Autom Softw Eng
DOI 10.1007/s10515-014-0158-y

Program-input generation for testing database
applications using existing database states

Kai Pan - Xintao Wu - Tao Xie

Received: 25 August 2013 / Accepted: 16 June 2014
© Springer Science+Business Media New York 2014

Abstract Testing is essential for quality assurance of database applications. Achiev-
ing high code coverage of the database applications is important in testing. In practice,
there may exist a copy of live databases that can be used for database application test-
ing. Using an existing database state is desirable since it tends to be representative of
real-world objects’ characteristics, helping detect faults that could cause failures in
real-world settings. However, to cover a specific program-code portion (e.g., block),
appropriate program inputs also need to be generated for the given existing database
state. To address this issue, in this paper, we propose a novel approach that generates
program inputs for achieving high code coverage of a database application, given an
existing database state. Our approach uses symbolic execution to track how program
inputs are transformed before appearing in the executed SQL queries and how the con-
straints on query results affect the application’s execution. One significant challenge
in our problem context is the gap between program-input constraints derived from the
program and from the given existing database state; satisfying both types of constraints
is needed to cover a specific program-code portion. Our approach includes novel query

K. Pan

Outlook Service of Applications and Services Group, Microsoft Corporation,
Redmond, WA 98052, USA

e-mail: kaipan @microsoft.com

X. Wu

Department of Computer Science and Computer Engineering, University of Arkansas at Fayetteville,
Fayetteville, AR 72701, USA

e-mail: xintaowu@gmail.com

T. Xie (X))

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

e-mail: taoxie @illinois.edu

Published online: 08 July 2014 &\ Springer

Autom Softw Eng

formulation to bridge this gap. We incorporate the data-instantiation component in our
framework to deal with the case that no effective program input values can be attained.
We determine how to generate new records and populate them in the new database
state such that the code along the path can be covered. We also extend our approach
of program-input generation to test database applications including canonical queries
and group-by queries. Our approach is loosely integrated into Pex, a state-of-the-art
white-box testing tool for .NET from Microsoft Research. Empirical evaluations on
two real database applications show that our approach assists Pex to generate program
inputs that achieve higher code coverage than the program inputs generated by Pex
without our approach’s assistance.

Keywords Database application testing - Test generation - Dynamic symbolic
execution

1 Introduction

Database applications are ubiquitous, and it is critical to assure high quality of database
applications. To assure high quality of database applications, testing is commonly
used in practice. Testing database applications can be classified as functional testing,
performance testing (load and stress, scalability), security testing, environment and
compatibility testing, and usability testing. Among them, functional testing aims to
verify the functionality of the code under test. An important task of functional testing
is to generate test inputs to achieve full or at least high code coverage, such as block
or branch coverage of the database application under test. For database applications,
test inputs include both program inputs (i.e., input parameters) and database states.
Typically, a database application communicates with the associated database through
four steps. First, the application sets up a connection with the database. Second, it
constructs a query to be executed and combines the query into the connection. Third,
if the query’s execution yields an output, the result is returned. Fourth, the returned
query result is manipulated for further exploration. In database applications, program
input values are often combined into the executed query (either directly or after a chain
of computations) and record values in the returned query result set are often directly
or indirectly involved in path conditions. Hence producing appropriate test inputs
to achieve high code coverage faces great challenges as database states play crucial
roles in database application testing and constraints from embedded SQL queries and
queries’ result sets are correlated with program code.

1.1 Tlustrative example

The example code snippet shown in Fig. 1 includes a portion of C# source code
from a database application that calculates some statistics related to mortgages. The
corresponding database contains two tables: customer and mortgage. Their schema-
level descriptions and constraints are given in Table 1. The calcstat method described
in the example code snippet receives two program inputs: type that determines the
years of mortgages and zip that indicates the zip codes of customers. A variable fzip

@ Springer

Autom Softw Eng

Fig.1 An example code snippet 0l:public int calcStat (int type,int zip) {
from a database application 02: 1int years = 0, count = 0, totalBalance = 0;
under test 03: int fzip = zip + 1;

04: 1if (type == 0)

05: years = 15;

06: else

07: years = 30;

08: SglConnection sc = new SglConnection() ;
09: sc.ConnectionString = "..";
10: sc.Open();
11: string query = "SELECT C.SSN, C.income,"

+" M.balance FROM customer C, mortgage M"

+" WHERE M.year='" + years +"’' AND"

+" C.zipcode='"+ fzip + "’ AND C.SSN = M.SSN";
12: SglCommand cmd = new SglCommand (query, sc);
13: SglDataReader results = cmd.ExecuteReader() ;
14: while (results.Read()){

15: int income = int.Parse(results["income"]) ;
16: int balance = int.Parse(results["balance"]);
17: int diff = income - 1.5 x balance;

18: if (diff > 100000){

19: count++;

20: totalBalance = totalBalance + balance;}}

21: return totalBalance;}

Table 1 Database schema

Customer table Mortgage table

Attribute Type Constraint Attribute Type Constraint
SSN Int Primary key SSN Int Primary key
Zipcode String [1,99999] Foreign key
Name Int Year Int

Gender String

Age Int (0, 100) Balance Int (1000, max)
Income Int

is calculated from zip and in our example fzip is given as “zip+1”. We use fzip
= zip+1 to represent the scenario that program input values are combined into the
executed query after a chain of computations. Then the database connection is set up
(Lines 08—10). The database query is constructed (Line 11) and executed (Lines 12 and
13). The tuples from the returned result set are iterated (Lines 14-20). For each tuple,
a variable di£f is calculated from the values of the income field and the balance field.
If aiff is greater than 100000, a counter variable count is increased (Line 19) and
totalBalance is updated (Line 20). The method finally returns the calculation result.

Both program inputs and database states are crucial in testing this database appli-
cation because (1) the program inputs determine the embedded SQL statement in Line
11; (2) the database states determine whether the true branch in Line 14 and/or the true
branch in Line 18 can be covered, being crucial to functional testing, because covering
a branch is necessary to expose a potential fault within that branch; (3) the database

@ Springer

Autom Softw Eng

states also determine how many times the loop body in Lines 14-20 is executed, being
crucial to performance testing.

1.2 Problem formalization

In practice, there may exist a copy of live databases that can be used for database
application testing. Using an existing database state is desirable since it tends to be
representative of real-world objects’ characteristics, helping detect faults that could
cause failures in real-world settings. However, it often happens that a given database
with an existing database state (even with millions of records) returns no records
(or returns records that do not satisfy branch conditions in the subsequently executed
program code) when the database receives and executes a query with arbitrarily chosen
program input values. For example, method calcstat takes both type and zip as
inputs. To cover a path where conditions at Lines 14 and 18 are both true, we need to
assign appropriate values to variables years and £zip so that the execution of the SQL
statement in Line 12 with the query string in Line 11 will return non-empty records,
while at the same time attributes income and balance of the returned records also
satisfy the condition in Line 18. Since the domain for program input zip is large, it is
very likely that, if a tester enters an arbitrary zip value, execution of the query on the
existing database will return no records, or those returned records do not satisfy the
condition in Line 18. Hence, it is crucial to generate program input values such that
test inputs with these values can help cover various code portions when executed on
the existing database.

1.3 Proposed solution

To address this issue, in this paper, we propose a novel approach that generates program
inputs for achieving high code coverage of a database application, given an existing
database state. In our approach, we first examine close relationships among program
inputs, program variables, branch conditions, embedded SQL queries, and database
states. For example, program variables used in the executed queries may be derived
from program inputs via complex chains of computations (we use fzip=zip+1 in our
illustrative example) and path conditions involve comparisons with record values in
the query’s result set (we use if (dif£>100000)) in our illustrative example). We
then automatically generate appropriate program inputs via executing a formulated
auxiliary query on the given database state.

