, #Total − #Both) scripts have either no sources or no sinks,
which can be classified as non-information-leaking by either using information flow
or capabilities usage. For the remaining 89 scripts that have both sources and sinks,
our information flow analysis detects that 11 scripts have no information flows. Thus,
using potential flow (presence of both source and sink), reduces prompting by 48.26%
(from 172 to 89) over the traditional capability approach (presence of sources). Using
actual information flows, as computed by our analysis, further reduces prompting by
12.36 % (from 89 to 78).

Example OpenBarcode 1.0.27 is a script using the Picture source and theWeb sink,
but without actual information flow (Fig. 6). At line 4, variable SN contains private
information from the user’s picture library (not shown in Fig. 6). Due to indirect flow in
the if-branch, variable pic becomes classified. However, at line 7, the sink web→browse

7 https://www.touchdevelop.com/hejn

123

https://www.touchdevelop.com/hejn

Autom Softw Eng (2015) 22:333–366 351

Table 3 Information flow vs.
source-sink pairs

Contacts Media Sharing Web Any

Camera 0/0 22/22 11/ 21 0/30 33/36

Contacts 1/3 0/11 30/ 39 0/19 30/41

Location 0/0 6/10 12/12 27/29 30/34

Microph. 0/0 0/2 1/1 0/3 1/6

Music 0/0 0/1 1/1 0/1 1/3

Picture 0/0 18/29 2/15 14/21 24/32

Any 1/3 29/39 44/48 40/51 78/89

uses a constant string that does not depend on classified information. Thus, there is
no information flow from the Picture source to the Web sink in this script and users
need not grant explicit access to pictures.

Table 3 shows the information flow summary of the published scripts based on
source-sink pairs. Each column represents a kind of sink and each row represents a
kind of source. The first number in each table cell is the number of scripts for which
our analysis determines information flow from the given source to the given sink,
whereas the second number in each cell is simply the number of scripts that use the
corresponding source and sink. The two numbers presented in each table cell compare
our approach of computing actual information flow, to a naïve capability analysis that
simply presumes an information flow for each used source-sink pair.

For example, the cell for Camera andWeb shows that a naïve capability approach
would classify 30 scripts as having information flow from the camera to the web,
whereas our information flow analysis proves that none of these scripts actually leak
camera information to the web, completely removing the concerns of leaking pictures
taken from the camera through the web.

Similarly, the naïve capability approach would consider 19 scripts to leak contact
information through theweb, while our analysis shows that none of these scripts would
do that.

These results show that information flow analysis effectively computes amuch finer
granularity of the potential flows between sources and sinks used in a script.

7.2.2 RQ2: Safe scripts

To address RQ2, we apply our static analysis on the 78 subject scripts that have
information flows, referred to as flow scripts, and measure the number of flow scripts
that have safe flows. We assume only sinkWeb is an unvetted sink, while all others are
vetted sinks. Table 4 shows the safe/unsafe flow summary of the 78 scripts that have
information flows. Column “# Safe” shows the number of scripts that have safe flows.
Column “# Unvetted” shows the number of scripts that have information flows from
sources into unvetted sinks. Column “# Tampered” shows the number of scripts that
have tampered information flows. Column “# Both” shows the number of scripts that

123

352 Autom Softw Eng (2015) 22:333–366

Table 4 Safe/unsafe flow
summary of 78 flow scripts

Safe # Unsafe (54) # Both # Mix

Unvetted #Tampered

45 40 47 21 0

have both safe and unsafe flows. Column “# Mix” shows the number of scripts that
have both safe and unsafe flows from a common source (mix scripts).

The results show that 45 (57.69 %) flow scripts have safe flows and 54 (69.23 %)
flow scripts have unsafe flows. Among these 54 unsafe flow scripts, 40 flow scripts
have flows from sources into unvetted sinks and 47 have tampered information flows.
Based on this safe/unsafe flow summary, we know that 24 (#Safe− #Both), or 30.77%
of flow scripts have only safe flows. For these 24 scripts, users are perfectly safe to use
the scripts granting full access to private information without prompting or reduced
functionality.

Among the 21 flow scripts that have both safe and unsafe flows, none are mix
scripts. In all the TouchDevelop scripts, only 2 flow scripts published by ourselves
(tag stuff 8 and location and maps9) have both safe and unsafe flows from a common
source to sinks. Our current access granting allows users to grant access based on
sources only, instead of flows. Users cannot choose real information for one flow and
anonymized information for another flow from the same source. As we found only 2
scripts where this limitation matters, our approach seems to be a good trade-off that
avoids giving users too many choices.

7.2.3 RQ3: Safe sources

To address RQ3, we look at how many times a user would have to change the default
setting for a source if she were to give full access to all scripts. Table 5 shows the
total number of times a source appears in a given context. Column “Naïve” shows the
number of scripts that use this source and any sink. Column “Flow” shows the number
of scripts that have information flows from this source to any sinks. Column “Safe”
shows the number of scripts forwhich this source is safe. The last three columns explain
why some flows are unsafe. Column “Unvetted” shows the number of scripts where
information flows from this source to unvetted sinks. Column “Tamper” shows the
number of scripts where information from this source is tampered before it reaches
a sink. Column “Both” shows the number of scripts that have common sources in
Columns “Unvetted” and “Tamper”.