In particular, our approach uses dynamic symbolic execution (DSE) (Sen et al. 2005)
to track how program inputs to the database application under test are transformed
before appearing in the executed queries and how the constraints on query results affect
the later program execution. We use DSE to collect various intermediate information.

Our approach addresses one significant challenge in our problem context: there
exists a gap between program-input constraints derived from the program and those
derived from the given existing database state; satisfying both types of constraints
is needed to cover a specific program-code portion. During DSE, these two types of
constraints cannot be naturally collected, integrated, or solved for test generation. To

@ Springer

Autom Softw Eng

address this challenge, our approach, which was first presented in Pan et al. (2011b),
includes novel query formulation to bridge this gap. In particular, based on the inter-
mediate information collected during DSE, our approach automatically constructs new
auxiliary queries from the SQL queries embedded in code under test. The constructed
auxiliary queries use those database attributes related with program inputs as the target
selection and incorporate those path constraints related with query result sets into the
selection condition. After the new auxiliary queries are executed against the given
database, we attain effective program input values for achieving code coverage.

It may happen that the corresponding queries cannot retrieve specific results (e.g.,
required to achieve code coverage) from the current database no matter how we choose
program input values. The reason is that the existing database state may not contain
necessary records that satisfy those collected constraints to cover various paths. In that
case, we extend our approach to generate new records and populate them in the new
database state such that the code along a path can be covered.

SQL queries embedded in application program code could be very complex. For
example, they may involve nested subqueries with aggregation functions, union, dis-
tinct, and group-by views, etc. A large body of work exists on query transformation
in databases (e.g., Seshadri et al. 1996; Dayal 1987; Kim 1982), where various decor-
relation techniques were used to unnest complex queries into equivalent single level
canonical queries. In this paper, we extend our approach on auxiliary query construc-
tion to attain effective program input values when canonical queries are embedded.
Queries with group-by and aggregation are widely used for online analytical process-
ing in decision support systems. In this paper, we also extend out approach to deal
with queries with group-by and aggregation.

This paper makes the following main contributions:

1. The first problem formalization for program-input generation given an existing
database state to achieve high code coverage.

2. An approach of program-input generation based on symbolic execution and query
formulation for bridging the gap between program-input constraints from the
program and from the given existing database state. We incorporate the data-
instantiation component in our framework to deal with the case that no effective
program input values can be attained. We also extend our approach of program-
input generation to handle canonical queries and group-by queries.

3. Evaluations on two real database applications to assess the effectiveness of our
approach upon Pex (Microsoft Research Foundation of Software Engineering
Group 2007), a state-of-the-art white-box testing tool for .NET from Microsoft
Research. Empirical results show that our approach assists Pex to generate pro-
gram inputs that achieve higher code coverage than the program inputs generated
by Pex without our approach’s assistance.

The rest of this paper is organized as follows. We revisit dynamic symbolic execution
for database application testing in Sect. 2. In Sect. 3, we present our approach that can
assist DSE to determine appropriate program input values such that high code coverage
can be achieved using the existing database state. We also present our approach to
deal with aggregate calculation in program code and show data instantiation when no
effective program input values can be attained. In Sect. 4, we extend our approach of

@ Springer

Autom Softw Eng

Table 2 A given database state

Customer table Mortgage table

SSN Zipcode Name Gender Age Income SSN Year Balance

001 27695 Alice Female 35 50000 001 15 20000
002 28223 Bob Male 40 150000 002 15 30000

program-input generation to handle canonical queries and group-by queries. We show
our empirical evaluations on two real database applications in Sect. 5 and present
related work in Sect. 6. Finally we offer our concluding remarks and discuss future
work in Sect. 7.

2 Dynamic symbolic execution in database application testing

Recently, DSE (Sen et al. 2005) was proposed for test generation. Various tools for
different languages have been developed such as Pex (Microsoft Research Foundation
of Software Engineering Group 2007) for .NET programs. (e.g., C Sen etal. 2005, Java
Emmi et al. 2007, and C# Microsoft Research Foundation of Software Engineering
Group 2007). In traditional symbolic execution (King 1976), a program is executed
symbolically with symbolic inputs rather than concrete inputs. DSE extends traditional
symbolic execution by running a program with concrete inputs while collecting both
concrete and symbolic information at runtime, making the analysis more precise. DSE
first starts with default or arbitrary inputs and executes the program concretely. Along
the execution, DSE simultaneously performs symbolic execution to collect symbolic
constraints on the inputs obtained from predicates in conditions. DSE flips a branch
condition and conjuncts the negated branch condition with constraints from the prefix
of the path before the branch condition. DSE then feeds the conjuncted conditions
to a constraint solver to generate new inputs to explore not-yet-covered paths. The
whole process terminates when all the feasible program paths have been explored or
the number of explored paths has reached the predefined upper bound.

DSE has also been used in testing database applications (Emmi et al. 2007; Taneja
et al. 2010). Emmi et al. (2007) developed an approach for automatic test generation
based on DSE. Their approach uses a constraint solver to solve collected symbolic con-
straints to generate both program input values and corresponding database records. The
approach involves running the program simultaneously on concrete program inputs as
well as on symbolic inputs and a symbolic database. In the first run, the approach uses
random concrete program input values, collects path constraints over the symbolic
program inputs along the execution path, and generates database records such that
the program execution with the concrete SQL queries can cover the current path. To
explore a new path, it flips a branch condition and generates new program input values
and corresponding database records.

We use our preceding example shown in Fig. 1 to illustrate how DSE works and
show its limitations of generating appropriate test inputs to achieve high code cover-
age. We assume that we have an existing database state shown in Table 2. We use Pex

@ Springer

Autom Softw Eng

(Microsoft Research Foundation of Software Engineering Group 2007), a DSE tool
for .NET, in our following discussions. Pex is a DSE tool that can enable parameter-
ized unit testing, an extension of unit testing that reduces test maintenance costs. Pex
provides a set of APIs that help access intermediate information of its DSE process.
In our evaluation, to get the intermediate information collected by Pex, we mainly call
its API methods under class PexSymbolicValue such as GetPathConditionString()
and GetRelevantInputNames(). Pex integrates the constraint solver Z3.! Z3 is a high-
performance theorem prover being developed at Microsoft Research. The constraint
solver Z3 supports linear real and integer arithmetic, fixed-size bit-vectors, exten-
sional arrays, uninterpreted functions, and quantifiers. We also use ZQL? as our SQL
parser. ZQL can parse all the ANSI queries (including SELECT, INSERT, UPDATE,
DELETE, COMMIT, ROLLBACK, SET TRANSACTION) and is not tailored for any
specific database management systems. ZQL parses SQL and fills in Java structures
representing SQL statements and expressions. Following its provided API methods,
we can get the intermediate and final information about the parsed SQL statements.

To run the program for the first time against the existing database state, Pex uses
default values for program inputs type and zip. In this example, because type and
zip are both integers. Pex simply chooses “type=0, zip=0" as default values. The
condition in Line 04 is then satisfied and the query statement with the content in Line
11 is dynamically constructed. In Line 12 where the query is executed, we dynamically
get the concrete query string as

Ql: SELECT C.SSN, C.income, M.balance
FROM customer C, mortgage M
WHERE M.year=15 AND C.zipcode=1 AND C.SSN=M.SSN

Through static analysis, we also get 01’s corresponding abstract form as

Qlabs: SELECT C.SSN, C.income, M.balance
FROM customer C, mortgage M
WHERE M.year=: years AND C.zipcode=: fzip
AND C.SSN=M.SSN

The execution of o1 on Table 2 yields zero record. Thus, the while loop body in
Lines 14-20 is not entered and the exploration of the current path is finished. We use
the Pex API method pexSymbolicvalue.GetPathConditionString() after Line 14
to get the path condition along this path:

Pl: (type == 0) && (results.Read() != true)

To explore a new path, Pex flips a part of the current path condition from “type ==
0” to “type != 0” and generates new program inputs as “type=1, zip=0". The con-
dition in Line 04 is then not satisfied and the SQL statement in Line 11 is dynamically
determined as

Q2: SELECT C.SSN, C.income, M.balance
FROM customer C, mortgage M
WHERE M.year=30 AND C.zipcode=1 AND C.SSN=M.SSN

1 http://research.microsoft.com/en-us/um/redmond/projects/z3/.

2 http://zql.sourceforge.net/.

@ Springer

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://zql.sourceforge.net/

Autom Softw Eng

Note that here we have the same abstract form for Q2 as for Q1. However, the
execution of g2 still returns zero record, and hence the execution cannot enter the
while loop body either. The path condition for this path is

P2: (type == 1) && (results.Read() != true)

We see that at this point no matter how Pex flips the current collected path condition,
it fails to explore any new paths. Since Pex has no knowledge about the zipcode
distribution in the database state, using the arbitrarily chosen program input values
often incurs zero returned records when the query is executed against the existing
database state. As a result, none of the paths involving the while loop body could be
explored. In testing database applications, previous test-generation approaches (e.g.,
Emmi etal. 2007) then invoke constraint solvers to generate new records and instantiate
a new test database state.

However, by looking into the existing database state as shown in Table 2, we see
that if we use an input like “type=0, zip=27694”, the execution of the query in Line
11 will yield one record {c.ssN = 001,C.income = 50000,M.balance = 20000},
which further makes Line 14 condition true and Line 18 condition false. Therefore,
using the existing database state, we are still able to explore this new path:

P3: (type == 0) && (results.Read() == true) &&(diff <= 100000)

Furthermore, if we use “type=0, zip=28222",the execution of the query in Line 11
will yield another record {c.ssN = 002,C.income = 150000,M.balance = 30000},
which will make both Line 14 condition and Line 18 condition true. Therefore, we
can explore this new path:

P4: (type == 0) && (results.Read() == true) &&(diff > 100000)

In Sect. 3, we present our approach that can assist Pex to determine appropriate
program input values such that high code coverage can be achieved using the existing
database state.

3 Approach

Our approach differs from Emmi et al.’s (2007) approach in that we leverage DSE
as a supporting technique to generate effective program input values by exploiting
the existing database state. As a result, high code coverage of the application can
be achieved without generating new database states. Our approach assists DSE to
determine appropriate program input values such that the executed query can return
sufficient records to cover various code portions.

Suppose that a program takes a set of parameters I = {I1, I, ..., I} as program
inputs and contains one embedded SQL query. Throughout this section, we assume
the SQL query takes the simple form:

SELECT Cl1, C2, ..., Ch
FROM from-list
WHERE Al AND A2 ... AND An

@ Springer

Autom Softw Eng

In the SELECT clause, there is a list of & strings where each may correspond
to a column name or with arithmetic or string expressions over column names and
constants following the SQL syntax. In the FROM clause, there is a from-1ist that
consists of a list of tables. We assume that the WHERE clause contains n predicates,
A ={A1, Ay, ..., Ay}, connected by n — 1 “AND”’s. Each predicate A; is of the form
expression op expression, where op is a comparison operator (=, <>, >, >=, <, <=)
or a membership operator (IN, NOT IN) and expression is a column name, a constant
or an (arithmetic or string) expression. Throughout this paper, we use subscript i
to denote an arbitrary variable. Note that here we assume that the WHERE clause
contains only conjunctions using the logical connective “AND”. We discuss how to
process complex SQL queries in Sect. 4.

3.1 Auxiliary query construction and program input generation

The major idea of our approach is to construct an auxiliary query based on the inter-
mediate information (i.e., the executed query’s concrete string and its abstract form,
symbolic expressions of program variables, and path conditions) collected by DSE.
Our strategy is to rewrite the executed query by selecting program inputs’ associated
database attributes from the database. The constraints of the program inputs’ associ-
ated database attributes in our auxiliary queries come from two parts: the executed
query constructed dynamically by path conditions before the query is executed, and
the returned result set’s associated path conditions after the query is executed.

The program contains program variables and some program variables may be data-
dependent on program inputs /. We say a program variable is data-dependent on
a program input if this variable directly or indirectly refers to the program input’s
value. When a program variable is data-dependent on a program input that is turned
symbolic during symbolic execution, the variable will be represented with a symbolic
expression with the occurrence of the symbolic variable corresponding to the program
input. We denote program variables data-dependent on program inputs [as V =
{V1, Va, ..., V:}. We denote program variables that directly retrieve the values from
the query’s returned result setas U = {Uy, Ua, ..., Uy }. Program variables in U may
be involved in path conditions after query’s execution. As illustrated in our example,
not-covered branches or paths are usually caused by the empty returned result set
(e.g., for path P1) or insufficient returned records that cannot satisfy later executed
conditions (e.g., for path P3). Specifically we have three cases:

— Case 1: some predicate expressions in the WHERE clause of Q may involve com-
parisons with program variables in V = {Vy, V,, ..., V;} that are data-dependent
on program inputs /.

— Case 2: program variables in branch conditions after executing the query may be
data-dependent on the query’s result set.

— Case 3: program variables in branch conditions after executing the query may be
data-dependent on program inputs /.

Algorithm 1 shows our pseudo procedure to construct the auxiliary query Q. The
algorithm accepts as inputs a simple SQL query in its both concrete form Q and
abstract form Q s, programinputs I = {1, I», ..., I}, and the current path condition
PC = pci AN pca A --- A pcg. During its path exploration, DSE flips a branch

@ Springer

Autom Softw Eng

Algorithm 1 Auxiliary Query Construction

Input: asimple query Q, Q’s abstract form Q .,
program input set I = {1y, I, ..., I },
path condition PC = pcy A pca A ... A pcs
Output: an auxiliary query Q
1: Find variables V = { V], V», ..., V;} data-dependent on /;
2: Decompose Q,ps With a SQL parser to derive SELECT, FROM, and WHERE clauses;
3: Construct a predicate set A = {Aq, Ap, ..., Ay} from Q’s WHERE clause;
4: Construct an empty predicate set A, an empty attribute set Cy/, and an empty simple query Q;
5: for each predicate A; € A do

6: if A; does not contain program variables then

7 Leave A; unmodified and check the next predicate;

8: else

9: if A; does not contain program variables from V then

10: Substitute A;’s program variables with their corresponding concrete values in Q;
11: else

12: Substitute the variables from V with the expression expressed by /;

13: Substitute the variables not from V' with their corresponding concrete values in Q;
14: Copy A; to A;

15: Add A;’s associated database attributes to Cy/;

16: end if

17: endif

18: end for

19: Append Cy to O’s SELECT clause;

20: Copy Q’s FROM clause to 0’s FROM clause;

21: Append A — A to O’s WHERE clause;

22: Find variables U = {Uy, Uy, ..., U, } coming directly from Q’s result set;
23: Find U’s corresponding database attributes Cyy = {Cy1, Cy2, ... Cuw)3
24: for each branch condition pc; € PC after Q’s execution do

25: if pc; contains variables data-dependent on U then

26: if pc; does not contain variables data-dependent on V then

27: Substitute the variables in pc; with the expression expressed by the variables from U’;
28: Substitute the variables from U in pc; with U’s corresponding database attributes in Cyy;
29: Add the branch condition in pc; to PC ;

30: else

31: Leave pc; unchanged and check the next branch condition;

32: end if

33: endif

34: end for

35: Append all the branch conditions in PC to O0’s WHERE clause;

36: return Q;

condition pc; (e.g., one executed after the query execution) from the false branch
to the true branch to cover a target path. Such flipping derives a new constraint or
path condition for the target path. DSE feeds this constraint to the constraint solver to
generate a new test input. Our algorithm is triggered when the later execution with the
new test input does not cover the true branch of pc; as planned, likely due to database
interactions along the path.