Among 33 scripts that have sourceCamera appearing in flows, 24 scripts (72.73%)
have source Camera as a safe source and 9 scripts (27.27 %) have source Camera
in tampered flows. Similarly, 25 scripts (83.33 %) have safe sources of Contacts,
leaving only 5 scripts having source Contacts appearing in tampered flows.

8 https://www.touchdevelop.com/qdjt
9 https://www.touchdevelop.com/qvci

123

https://www.touchdevelop.com/qdjt
https://www.touchdevelop.com/qvci

Autom Softw Eng (2015) 22:333–366 353

Table 5 Categorization of
sources

Naïve Flow Safe Unsafe due to

Unvet. Tamp. Both

Camera 36 33 24 0 9 0

Contacts 41 30 25 0 5 0

Location 34 30 0 27 26 23

Microph. 6 1 1 0 0 0

Music 3 1 0 0 1 0

Picture 32 24 6 14 15 11

Total 152 119 56 41 56 34

In summary, our analysis detects that 47.06 % (56) of 119 sources are safe sources.
These safe sources are allowed to use real information directly based on our default
settings, eliminating the need for access granting. Among the remaining 63 unsafe
sources (# Unvetted + # Tamper − # Both), 7 (# Unvetted − # Both) are solely due to
flow to unvetted sinks, and the remaining 56 sources appear in tampered information
flows. These results show that using the naïve classification, a user would have to
make 152 changes to settings to use real data in all scripts. Using information flow
alone, this number is reduced to 119 changes. Using tamper analysis and vetted sinks
in addition to information flow, our approach reduces the burden to 63 changes to
settings, an overall reduction of 58.6 %.

Effort reduction In the 78flowscripts, averagely each script has 1.5 sources for users to
make decisions if using the information flow approach (119). Thus, the effort reduction
of our approach is also about 50 % effort reduction for each script. Also, Table 4
shows that our approach identifies 24 scripts having only safe flows. Since safe flows
do not require users’ decisions, our approach completely eliminates the need of users’
decisions for these 24 scripts. Such effort reduction is useful for users since the users
typically install many applications, and have to make decisions each time they install
an application.

In Android, users typically make one decision for all permissions of an application.
Although our approach detects more potential privacy leaks, our approachmay require
users to make multiple decisions for permissions in unsafe flows for an application.
Therefore, reducing asmuchmanual effort as possible is important in our approach, and
our evaluations show promising results in reducing more than 50 % of user decisions
compared to naïve classification that uses source-sink pairs.

7.3 Performance evaluation

To analyze all the scripts submitted by TouchDevelop users, the static analysis must
have acceptable performance even if it can be deployed in cloud servers. We apply our
static analysis on the evaluation subjects to compute information flows and record the

123

354 Autom Softw Eng (2015) 22:333–366

Fig. 7 Analysis time of 546 published scripts in TouchDevelop

analysis time for each script. The performance evaluation is conducted on a Windows
7 x64 PC, with Intel Core 2 Quad CPU Q9400 at 2.67GHz and 4 GB memory. We
repeat this performance evaluation 5 times and compute the average analysis time.
The average analysis time for analyzing all 546 scripts is 8144 ms, and the maximum
average analysis time of a script (Termini 3 BETA 1.210, whose LOC is 708) is 282
ms. Figure 7 shows the average analysis time for scripts of different sizes. Based on
Fig. 7, the analysis time increases linearly based on LOC. These results suggest that
our analysis can further scale to larger TouchDevelop scripts.

8 User survey

To understand the usability of our privacy-control approach and to guide future
improvement of our approach, we conduct a user survey involving more than 150
TouchDevelop users. We ask each participant to answer 8 questions that assess the
effectiveness and usability of our approach. In particular, we seek to answer the fol-
lowing research questions:

– RQ1: Do users find the extra information provided by information flow useful in
helping them understand more about how scripts will use their personal informa-
tion?

– RQ2: What do users like about our privacy-control approach?
– RQ3: Do users think our privacy-control approach is effective in protecting their
privacy, and whether our approach is better than other privacy-control approaches?
And what should we do to improve our approach?

10 https://www.touchdevelop.com/eooo

123

https://www.touchdevelop.com/eooo

Autom Softw Eng (2015) 22:333–366 355

Table 6 50 participants’
knowledge of privacy-control
mechanisms

Platform # Users

iOS 16 (32 %)

Android 17 (34 %)

Windows phone 40 (80 %)

Windows 7/8 34 (68 %)

8.1 Study setup

Our static-information-flow analysis is integrated into the server part of the TouchDe-
velop environment, and every submitted script is analyzed automatically. The resulting
flow information is shown to users in the script installation page. The TouchDevelop
App also presents all computed flows to users the first time an installed script is run
and suggests safe default settings.

Our analysis has been running for nearly 2 years, and computes information flow
information for about 17,000 scripts published by more than 4,000 users (Li et al.
2013). To collect feedback on our approach, we conduct a user survey with the
TouchDevelop users who have been using the TouchDevelop App v2.11 for Win-
dows Phone, since our privacy control is not fully supported for the web version of
the TouchDevelop App.