3.1.1 Query dependent on program inputs

In the path exploration, DSE keeps records of all program variables and their concrete
and symbolic expressions in the program along this path. From the records, we deter-

@ Springer

Autom Softw Eng

mine program variables V = {V1, V», ..., V;} that are data-dependent on program
inputs / (Line 1). We decompose Q,ps using a SQL parser called ZQL and get its
n predicates A = {A1, Az, ..., A,} from the WHERE clause (Lines 2 and 3). We
construct an empty predicate set A for the auxiliary query Q (Line 4). Lines 5-21
present how to construct the clauses (SELECT, FROM, and WHERE) of the auxiliary
query Q.

In Lines 5-18, we examine the relationship between each predicate A; € A
and program variables in V. If A; does not contain any program variable, we leave
A; unchanged and check the next predicate (Lines 6 and 7). If A; contains program
variable from V, we then check whether any contained program variable comes from
the set V. If no program variables in the predicate are from V, we substitute them with
their corresponding concrete values in Q (Lines 9 and 10). If some program variables
contained in the predicate come from V (indicating the predicate is data-dependent on
program inputs), we substitute them with their symbolic expressions (expressed by the
program inputs in /) (Line 12), substitute all the other program variables that are not
from V with their corresponding concrete values in Q (Line 13), copy the predicate
A; to A (Line 14), and add A;’s associated database attributes to a temporary attribute
set Cy (Line 15). Those attributes in Cy will be included in the SELECT clause of
the auxiliary query Q. After processing all the predicates in A, we get an attribute
set Cy = {Cy1, Cya, ..., Cy;} and a predicate set A= {A~1, A~2, - A~1}. Note that
here all the predicates in A are still connected by the logical connective “AND”. The
attributes from Cy form the attribute list of the Q’s SELECT clause (Line 19). All
the predicates in A - A connected by “AND” form the predicates in the 0’s WHERE
clause (Line 21). Note that the from-1ist of the O’s FROM clause is the same as that
of O (Line 20).

We take the path P3 (Line 04 true, Line 14 true, and Line 18 false) in our
preceding example shown in Fig. 1 to illustrate our algorithm. The program input set
is I = {type, zip} and the path condition PC is

P3: (type == 0) && (results.Read() == true)
&& (diff <= 100000)

The program variable set V is {type,zip, fzip}. When flipping the condition
diff<=100000, Pex fails to generate satisfiable test inputs for the flipped condition
diff > 100000. The abstract form is shown as

Qabs: SELECT C.SSN, C.income, M.balance
FROM customer C, mortgage M
WHERE M.year=: years AND
C.zipcode=: fzip AND C.SSN=M.SSN

We see that the predicate set A in the WHERE clause is formed as {M.year=:years,
C.zipcode=:fzip, C.SSN=M. SSN}. Predicates M.year=:years andc. zipcode=:fzip
contain program variables years and fzip, respectively. Because the predicate
M.year=:years does not contain any program variable from V, we substitute years
with its concrete value in Q and the predicate expression is changed to M.year=15.
In contrast, the predicate c.zipcode=:fzip contains the program variable fzip,
which belongs to V. We replace fzip with zip+1 and the new predicate becomes

@ Springer

Autom Softw Eng

C.zipcode=:zip+1. The associated attribute c.zipcode is added to A and is also
added in the SELECT clause of the auxiliary query Q. After processing all the predi-
catesin A, Aisc. zipcode=:zip+1l, A — Ais . year=15 AND C.SSN=M.SsN, and the
attribute set Cy is . zipcode. The constructed auxiliary query Q is:

SELECT C.zipcode
FROM customer C, mortgage M
WHERE M.year=15 AND C.SSN=M.SSN

When executing the preceding auxiliary query against the existing database state,
we get two zipcode values, 27695 and 28223. The corresponding program input zip
can take either 27694 or 28222 because of the constraint {C.zipcode=: zip+1} inour
example. A test input with the program input either “type=0, zip=27694" or “type=0,
zip=28222" can guarantee that the program execution enters the while loop body in
Lines 14-20. However, there is no guarantee that the returned record values satisfy
later executed branch conditions. For example, if we choose “type=0, zip=27694"
as the program input, the execution can enter the while loop body but still fails to
satisfy the branch condition (i.e., dif£>100000) in Line 18. Hence it is imperative
to incorporate constraints from later branch conditions into the constructed auxiliary

query.
3.1.2 Branch conditions after query execution dependent on the result set

Program variables in branch condition pc; € PC after executing the query may
be data-dependent on returned record values. In our example, the value of program
variable aiff in branch condition “aiff > 100000” is derived from the values of the
two variables income, balance that correspond to the values of attributes c. income,
M.balance of returned records. Lines 22—34 in Algorithm 1 show how to incorporate
later branch conditions in constructing the WHERE clause of the auxiliary query.

We first get the set of program variables U = {Uj, Ua, ..., U,,} thatdirectly retrieve
the values from the query’s returned result set, and treat them as symbolic inputs (Line
22). For each program variable U;, we also keep its corresponding database attribute
Cy;. Note that here Cy7; must come from the columns in the query’s SELECT clause.
We save them in the set Cy = {Cy1, Cy2, ..., Cyyw} (Line 23). In Lines 24-34, we
examine whether branch conditions after Q’s execution contain program variables that
are either data-dependent on U (recall that U contains program variables that directly
retrieve the values from the query’s returned result set) or data-dependent on V' (recall
that V contains program variables that are data-dependent on program input /). Lines
27-29 show actions for the case where the branch condition pc; contains variables
that are only data-dependent on U (but not on V). We substitute such variables in pc;
with their symbolic expressions with respect to the symbolic input variables from U
(Line 27) and replace each U; in pc; with its corresponding database attribute Cy;
(Line 28). The modified pc; is then added in PC (Line 29). After examining all branch
conditions, we append PC to the Q’s WHERE clause (Line 35).

In our example, the variable set U is income, balance and its corresponding
attribute set Cy is C.income, M.balance. The host variable daiff in the condi-
tional “diff > 100000” is derived from the variables in U. We substitute diff with

@ Springer

Autom Softw Eng

O0l:public int calcStat (int type,int zip, int inputDiff) {
14: while (results.Read()){

18: if (Aiff > inputDiff) {

19: count++;
20: totalBalance = totalBalance + balance;}}

21: return totalBalance;}

Fig. 2 Example code where a program input also appears in branch conditions after query execution

income - 1.5 * balance and then replace the variables income and balance with
the database attributes c.income and M.balance. The modified branch condition
C.income-1.5*M.balance>100000 is finally appended to the WHERE clause, and
the new auxiliary query is

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN AND
C.income - 1.5 * M.balance > 100000

When executing the preceding auxiliary query against the existing database state,
we get the zipcode value as “28223”. Having the constraint ¢. zipcode=: zip+1, input
“type=0, zip=28222" can guarantee that the program execution enters the true branch
in Line 18.

3.1.3 Branch conditions after query dependent on program inputs

Branch conditions after query execution could also be data-dependent on program
inputs besides the returned record values. Consider the modified example code in
Fig. 2 where we have another input inputpiff (Line 1) and the original condition
diff > 100000 is replaced with diff > inputDiff (Line 18). We observe that to
make the condition in Line 18 true, we need to set appropriate values for inputDiff
so that the value of the variable di £ derived from query’s returned records is greater
than inputDiff.

Lines 30 and 31 of Algorithm 1 deal with the case that the branch condition pc;
within the query-result-manipulation code are data-dependent on both program inputs
and the query’s result set. Recall that the constructed auxiliary query from Lines 1-21
is

SELECT C.zipcode
FROM customer C, mortgage M
WHERE M.year=15 AND C.SSN=M.SSN

Since the variables (e.g., diff in Line 18) involved in such branch conditions have
been assigned with concrete values during DSE, DSE could automatically set appro-
priate values to those related program inputs (e.g., inputDi £ £ in Line 18). In our exam-
ple, using the derived input zip = 28222 as illustrated in Sect. 3.1, program execution
could enter the while loop in Line 14 in Fig. 2. At this point, during DSE, the variable
diff in Line 18 is assigned with concrete value 20000 (diff = 50000 - 1.5 * 20000).

@ Springer

Autom Softw Eng

Algorithm 2 Program Input Generation

Input: an auxiliary query Q, program inputs /
intermediate results Cy and A from Algorithm 1
Output: program input values R for /

1: Execute Q against the given database and retrieve returned values Ry for the attributes in Cy;

2: Substitute the attributes Cy for predicates in A with the values in R v, resulting in new predicates in A;
3: Feed the new predicates in A to a constraint solver and derive final values R for I ;

4: return Output final program input values R;

Then, DSE could set a value for inputpiff directly to satisfy the branch condition in
Line 18 (e.g., inputDiff = 19999).

3.1.4 Program input generation

Algorithm 2 shows our pseudo procedure of program-input generation given the con-
structed auxiliary query Q and intermediate results Cy and A from Algorithm 1. Note
that the predicates A keep the symbolic expressions of Cy with respect to program
inputs /. In Line 1, we execute the auxiliary query 0 against the existing database
state and return a set of values Ry for attributes in Cy . Each attribute in Cy can be
traced back to some program variable in V = {V, V,, ..., V;}. Recall that V con-
tains program variables that are data-dependent on program inputs /. We substitute the
attributes Cy with their corresponding concrete values in Ry resulted from executing
0 against the existing database state and have new predicates in A for program inputs
I (Line 2). We then feed these new predicates in A to a constraint solver to derive the
values for program inputs / (Line 3).

In our illustrative example, after executing our auxiliary query on Table 2, we get a
returned value “28223” for the attribute c. zipcode. In A, we have ¢. zipcode=: zip+1.
After substituting c.zipcode in C.zipcode=:zip+1 with the value “28223”, we have
28223=:zip+1. The value “28222” for the program input zip can then be derived by
invoking a constraint solver.

In practice, the result R could be a set of values. For example, the execution of the
auxiliary query returns a set of satisfying zip code values. If multiple program input
values are needed, we can repeat the same constraint solving process to produce each
returned value in R.

3.2 Dealing with aggregate calculation

Up to now, we have investigated how to generate program inputs through auxiliary
query construction. Our algorithm exploits the relationships among program inputs,
program variables, executed queries, and path conditions in source code. Database
applications often deal with more than one returned record. In many database appli-
cations, multiple records are iterated from the query’s returned result set. Program
variables that store values retrieved from the returned result set further take part in
aggregate calculations. The aggregate values then are used in the path condition. In
this section, we discuss how to capture the desirable aggregate constraints on the result

@ Springer

Autom Softw Eng

set returned for one or more specific queries issued from a database application. These
constraints play a key role in testing database applications but previous work (Chays
et al. 2008; Deng and Chays 2005) on generating database states has often not taken
them into account.

Consider the following code after the query’s returned result set has been iterated
in our preceding example shown in Fig. 1:

14: while (results.Read()){

15: int income = int.Parse(results['‘income’’]);
16: int balance = int.Parse(results['‘balance’’]);
17: int diff = income - 1.5 * balance;

18: if (diff > 100000) {

19: count++;

20: totalBalance = totalBalance + balance;}}
20a: if (totalBalance > 500000)

20b: do other calculation...

21: return ...;}

Here, the program variable totalBalance is data-dependent on the variable
balance and thus is associated with the database attribute M.balance. The vari-
able totalBalance is involved in a branch condition totalBalance > 500000 in
Line 20a. Note that the variable totalBalance is aggregated from all returned
record values. For simple aggregate calculations (e.g., sum, count, average, mini-
mum, and maximum), we are able to incorporate the constraints from the branch
condition in our auxiliary query formulation. Our idea is to extend the auxiliary
query with the GROUP BY and HAVING clauses. For example, DSE automatically
identifies that totalBalance and M.balance are data-dependent. We then manually
derive that the variable totalBalance is a summation of all the values from the
attribute M.balance. The variable totalBalance can be transformed into an aggrega-
tion function sum (M.balance). We include c.zipcode in the GROUP By clause and
sum (M.balance) in the HAVING clause of the extended auxiliary query:

SELECT C.zipcode, sum(M.balance)
FROM customer C, mortgage M
WHERE M.year=15 AND C.SSN=M.SSN
AND C.income - 1.5 * M.balance > 100000
GROUP BY C.zipcode
HAVING sum(M.balance) > 500000

3.2.1 Cardinality constraints

In many database applications, we often require the number of returned records to
meet some conditions. For example, after execution reaches Line 20, we may have
another piece of code appended to Line 20 as

20c: 1if (count >= 3)
20d: computeSomething () ;

Here we use a special DSE technique (Godefroid and Luchaup 2011) for deal-
ing with input-dependent loops. This technique applies simple loop-guard pattern-
matching rules to derive an input constraint to capture the number of iterations of

@ Springer

Autom Softw Eng

input-dependent loops during dynamic symbolic execution. With this technique, we
learn that the subpath with the conditions in Lines 14 and 18 being true has to be
invoked at least three times in order to cover the branch condition count >= 3 inLine
20c. Hence we need to have at least three records iterated into Line 18 so that true
branches of Lines 14, 18, and 20c can be covered. In our auxiliary query, we simply
add count (*) >= 3 in the HAVING clause to capture this cardinality constraint.

SELECT C.zipcode
FROM customer C, mortgage M
WHERE M.year=15 AND C.SSN=M.SSN
AND C.income - 1.5 * M.balance > 100000
GROUP BY C.zipcode
HAVING COUNT (*) >= 3

Program logic could be far more complex than the appended code in Lines 20a-
d of our example. We emphasize here that our approach up to now works for only
aggregate calculations that are supported by the SQL built-in aggregate functions.
When the logic iterating the result set becomes more complex than SQL’s support,
we cannot directly determine the appropriate values for program inputs. For example,
some zipcode values returned by our auxiliary query could not be used to cover the true
branch of Lines 20a, b because the returned records with the input zipcode values may
fail to satisfy the complex aggregate condition in Line 20a. However, our approach
can still provide a super set of valid program input values. Naively, we could iterate all
the candidate program input values to see whether some of them can cover a specific
branch or path. However, it may incur large cost when the returned set is large.

3.3 Modifying database state

Although constructing auxiliary queries provides a way of deriving effective program
inputs based on the existing database state, executing the constructed auxiliary queries
may still return an empty result set, which indicates that the current database state lacks
qualified records. To deal with such situation, we need to generate new records and
populate them back to the database.