Wedesign a survey that consists of 3 general questions to ask users about their emails
and familiarities with different privacy-control approaches, and 8 specific questions
to ask users about their feedback on our privacy-control approach. We distribute the
survey by prompting a link to our web-based survey via the TouchDevelop App and
Facebook. The survey starts on July 1, 2013. Users who complete all the questions
enter a raffle for a $20 Visa gift card, and we randomly select 10 users who complete
the survey by July 31, 2013 aswinners. Using a random raffle rather than giving awards
to every user who fill the survey greatly reduces the incentives for users who never use
the TouchDevelop App to fill the survey for winning gift cards, mitigating the threat
of the subject representative for our survey.

Participants. After the raffle ends, we keep the survey links active and there are still
more users who fill the survey to provide us feedback. For this paper, we collect the
results on Aug 19, 2013. In total, there are 161 users who participate in our survey and
50 of them answer all the questions. Among these 50 userswho complete the survey, 38
users enter the survey via the web link distributed through the TouchDevelop App and
12 users using the link posted on Facebook. This result indicates that the participants
of our survey are mostly users who have been using the TouchDevelop app.

Among these users (Table 6), 40 of them (80%) are familiarwith the privacy-control
mechanism of Windows Phone and 34 of them (68 %) are familiar with the privacy-
control mechanism of Windows 7/8, while about 30 % of them are familiar with
the privacy control mechanisms of iOS and Android. Such distribution is expected,
since most of the participants are users of the TouchDevelop app that is available in
only Windows Phone. The privacy-control mechanism of Windows Phone includes a
permission list that lists the permissions required by an app during installation (the
same as Android), and pops up a dialog to explicitly ask for permissions that access

123

356 Autom Softw Eng (2015) 22:333–366

Table 7 Survey questions

RQ ID Type Question

RQ1 Q1 Single-select When you try to install a script, how often do you inspect the
capabilities requested by the script?

Q2 Single-select How often do you find the information flows useful in helping you
understand more about how the script will use your personal
information?

RQ2 Q3 Multi-Select What do you like best about setting of granting access?

− Pop-up dialog that show the information flows

− Granting anonymized/real data to different permissions

Q4 Multi-select What do you like best about experimenting the script using
anonymized data?

− Anonymized data that allows you to experience the script
without exposing your real information

− Change the privacy setting anytime in the script’s privacy tab

Q5 Multi-Select What do you like best about such privacy control mechanism?

− Show only capabilities involved in information flows

− Classify information flows as safe/unsafe flows

− Default setting of using real information for safe flows and
anonymized data for unsafe flows

RQ3 Q6 Single-select Do you think that the privacy control mechanism in TouchDevelop
is useful in protecting your privacy?

Q7 Text-ranking How would you rank the following privacy control mechanisms:

− User-aware privacy control: TouchDevelop

− Permission list: Android and iOS

− Popup dialog: iOS and Windows

Q8 Comment Do you have any suggestion on improving the current privacy
control mechanism in TouchDevelop?

the users’ sensitive private information (the same as iOS). Thus, although most of
these users are not familiar with the mobile platforms other thanWindows Phone (i.e.,
iOS and Android), these users are familiar with their privacy control mechanisms (i.e.,
prompting dialogs and permission lists).

8.2 Survey design

Our survey consists of questions that ask users about their experiences of using our
privacy-control approach, and how theymay compare our approachwith other existing
approaches.

Table 7 shows the major questions and the corresponding RQs. Every single-select
question andmulti-select question have an optionOther, which allows users to provide
free-form answers. For the single-select questions of RQ1, users can select one of the
6-scale ratings: Always (1), Often (2), Occasionally (3), Rarely (4), Never (5), and I
did not know about this feature (6). Users can provide comments if they select the

123

Autom Softw Eng (2015) 22:333–366 357

Table 8 Results of RQ1: Information-flow visualization

Question Always (1) Often (2) Occasionally (3) Rarely (4) Never (5) No Idea (6)

Cap. 17 (34 %) 17 (34 %) 10 (20 %) 4 (8 %) 1 (2 %) 1 (2 %)

Info. 16 (32 %) 16 (32 %) 10 (20 %) 1 (2 %) 4 (8 %) 3 (6 %)

rating of 4, 5, or 6. For the multi-select questions of RQ2, besides options listed in
the Table 7, users can also select None as the answer. For the single-select question of
RQ3, users can select one of the 7-scale ratings: Very useful (1), Useful (2), Somehow
useful (3), Don’t Care (4), Not that useful (5), Ineffective (6), and Not at all (7). Users
can provide comments if they select the rating of 7.

8.3 Study results

In this study, we consider answers from 50 users (out of 161 users) who complete all
the questions, since these users are more likely to be users who have been using our
privacy-control approach for some time and would like to spend time in providing
feedback. Overall, we have received positive feedback on different aspects of our
approach, and obtain insightful feedback to guide future improvement of our approach.
We next present the results of the survey.

8.3.1 RQ1: Information-flow visualization

RQ1 focuses on the assessment of the visualization of information flows during script
installation. Table 8 shows the results of the two questions (Q1 and Q2) for RQ1,
with the first row for the ratings of capabilities and the second row for the ratings of
information flow.

Based on the results, we can see that more than 60 % of the users would inspect
the capabilities and information flows before installing scripts. Such results show that
most of the users are aware of the risks of leaking their private information by installing
some scripts, and would like to know what and how these scripts may use their private
information. These results provide positive supports for showing extra information
such as capabilities and information flows during script installation.