For the preceding example code in Fig. 1, choosing Line 06 to be true will make
true the condition M.year = 30 for the WHERE clause from the query in Line 11,
where we observe that the database in Table 2 does not contain sufficient records.
Thus, to cover two new paths P5 and P6 as shown below, we need to have at least one
record that satisfies constraints on the query result set.

P5: (type != 0) && (results.Read() == true) &&(diff <= 100000)
P6: (type != 0) && (results.Read() == true) &&(diff > 100000)

In our approach, we generate new records by invoking the data-instantiation com-
ponent. We build symbolic databases consisting of symbolic tuples. We use symbolic
query processing by parsing the SQL statement and substitute the symbolic tuples
in the symbolic databases with symbols that reflect the constraints from the SQL
statement.

Table 3a and ¢ show the symbolic tables of customer and mortgage, respectively.
For example, tuple #1 in Fig. 3(s) is a symbolic tuple of symbolic relation customer

@ Springer

Autom Softw Eng

Table 3 Symbolic query processing: ¢1 for path P5 and 72 for path P6

(a) Symbolic customer

SSN Zipcode Income
t1 $al $bl $cl
12 $a2 $b2 $c2
(b) Symbolic customer after SQP
SSN Zipcode Income
t1 $al $bl=:zip+1 $cl — 1.5%$f1 <=100000
12 $a2 $b2=:zip+1 $c2 — 1.5*$£2>100000
(c) Symbolic mortgage
SSN Year Balance
1 $d1 $el $f1
12 $d2 $e2 $f2
(d) Symbolic mortgage after SQP
SSN Year Balance
tl $d1=$al $el=:years $cl — 1.5%$f1<=100000
2 $d2=$a2 $e2=:years $c2 — 1.5*$2>100000
(e) Instantiated customer
SSN Zipcode Income
t1 003 28223 50000
12 004 28223 150000
(f) Instantiated mortgage
SSN Year Balance
t1 003 30 10000
12 004 30 20000

to cover path P5; symbol $al represents any value in the domain of attribute ssn and
symbol $c1 represents any value in the domain of attribute income. Similarly, tuple 12
is a symbolic tuple to cover path P6. After symbolic query processing, the symbolic
tables shown in Table 3b and d have captured all the constraint requirements specified
in the symbolic case to cover paths P5 and P6 but without concrete data. We can
see that 71 involves the constraint $c1 — 1.5 % $ 1 < 100000 while ¢2 involves the
constraint $¢2 — 1.5 % $ f2 > 100000. Note that dependencies on program inputs that
are not database attributes will not be involved in data instantiation. Those constraints
will be explored by DSE and the corresponding input values will be generated by DSE
directly.

In our approach, we also manually collect basic constraints at the database schema
level (e.g., not-NULL, uniqueness, referential integrity constraints, domain con-
straints, and semantic constraints) and incorporate them in data generation. In our
prototype system, we assume that column values are always known because the null

@ Springer

Autom Softw Eng

values complicate many issues (including comparisons, logical connectives, and joins).
Attribute age in table customer must be in the range (0, 100) and attribute balance must
be greater than 1000. The symbolic tables together with the basic constraints are then
sent to a constraint solver, which can instantiate the symbolic tuples with concrete val-
ues. Table 3e and f show the instantiated records from a constraint solver. For example,
the record 1 is instantiated as “c.SSN=003, C.zipcode=28223, C.income=50000"1in
table customer and “M.SSN=003, M. yvear=30, M.balance=1000 0” in table mortgage.
From constraints such as “sb1=:zip+1”, the constraint solver also returns the value
28222 for input parameter zip. Hence, a test input with program input {type=1,
zip=28222} on the newly populated database state can lead to coverage of path P5.
Note that we restore the database state to its original state when we test a new path.

To cover the preceding paths P5 and P6 for the example code in Fig. 1, generating
one new record for each path could be enough. However, in practice, satisfying cardi-
nality constraints usually requires a large number of records. Cardinality constraints
significantly affect the total cost of generating new database records. Consider the
example related with cardinality constraints as discussed in Sect. 3.2. Suppose that we
have another piece of code appended to Line 20 as

20c: if (count >= 1000)
20d: computeSomething () ;

Note that here we have a more extensive cardinality constraint count >= 1000 for
the qualified records than the previous cardinality constraint (i.e., count >= 3). As
discussed in Sect. 3.2, we can first construct an auxiliary query as below to choose
values for program input zip.

SELECT C.zipcode
FROM customer C, mortgage M
WHERE M.year = 15 AND C.SSN = M.SSN
AND C.income - 1.5 * M.balance > 100000
GROUP BY C.zipcode
HAVING COUNT (*) >= 1000

However, executing this auxiliary query may return an empty result, indicating that
the current existing database does not contain sufficient qualified records. Naively,
we can generate at least 1000 new records from scratch and populate them back to
the database, which incurs a high computational cost on the constraint solver. This
is because generating a large number of records requires many times of expensive
invocations of the constraint solver (one invocation per symbolic tuple). In practice,
an empty result returned by the auxiliary query could be caused by the insufficient
size of existing qualified records. For example, if the existing database has already
contained 900 such records and in that case, we need to generate only 100 other new
records, requiring much lower cost than generating all the 1000 records from scratch.

Based on the required cardinality constraints, to reduce the cost of generating new
records from scratch, we conduct database record generation in the following way.
First, we check whether we need to generate new records if the constructed auxiliary
query returns an empty result. If no, our technique does not need to help with such
situation; if yes, second, we check whether the constructed auxiliary query contains
cardinality constraints. If so, we remove the required cardinality constraints and get

@ Springer

Autom Softw Eng

another auxiliary query by selecting the size of current qualified records. Third, we
run this modified auxiliary query on the existing database and get the value for the size
of current qualified records. Fourth, we compare the size with the required cardinality
constraints. We can derive how many more records are needed and then conduct the
data generation.

For example, when we observe that running the auxiliary query returns an
empty result, we remove the cardinality constraints HAVING COUNT (*) >= 1000, add
count (*) to the SELECT clause, and get a new auxiliary query as

SELECT C.zipcode, COUNT (*)
FROM customer C, mortgage M
WHERE M.year = 15 AND C.SSN = M.SSN
AND C.income - 1.5 * M.balance > 100000
GROUP BY C.zipcode

Running this auxiliary query will return a value 900 for count (*) if the existing
database has already contained 900 qualified records within a specific zipcode. Com-
paring with the required cardinality constraints counT (*) >= 1000, we detect that at
least 100 other records are needed. Hence, we generate new records by invoking the
data-instantiation component. In this way, we can significantly reduce the cost when
the current existing database has already contained a large number of qualified records
and only a few more new records are needed.

4 Dealing with complex queries

SQL queries embedded in application program code could be very complex. The
fundamental structure of a SQL query is a query block, which consists of SELECT,
FROM, WHERE, GROUP BY, and HAVING clauses. If a predicate or some predicates
in the WHERE or HAVING clause are of the form expression op Q where Q is a
query block and expression is a column name, a constant or an (arithmetic or string)
expression, the query is a nested query.

We present our algorithm of dealing with canonical queries in Sect. 4.1 and the
algorithm of dealing with queries with group-by and aggregation in Sect. 4.2. We
assume in our approach that queries do not contain nested subqueries. A large body
of work exists on query transformation in databases (e.g., Seshadri et al. 1996; Dayal
1987; Kim 1982), where various decorrelation techniques were developed to unnest
complex queries into equivalent single level canonical queries.