The remaining users inspect only capabilities (32 %) or information flows (36 %)
occasionally, or do not look at them at all. By investigating their comments, we know
that some of them do not install many scripts and rarely encounter scripts that have
information flows; some of them state that they do not care about their privacy. Such
results show that there are a portion of users who would simply install scripts without
questioning the requested private information, consistent with findings from previous
studies (Felt et al. 2011c;Vidas et al. 2011;Enck et al. 2010). Thus, a safe default setting
is necessary in the first place to protect such users. Moreover, users tend to ignore
information flows more often than capabilities. Such tendency may imply that more
information may overwhelm users, and users may not understand what information
flows are used for.

123

358 Autom Softw Eng (2015) 22:333–366

8.3.2 RQ2: User-aware privacy control

RQ2 focuses on the assessment of different techniques proposed by our privacy-control
approach.

First-time access granting When users first run a downloaded script, a dialog of
granting accesses pops up if there is any information flow that may leak the users’
private information. To allow users to safely experiment with a script, users can grant
real or anonymized data to different permissions. We design Q3 to gather feedback on
our access granting.

The results of Q3 shows that 82 % (42) of the users like the setting of granting
different access to sources, while only 40% (20) of the users like the setting of showing
information flows in the dialog. Such results show that althoughmost of the users enjoy
the flexibilities enabled by allowing real/anonymized data, they may not always use
the information flows to help themmake the decisions of granting accesses. This result
implies that presenting information flows is not intuitive or informative enough under
the context of granting accesses to sources. There are also 2 users like neither of these
two settings because they state that they do not care about privacy. We may consider
to provide an option that allows users to turn off pop-up dialogs and always use the
default setting.

Changable settings Unlike Android where users have to grant all permissions at
the installation time, our privacy-control approach allows users to freely change the
granted accesses even after script installation. Note that the settings of our approach
allow either real or anonymized data for each capability (i.e., permission in Android)
that is involved in any information flow. We design Q4 to gather feedback on the
changable settings.

The results of Q4 show that 40 % (20) of the users enjoy the flexible setting of
changing the granted accesses anytime, and 74% (34) of the users vote for the settings
of granting real or anonymized data. Such results imply that only a portion of the users
have the needs of making multiple changes of the granted accesses; the setting of real
or anonymized data is still welcome by most of the users due to its flexibility and
safety guarantee.

Safe/unsafe flows and default settings When users are asked to grant accesses to
sources for a script, only sources involved in information flows are shown to users.
The computed information flows of the script are then classified by our approach
as safe and unsafe flows. To minize users’ efforts in granting accesses, for sources
that appear in only safe flows, the default setting is to use real information; for other
sources, the default setting is to use anonymized information. We design Q5 to gather
feedback on the safe/unsafe-flow classification and our default settings.

The results of Q5 show that about half the users like the safe/unsafe-flow classifi-
cation (27, 54 %) and our default settings (25, 50 %), and only 32 % (16) of the users
like the approach of showing only sources involved in information flows. The benefits
of all the three techniques studied by Q5 are shown in Sect. 7. These benefits cannot
be easily presented to users, and thus lower rates for these techniques are expected.

123

Autom Softw Eng (2015) 22:333–366 359

Thus, the results of Q5 are good enough to indicate that users appreciate the benefits
brought by these techniques.

However, the technique of showing only sources involved information flows
receives a surprisingly low rate—32 % (16). Such a low rate has two implications:
(1) the additional concept of filtering sources based on information flows overwhelms
users and they tend to ignore it; (2) users may want to use anonymized data for sources
that do not appear in information flows, and thus our current setting should be improved
to allow such flexibilities. Moreover, for those users who do not care about their pri-
vacy, the default settings provide a safety guarantee for them to safely ignore access
granting.

8.3.3 RQ3: Overall assessment and future improvement

RQ3 focuses on the assessment of our privacy-control approach in general, and how
users may compare our approach with existing approaches.

The results of Q6 show that 90 % (45) of the users consider our approach useful
or very useful in protecting their privacy, and the results of Q7 show that 54 % (27 =
9 + 1811) of the users rank our approach to be better than other privacy approaches
based on permission lists (Android and iOS) and pop-up dialogs (iOS and Windows).
The results show that most of the users (90 %) give positive feedback on our privacy-
control approach, and prefer our approach over other approaches in terms of usability
and effectiveness. Such results also indicate that those users who do not even look
at capabilities or information flows consider our approach useful as well. The main
reason is that our default settings allow these users to safely run scripts without making
any access choice, providing protection on their privacy and yet preserving usability.

Q8 asks users to provide comments on improving our approach, and we receive
insightful comments from 20 users. We next present summaries of these comments.

Centralized/specific settings Our current default setting acts as a centralized setting for
every script, and specific settings for each script are presented to users when the script
is run for the first time. One user suggests that “Having a centralized ‘default settings’,
and being able to change them for specific apps, would enhance the experience. Set
settings once and any deviation is set on a case by case basis.” Such suggestion
indicates that users may be bored by granting accesses for every script, especially
when these scripts share the similar sources or information flows. To improve our
current default setting, we can make default setting configurable, and allow users to
set finer-grain rules. For example, a rule may instruct the default setting to always use
anonymized data for information flows from contact to sharing. Users can change such
settings freely and can provide specific settings for each script.