4.1 Canonical query

Generally, there are two types of canonical queries: DPNF with the WHERE clause
consisting of a disjunction of conjunctions as shown below

SELECT Cl1, C2, ..., Ch

FROM from-list

WHERE (A1l AND ... AND Aln) OR ...
OR (Aml AND ... AND Amn)

@ Springer

Autom Softw Eng

Algorithm 3 Program Input Generation for DPNF Query

Input: a DPNF query’s abstract form Q p, program inputs /
Output: program input value set Rp for 7
1: Decompose Q p with a SQL parser to get SELECT, FROM, and WHERE clauses;
2: for each disjunction D; in Q p’s WHERE clause do
3: Build an empty query Q;;
Append Q p’s SELECT clause to Q;’s SELECT clause;
Append Q p’s FROM clause to Q;’s FROM clause;
Append D; to Q;’s WHERE clause;
Apply Algorithm 1 on Q; and get its auxiliary query Q;;
Apply Algorithm 2 on Q; and get output R;;
9: Rp=RpUR;j;
10: end for
11: return Output final program input values Rp;

A O

and CPNF with the WHERE clause consisting of a conjunction of disjunctions (such as
(A11 OR ... OR Aln) AND ... AND (Aml OR ... OR Amn)). Note that DPNF and
CPNF can be transformed mutually using DeMorgan’s rules.

Algorithm 3 shows our pseudo procedure on how to formulate auxiliary queries
and determine program input values given a general DPNF query. Our previous Algo-
rithm 1 deals with only a special case of DPNF where the query’s WHERE clause
contains only one disjunction 211 AND ... aND Aln. The algorithm first decomposes
QO p with a SQL parser to get SELECT, FROM, and WHERE clauses (Line 1). The
algorithm then builds m simple queries Q; (i = 1, ..., m) based on each disjunction
D; in O p’s WHERE clause (Lines 3-6). The WHERE clause of each Q; contains only
one conjunction in the canonical form, 211 aND ... AND ain. We apply Algorithm 1
to generate its corresponding auxiliary query Q; (Line 7) and apply Algorithm 2 to
generate program input values R; (Line 8). The union of R;s then contains all appropri-
ate program input values (Line 9). Note that dealing with conjunction of disjunctions
could be exponential to the size of disjunctions, causing much more cost when running
the generated auxiliary queries against the existing database.

4.2 Query with group-by and aggregation

The query with group-by and aggregation has the form:

SELECT C1, ..., Ch, AGGl(Bl), ..., AGGE (Bf)
FROM from-list

WHERE Al AND A2 ... AND An

GROUP BY G1, ..., Gg

HAVING group-qualification

The WHERE clause of the query is a conjunction of simple predicates. AGG1,
., AGcf represent built-in SQL aggregate functions (e.g., Sum, Max, or Min) and

are computed over the groups. We refer to columns B1, ..., Bf as the aggregating
columns and columns G1, ..., Gg as grouping columns of the query. SQL seman-
tics require that attributes c1, ..., ch in select-list must be among c1, ...,

Gg in grouping-list. The expressions appearing in the group-qualification in the

@ Springer

Autom Softw Eng

0l:public int calcStat (int type,int zip) {

11: string query = "SELECT C.age, AVG(C.income) as avgl,"
+" AVG(M.balance) as avg2 FROM customer C, mortgage M"
+" WHERE M.year='" + years +"’ AND"
+" C.zipcode='"+ fzip + "’ AND C.SSN = M.SSN"
+" GROUP BY C.age"
+" Having COUNT (%) > 2";

14: while (results.Read()){

15: int age = int.Parse(results["age"]);

16: int income = int.Parse(results["avgl"]) ;
17: int balance = int.Parse(results(["avg2"]);
18: int diff = income - 1.5 % balance;

19: if (diff > 100000)

20: o)

21: return;}

Fig. 3 An example code with a group-by query

optional HAVING clause must have a single value per group. A column appearing
the group-qualification must appear as the argument to an aggregation operator, or
it must also appear in grouping-1ist. If GROUP BY is omitted, the entire returned
result is regarded as one single group.

Consider the modified example code in Fig. 3 where we have a query with group-by
and aggregation (Line 11) and a branch condition involving the returned aggregate
values (Line 18). With input “type=0, zip=0", in Line 11, we dynamically get the
concrete query string as

Q: SELECT C.age, AVG(C.income), AVG(M.balance)
FROM customer C, mortgage M
WHERE M.year=15 AND C.zipcode=1 AND C.SSN=M.SSN
GROUP BY C.age
HAVING count (*)>2

Through static analysis, we also get o’s corresponding abstract form as

Qabs: SELECT C.age, AVG(C.income), AVG(M.balance)
FROM customer C, mortgage M
WHERE M.year=:years AND C.zipcode=fzip AND C.SSN=M.SSN
GROUP BY C.age
HAVING count (*)>2

The execution of ¢ on Table 2 yields zero records. Thus, the while loop body in
Lines 14-20 is not entered.

Algorithm 4 shows our pseudo procedure to construct the auxiliary query given a
query with group-by and aggregation. Similar to Algorithm 1, we also have three cases:
predicate expressions in the WHERE clause are data-dependent on program inputs,
program variables in branch conditions after executing the query are data-dependent
on the query’s result set, and program variables in branch conditions after executing
the query are data-dependent on program inputs. In Algorithm 4, we use bold fonts to
emphasize those steps that are different from Algorithm 1.

@ Springer

Autom Softw Eng

Algorithm 4 Auxiliary Query Construction for Query with Group-by and Aggregation

Input: a group-by query Q, Q’s abstract form Q ;.
program input set I = {1y, I, ..., I },
path condition PC = pcy A pca A ... A pcs
Output: an auxiliary query Q
1: Find variables V = { V], V», ..., V;} data-dependent on /;
: Decompose Q,ps With a SQL parser to get SELECT, FROM, WHERE, GROUP BY and HAVING
clauses;
3: Construct a predicate set A = {A1, Ag, ..., Ay } from Q’s WHERE clause;
4: Construct an empty predicate set A, an empty attribute set Cy, and an empty group-by query 0;
5: for each predicate A; € A do
6
7
8

[\

if A; does not contain program variables then
Leave A; unmodified and check the next predicate;

else
9: if A; does not contain program variables from V then
10: Substitute A;’s program variables with their corresponding concrete values in Q;
11: else
12: Substitute the variables from V with the expression expressed by 1
13: Substitute the variables not from V with their corresponding concrete values in Q;
14: Copy A; to A;
15: Add A;’s associated database attributes to Cy ;
16: end if
17: endif
18: end for

19: Append Cy to Q’s SELECT clause;

20: Copy Q’s FROM clause to 0’s FROM clause;

21: Append A — Ato Q’s WHERE clause, append Q’s grouping-list and Cy to Q’s GROUP BY clause,
copy Q’s HAVING clause to O’s HAVING clause;

22: Find variables U = {Uy, Uy, ..., Uy} coming directly from Q’s result set;

23: Find U’s corresponding database attributes Cyy = {Cy 1, Cy2, ... Cuyw };

24: for each branch condition pc; € PC after Q’s execution do

25: if pc; contains variables data-dependent on U then

26: if pc; does not contain variables data-dependent on V then

27: Substitute the variables in pc; with the expression expressed by the variables from U’;
28: Substitute the variables from U in pc; with U’s corresponding database attributes in Cyy;
29: Add the branch condition in pc; to PC;

30: else

31: Leave pc; unchanged and check the next branch condition;

32: end if

33: endif

34: end for

35: Append all the branch conditions in PC to O’s HAVING clause;

36: return Q;

Lines 1-21 in Algorithm 4 deal with the case where predicate expressions in the
WHERE clause are data-dependent on program inputs. In Line 2, we decompose
Qaps with a SQL parser to get SELECT, FROM, WHERE, GROUP BY, and HAV-
ING clauses. Note that the HAVING clause may be empty if the group-by query
does not have group qualification. The GROUP BY clause may be empty too, which
corresponds to a simple query with aggregation in the SELECT clause. Lines 5-18
examine the relationship between predicates in the WHERE clause and program vari-
ables data-dependent on program inputs. The derived database attributes in Cy, which
are data-dependent on program inputs, are appended to the SELECT clause of the con-