Summary of access granting When the number of installed scripts is large, users may
have difficulties in maintaining their settings of granting accesses. One user suggests

11 Due to a bug of the online survey system, we lost part of the data for Q7. We can recover only part of
the results based on our best efforts, and cannot provide exact rankings for the other two privacy-control
approaches.

123

360 Autom Softw Eng (2015) 22:333–366

that“Itmight be helpful to have anaudit feature that, on user request, would summarize
all of the permissions given and allow a quick review.” Such quick review can also
allow users to easily see settings of scripts that have similar sources and help them
make better decisions on access granting.

Support for file access One limitation of our approach is lack of support on addressing
another type of implicit flow, covert channels (Shieh andGligor 1990). One user points
out that “Should be better if touchdevelop scripts can ask for permission like iOS does
when accessing local files. I meanwhen the script runs 1st time in a phone.”To address
this issue, we plan to investigate the supports of dynamic taint tracking of files from
the underlying operating system (Enck et al. 2010).

9 Threat to validity

We next summarize main threats to validity to our research findings.

Threats to external validity The threats to external validity for the evaluation of our
approach include the representativeness of the subject scripts and the TouchDevelop
platform used by the current implementation of our approach. As shown in Sect. 7
and the recent study (Li et al. 2013), TouchDevelop scripts are typically small, but
there are still relatively large scripts with more than 500 LOC. The major reason is that
TouchDevelopAPIs include rich sets of convenientmethods andwrappers for common
mobile usage on sensors and touchscreen-related actions, enabling users to create
applications using fewer lines of code. Moreover, TouchDevelop users create and
publish scripts that cover various categories, such as games, utilities, and tools. Rich
sets of APIs used in various kinds of scripts and abilities to publish and share scripts
make TouchDevelop similar to other mobile-device platforms. To reduce the threat
of subject representativeness, we collect 546 scripts published by 194 TouchDevelop
users after the TouchDevelop App was released for several months. The threat could
be further reduced by implementing our approach in more types of mobile devices.

The threats to external validity for our user study is the representativeness of partic-
ipants. Our survey targets at users who have experiences of using the TouchDevelop
App, and we consider only users who complete all the questions in the survey. To
reduce the threat, users who complete the survey by July 31, 2013 enter a raffle,
instead of getting awards every time they fill the survey. Such raffle greatly reduces
the incentives for users who fill the survey just for wining the gifts and prevents them
from spamming our survey.

Threats to internal validity The threats to internal validity include tool faults in com-
puting information flows and human errors for interpreting the results of the evalua-
tions for information flows and the answers given by participants in the user survey.
To reduce the tool faults, we provide unit tests on every function in the computation
of information flows, and achieve nearly 100 % of statement coverage. We also pro-
vide invariants and pre/post conditions to verify the developed tool. After the tool is
deployed to the server part of the TouchDevelop environment, we further collect bugs

123

Autom Softw Eng (2015) 22:333–366 361

reported by users and fix them in subsequent versions. To reduce the human-error
threats, we ensure that the results are individually verified and agreed upon by at least
two authors.

10 Discussion and future work

In this section, we discuss generalizations and limitations of our approach.

Information flow characteristics in TouchDevelop and other mobile platforms In our
approach, informationflows showa summary ofwhat data types flowing towhat output
channels, as shown in Fig. 1. These data types represent information and resources
proteced by permissions in amobile platform. Althoughmobile applications may have
many permissions, only some permissions protect sensitive and user-understandable
information and resources, and our approach is designed to identify the information
flows for such permissions. In order words, the data type in the sources must be
an information source or resource that is in the domain of knowledge of general
smartphone users, as opposed to a low-level API known to only developers. The data
types studied in this paper (i.e., Contact, Microphone, Location and so on) fall within
this domain. Table 3 shows the summary of the informationflows for theTouchDevelop
scripts.

In Android (Enck et al. 2010, 2009; Felt et al. 2011b), the sources that contain
sensitive information and the sinks that may leak sensitive information are the similar
to the ones shown in this article. According to recent studies of information flows
on Android market applications and malware, there are only a handful of information
flows that are prevalent in popular Android applications and have potential privacy vio-
lations: (1) sending sensitive information such as phone information (e.g., IMEI) and
location to remote servers, and (2) saving sensitive information in log files and prefer-
ence files. Our information-flow techniques can detect all these malicious behaviors
by customizing the capabilities (sources and sinks shown in Table 1) to the Android
platform. Also, Felt et al. (2011b) classify 46 pieces of malware in iOS, Android,
and Symbian into 7 distinct categories by their behaviors, and our information-flow
techniques can detect the malicious behaviors from 4 major categories out of the 7
categories: exfiltrating user information, premium calls or SMSs, sending SMS adver-
tising spam, and exfiltrating user credentials. These 4 major categories account for
about 60 % of the malicious behaviors in their study.

The granularity of our information-flow techniques can be adjusted to detect more
detailed information flows if needed. Based on the results shown in Table 4, there are
very few information flows (2 out of 78) that require finer granularity of information
flows, since these flows have both safe and unsafe flows from a common source to
sinks. The studies of Android and other mobile platforms (Enck et al. 2010, 2009;
Felt et al. 2011b) also show that there is little need for detecting finer granularity of
information flows.

Generalization to other mobile-device platforms To generalize our approach to other
mobile-device platforms, such as Windows Phone, Android, and iOS, several points

123

362 Autom Softw Eng (2015) 22:333–366

need to be addressed: (1) these platforms provide a much larger API surface than
TouchDevelop and annotating these APIs with source, sink, and flow information is a
major effort, (2) the languages used (Java, C#, or assembly code) provide more ways
to obscure flow than in our scripting language, in particular through indirect calls, or
via reflection. The static analysis would have to be extended to account for these (Enck
et al. 2011; Felt et al. 2011a). (3) Indirect flow through mutable storage will require
a finer grained heap model than we currently employ (one abstract location per data
kind). The static analysismight need to be complementedwith dynamic analysis (Enck
et al. 2010; Zhu et al. 2011) to address this issue.

Limitations of static information flow analysis Due to the way our approach handles
implicit flows, our approach may produce false positives as described by Kang et al.’s
work (Kang et al. 2011). However, our evaluation results show that even with these
potential false positives, our approach still achieves a significant reduction in access
granting for users. To improve our approach when migrating to other mobile-device
platforms, our approach can be combined with DTA++ techniques (Kang et al. 2011).

Another type of implicit flow, covert channels (Shieh and Gligor 1990), may cause
false negatives of our approach. For example, a script can store a classified picture into
the media library, and then later share it through facebook via a different application.
Our flow analysis would indicate that a picture is stored into the media library (and the
user has to agree with that flow), but our approach does not contemplate what could
happen to the picture in the library after that. To address such issues, the operating
system would have to provide dynamic taint tracking (Enck et al. 2010), since such
flows involve more than one application or even OS built-in functionality.

11 Related work

In this section, we compare our work with other related approaches.

User-aware application capabilities Mobile-device platforms like Android and
social-network platforms like Facebook use manifests to show application capabil-
ities and request permissions at install time. Other mobile-device platforms like iOS
and research approaches like TaintDroid (Enck et al. 2010) report application capa-
bilities the first time applications try to access a resource. The capabilities shown in
the manifests are either claimed by developers (Saltzer and Schroeder 1975) or only
present part of the requested application capabilities. Felt et al. (2011a) proposes an
approach that uses static analysis tomapAPI calls used by applications to permissions,
which is similar to our approach. However, they adapt automated testing methodology
to test the applications and identify APIs that require permissions, while our approach
annotates the APIs with permissions and uses static checking.

Wetherall et al. (2011) propose a concept called privacy revelation, which requires
that (1) users must be aware of the spread of personal information based on user-
relevant context; (2) users should be able to give feedback before information expo-
sure; (3) users can learn from other users’ experiences. Part of our approach can be
considered as one instance of their concept, since our approach reveals information

123

Autom Softw Eng (2015) 22:333–366 363

flows to users and requests users to grant access to private information. However, our
approach adapts static information flows analysis to expose information at both the
install time and the first time users run the applications, while their developing sys-
tems are all based on dynamic analysis, which cannot provide information before users
even installs an application. Moreover, our anonymize/real/abort setting encourages
users to try out applications with safe default settings, while their approach encourages
sharing of privacy revelations.

Information flow analysis Xie and Aiken (2006) present an approach that statically
computes summaries of blocks and procedures of PHP and detects security vulnerabil-
ities at the block level, intraprocedural level, and interprocedural level. Their approach
does not handle reference-type flows shown in Fig. 4, and would lose track of flows
after built-in procedure calls (e.g., senses→take camera picture) that cannot be analyzed
by their approach. To address these problems, our approach uses mutable locations
to simplify analysis of reference-type flows and tracks untampered- and tampered-
classified information for classifying safe and unsafe flows.

The closest work related to ours is PiOS (Egele et al. 2011), which studies private
information leakage in actual iOS binaries. The PiOS approach statically computes
data flow along control flow paths from sources to sinks to determine if there exists
a user prompt along that path. PiOS emits warnings if such a flow is found without
a user prompt. For the purposes of safe-guarding users of the TouchDevelop bazaar,
the PiOS approach is insufficient because: (1) the PiOS analysis is not conservative, it
misses flows that are too long or use indirect flow, (2) the prompts PiOS identifies may
be unrelated, show nothing of the leaked information, or show tampered information.
PiOS also does not use the static information to control user prompting and privacy
settings as our approach does.

Language-based information flow (Sabelfeld andMyers 2002) allows developers to
annotate variables with security attributes. These attributes can be used by compilers
to enforce information flow controls. For example, Heintze and Riecke (1998) shows
that information flow labels can be applied to a simple language with reference types
and Jif (Myers and Liskov 2000; Myers 1999) extends Java language with statically-
checked information flow annotation. Laminar (Roy et al. 2009) allows developers
to specify security regions and provide information flow controls on both language
and JVM/OS levels. Although these language-extending approaches are effectively in
guaranteeing information flow controls, they impose additional burdens on developers
when writing applications, which is undesirable for writing scripts on mobile devices
in the context of TouchDevelop, especially for beginners.

Dynamic taint analysis (Enck et al. 2010; Zhu et al. 2011) has been applied to track
information flows on both mobile platforms like Android and desktop platform like
Windows. These approaches track tainted data during runtime, providing accurate run-
time information about leaks. However, to reduce runtime overhead, these approaches
usually ignore implicit flows raised by control structures. Moreover, dynamically exe-
cuting all execution paths of these applications to detect potential information leaks
is impractical. These limitations make these approaches inappropriate for computing
information flows for all submitted applications.

123

364 Autom Softw Eng (2015) 22:333–366

Access granting Mobile-device platforms like Android and social-network platforms
like Facebook use manifests to request permissions at install time. Once permissions
are given byusers, the permissions cannot be changed. iOSandWindowsUserAccount
Control (MICROSOFT 2011) prompts a dialog to request permissions from users
when applications try to access a resource or make security or privacy-related system-
level changes. Instead of only showing information about the access to resources,
our approach presents information flows to describe what applications may do with
private user information. Our access granting also provides a way for users to try out
applications before using private information, and these settings can be changed at
will.

Zhu et al. (2011) propose an approach that uses dynamic taint analysis to track user
data as it flows through applications. Their approach allows users to choose among
logging the action, blocking the system call, or randomize the tainted data. Chen et
al. also propose an approach that shadows data that the user wants to keep private and
blocks network transmissions that contain data the user made available to the applica-
tion for on-device use only (Hornyack et al. 2011). Our anonymized/real/abort setting
is inspired by their approach, but we use static information flow analysis extended
with tampered information to classify flows as safe/unsafe flows and provide default
access settings, rather than runtime information.

Automated security validation of mobile apps Gilbert et al. (2011) present a vision of
making mobile apps more secure via automated validation. They propose using
commodity cloud infrastructure to emulate smartphones and run the submitted apps to
dynamically track information flows and actions. Based on the information flow and
action tracking, they propose to automatically detect malicious behavior and misuse
of sensitive data via further analysis of dependency graphs (Ferrante and Ottenstein
1987) or natural language processing. Such an approach is akin to automated testing
and suffers from the same problems, namely coverage. It is difficult to drive applica-
tions automatically into exercising all data and control paths. Thus, in the end, such
an approach only gives a partial view of the behavior and does not safe-guard users.

Anonymization techniques to protect privacy Castro et al. (2008) propose an approach
that uses anonymization techniques to protect private information in bug reports
delivered to vendors when programs crash on computers of customers. Clause and
Orso (2011) propose an approach that sanitizes the inputs for causing failures in
field and releases the sanitized inputs to help developers debug. There also exist
approaches (Grechanik et al. 2010; Taneja et al. 2011; Budi et al. 2011) that study
how to release private data for testing and debugging by combining the k-anonymity
techniques with program-behavior preservation. Our approach allows users to use
anonymized information for a source, and currently uses a static list of fixed informa-
tion for such purpose. In future work, we plan to investigate how to use the anonymiza-
tion techniques proposed by these approaches to anonymize the sensitive information
while preserving the behaviors.

123

Autom Softw Eng (2015) 22:333–366 365

12 Conclusion

We presented a user-aware privacy control approach based on static information flow
analysis extended with tamper analysis. We compute information flows from private
sources to sinks and classify them as safe/unsafe flows. We conducted evaluations on
546 scripts published in TouchDevelop to study the effectiveness of our static infor-
mation flow analysis. The results show that our approach computes useful information
flows and can be used to automatically provide default privacy settings for each script
that keeps users safe without any user intervention, thereby obviating the need for
manual script validation. We also conducted a user survey on 50 TouchDevelop users.
The results show that 90% of the users consider our approach useful in protecting their
privacy and 54 % of them prefer our approach over other privacy control approaches.

Our approach is the first step towards employing a better privacy control mecha-
nism in mobile-device platforms based on automatic validation of applications in the
marketplace and user-driven access control.

References

Askarov, A., Myers, A.: A semantic framework for declassification and endorsement. Programming Lan-
guages and Systems. LNCS, vol. 6012, pp. 64–84. Springer, Heidelberg (2010)

Budi, A., Lo, D., Jiang, L., Lucia: Kb-anonymity: a model for anonymized behaviour-preserving test and
debugging data. In: Proceedings of PLDI, pp. 447–457 (2011)

Castro, M., Costa, M., Martin, J.-P.: Better bug reporting with better privacy. In: Proceedings of ASPLOS,
pp. 319–328 (2008)

Clause, J., Orso, A.: Camouflage: automated anonymization of field data. In: Proceedings of ICSE, pp.
21–30 (2011)

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19, 236–243 (1976)
Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Commun. ACM 20,

504–513 (1977)
Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: detecting privacy leaks in iOS applications. In: Pro-

ceedings of NDSS (2011)
Enck,W.,Gilbert, P., Chun,B.-G., Cox, L.P., Jung, J.,McDaniel, P., Sheth,A.N.: TaintDroid: an information-

flow tracking system for realtime privacy monitoring on smartphones. In: Proceedings of OSDI, pp.
1–6 (2010)

Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security. In: Proceedings
of USENIX Security Symposium (2011)

Enck,W.,Ongtang,M.,McDaniel, P.:On lightweightmobile phone application certification. In: Proceedings
of CCS, pp. 235–245 (2009)

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In: Proceedings of
CCS (2011)

Felt, A. P., Finifter, M., Chin, E., Hanna, S., and Wagner, D.: A survey of mobile malware in the wild. In:
Proceedings of SPSM, pp. 3–14 (2011)

Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permissions. In: Proceedings of
WebApps (2011)

Ferrante, J., Ottenstein, K.J.: The program dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst. 9, 319–349 (1987)

Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J.: Vision: automated security validation of mobile apps at app
markets. In: Proceedings of MCS, pp. 21–26 (2011)

Grechanik,M., Csallner, C., Fu, C.,Xie,Q.: Is data privacy always good for software testing? In: Proceedings
of ISSRE, pp. 368–377 (2010)

123

366 Autom Softw Eng (2015) 22:333–366

Heintze, N., Riecke, J.G.: The SLam calculus: Programming with secrecy and integrity. In: Proceedings of
POPL, pp. 365–377 (1998)

Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications. In: Proceedings of CCS, pp. 639–652
(2011)

Howard, F.: Malware with your mocha: obfuscation and anti-emulation tricks inmalicious javascript. http://
www.sophos.com/security/technical-papers/malware_with_your_mocha.pdf. Accessed Sept 2011

Kang,M.G.,McCamant, S., Poosankam, P., Song,D.: DTA++:Dynamic taint analysiswith targeted control-
flow propagation. In: Proceedings of NDSS, San Diego, CA, February (2011)

Li, S., Xie, T., Tillmann, N.: A comprehensive field study of end-user programming on mobile devices. In:
Proceedings of VL/HCC (2013)

MICROSOFT: What is user account control? http://windows.microsoft.com/en-US/windows-vista/
What-is-User-Account-Control (2011)

Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceedings of POPL, pp. 228–241
(1999)

Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model. ACM Trans. Softw. Eng.
Methodol. 9(4), 410–442 (2000)

Roesner, F.: User-driven access control: a newmodel for granting permissions in modern operating systems.
Qualifying Examination Project, University of Washington, June (2011)

Roy, I., Porter, D.E., Bond,M.D.,Mckinley, K.S.,Witchel, E.: Laminar: practical fine-grained decentralized
information flow control. In: Proceedings of PLDI, pp. 63–74 (2009)

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Select. Areas Commun. 21,
5–19 (2002)

Saltzer, J. H., Schroeder, M. D.: The protection of information in computer systems. In: Proceedings of the
IEEE, pp. 1278–1308 (1975)

Shieh, S.-P., Gligor, V. D.: Auditing the use of covert storage channels in secure systems. In: Proceedings
of Oakland, pp. 285–295 (1990)

Taneja, K., Grechanik, M., Ghani, R., Xie, T.: Testing software in age of data privacy: a balancing act. In:
Proceedings of ESEC/FSE, pp. 201–211 (2011)

Tillmann, N., Moskal, M., de Halleux, J.: Touchdevelop - programming cloud-connected mobile devices
via touchscreen. Microsoft Technical Report MSR-TR-2011-49 (2011)

TouchDevelop. http://research.microsoft.com/en-us/projects/touchdevelop/ (2011).Accessed 21Aug2014
Vidas, T., Christin, N., Cranor, L.: Curbing Android permission creep. In: Proceedings of W2SP, Oakland,

CA, May (2011)
Wetherall, D., Choffnes, D., Greenstein, B., Han, S., Hornyack, P., Jung, J., Schechter, S., Wang, X.: Privacy

revelations for web andmobile apps. In: Proceedings of HotOS, pp. 21–21, Berkeley, CA,USA (2011).
USENIX Association.

Xiao, X., Tillmann, N., Fähndrich, M., de Halleux, J., Moskal, M.: User-aware privacy control via extended
static-information-flow analysis. In: Proceedings of ASE, pp. 80–89 (2012)

Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In: Proceedings of
USENIX Security (2006)

Zhu, D.Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: TaintEraser: Protecting sensitive data leaks using
application-level taint tracking, pp. 142–154. SIGOPS Operating Systems Review (2011)

123

http://www.sophos.com/security/technical-papers/malware_with_your_mocha.pdf
http://www.sophos.com/security/technical-papers/malware_with_your_mocha.pdf
http://windows.microsoft.com/en-US/windows-vista/What-is-User-Account-Control
http://windows.microsoft.com/en-US/windows-vista/What-is-User-Account-Control
http://research.microsoft.com/en-us/projects/touchdevelop/

	User-aware privacy control via extended static-information-flow analysis
	Abstract
	1 Introduction
	2 TouchDevelop language
	2.1 Classified information flow

	3 Capability identification
	4 Information flow analysis
	4.1 Overview
	4.2 Simplified language
	4.3 Summaries of basic blocks and actions
	4.3.1 Block summary
	4.3.2 Action summary

	4.4 Classified information propagation
	4.4.1 Property annotations
	4.4.2 Statement-based propagation

	5 Tampered information
	6 User-aware privacy control
	7 Evaluation
	7.1 Subjects and evaluation setup
	7.2 Information flow evaluations
	7.2.1 RQ1: Information flow summary
	7.2.2 RQ2: Safe scripts
	7.2.3 RQ3: Safe sources

	7.3 Performance evaluation

	8 User survey
	8.1 Study setup
	8.2 Survey design
	8.3 Study results
	8.3.1 RQ1: Information-flow visualization
	8.3.2 RQ2: User-aware privacy control
	8.3.3 RQ3: Overall assessment and future improvement

	9 Threat to validity
	10 Discussion and future work
	11 Related work
	12 Conclusion
	References