@ Springer

Autom Softw Eng

structed auxiliary query O (Line 19). In Line 21, the predicates in A — A form the
predicates in the Q’s WHERE clause. The grouping-1ist in Q’s GROUP BY clause
contains the attributes in Q’s grouping-1ist and the attributes in Cy. The HAVING
clause of @ is the same as that of Q. The constructed auxiliary query for the example
code (before entering the while loop in Line 14) in Fig. 3 is:

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year = 15 AND C.SSN = M.SSN
GROUP BY C.age, C.zipcode

Having COUNT (*) > 2

Lines 22-35 in Algorithm 4 deal with the last two cases: program variables in branch
conditions after executing the query are data-dependent on the query’s result set, and
program variables in branch conditions after executing the query are data-dependent
on program inputs. The derived branch conditions PC that are data-dependent on the
returned result set are appended to the Q’s HAVING clause (Line 35 in Algorithm 4)
rather than the Qs SELECT clause in Algorithm 1. This is because the branch con-
ditions PC involve program variables that are data-dependent on the returned values
of ace1(B1), ..., accf (Bf) inthe Q’s SELECT clause. The constructed auxiliary
query for the example code (in Line 18) in Fig. 3 is:

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year = 15 AND C.SSN = M.SSN

GROUP BY C.age, C.zipcode

Having COUNT(*) > 2 AND AVG(C.income)-AVG(M.balance) > 100000

When executing the constructed auxiliary query against the existing database state,
we get the returned zipcode values. Executing the program-input generation (Algo-
rithm 2) will return the final program input values for zip.

5 Evaluation

Our approach can provide assistance to DSE-based test-generation tools (e.g., Pex
Microsoft Research Foundation of Software Engineering Group 2007 for .NET) to
improve code coverage in database application testing. In our evaluation, we seek to
evaluate the benefit and cost of our approach from the following two perspectives:

RQ1: What is the percentage increase in code coverage by the program inputs gen-
erated by Pex with our approach’s assistance compared to the program inputs
generated without our approach’s assistance in testing database applications?

RQ2: What is the cost of our approach’s assistance?

We report the code coverage using block coverage measured by Pex. Code coverage
could be quantified by code blocks, lines of code, and partial lines if they are executed
by a test run. Among these code entities under coverage measurement, a code block
is a code path with a single entry point, a single exit point, and a set of instructions
that are all run in sequence. In this evaluation, we choose block coverage (e.g., the
percentage of code blocks being covered) as the metric. The reasons are twofold. First,

@ Springer

Autom Softw Eng

Pex uses block coverage in its coverage report. Second, we find for these applications,
the number of covered blocks could generally reflect the covered code portions.

In our evaluation, we also record the number of runs and execution time. A run
represents one time that one path is explored by Pex using a set of program input
values. Because of the large or infinite number of paths in the code under test, Pex
uses exploration bounds to make sure that Pex terminates after a reasonable amount
of time. For example, the bound TimeOut denotes the number of seconds after which
the exploration stops. In our evaluation, we use the default value TimeOut=120s and
use “time out” to indicate timeout cases.

5.1 Evaluation setup

We conduct an empirical evaluation on two open source database applications: RiskIt>
and UnixUsage.? RiskTt is an insurance quote application that makes estimation based
onusers’ personal information, such as zipcode and income. It has an existing database
containing 13 tables, 57 attributes, and more than 1.2 million records. UnixUsage is an
application to obtain statistics about how users interact with the Unix systems using
different commands. It has a database containing 8 tables, 31 attributes, and more
than 0.25 million records. Both applications were written in Java. To test them in the
Pex environment, we convert the Java source code into C# code using a tool called
Java2CSharpTranslator.’ The evaluation is conducted on a machine with hardware
configuration Intel Pentium 4 CPU 3.0 GHz, 2.0 GB Memory and OS Windows XP
SP2. The DBMS used in this evaluation is Microsoft SQL Server 2005. The detailed
evaluation subjects and results can be found on our project website.

In the evaluation part of the conference version Pan et al. (2011b) of this paper, we
made use of the whole existing databases of the two applications. To better evaluate the
effectiveness of our approach, as complementary results, in this paper, we choose sub-
sets of the records from the two existing databases with sampling ratios of 5 and 10 %.

In our evaluation, we implement the steps illustrated in the algorithms of our
approach by both manual and automated processes. Inputs to the algorithms are
obtained by manual collection and include the intermediate information collected
during Pex’s execution. Then, we derive expected outputs by following the steps in
the algorithms. For each method, we first run Pex without our approach’s assistance
to generate test inputs. We record their statistics of code coverage, including total pro-
gram blocks, covered blocks, coverage percentages, and the number of generated test
inputs. Pex often fails to generate test inputs to satisfy or cover branch conditions that
are data-dependent on the query’s execution or its returned result set. The not-covered
code portions can be easily observed because they are marked by different colors in
Pex’s UL Then, before the places where code statements are not covered, we manually
identify the corresponding query-issuing point and related branch conditions. We man-

3 https://riskitinsurance.svn.sourceforge.net.
4 http://sourceforge.net/projects/se549unixusage.
5 http://sourceforge.net/projects/j2cstranslator/.

6 http://www.sis.uncc.edu/~xwu/DBGen.

@ Springer

https://riskitinsurance.svn.sourceforge.net
http://sourceforge.net/projects/se549unixusage
http://sourceforge.net/projects/j2cstranslator/
http://www.sis.uncc.edu/~xwu/DBGen

Autom Softw Eng

Table 4 Evaluation results on RiskIt (10 % sample, TO = time out, TC = no. of generated test inpukts)

Covered (blocks) Runs Time (s)
No. Method Case Total Pex Pex+ours Increase Pex Ours TC Pex Ours
(blocks) (%)
1 getAllZipcode 1 39 17 37 51.28 12 3 3 TO 4.4
2 filterOccupation 1 41 27 37 24.39 18 4 4 TO 5.6
3 filterZipcode 1 42 28 38 23.81 76 4 4 136 4.9
4 filterEducation 1 41 27 37 24.39 76 4 4 TO 5.1
5 filterMaritalStatus 1 41 27 37 24.39 18 4 4 163 5.3
6 findTopIndustry 1 19 13 14 5.26 32 4 4 TO 5.3
Code
7 findTopOccupa 1 19 13 14 5.26 81 5 5 TO 4.5
tionCode
updatestability 2 79 61 75 17.72 95 6 6 TO 4.6
9 userinformation 2 61 40 57 27.87 37 3 3 212 4.2
10 updatetable 1 60 42 56 23.33 42 3 3 264 4.1
11 updatewagetable 3 52 42 48 11.54 75 8§ 6 TO 5.1
12 filterEstimated 1 58 44 54 17.24 105 8 6 TO 4.5
Income
13 calculateUnemploy 1 49 45 45 0.00 89 7 5 TO 4.6
mentRate
14 calculateScore 1 93 16 87 76.35 92 10 7 TO 4.4
15 getValues 1 107 38 99 57.01 182 43 9 TO 6.7
16 getOneZip 1 34 23 32 26.47 22 6 6 TO 6.1
code
17 browseUser 1 108 85 104 17.60 83 9 7 TO 10.3
Properties
All methods (total) 943 588 871 25.52 1135 131 86 1637.5 89.7

ually instrument code statements by calling Pex API methods to get the intermediate
information (e.g., path conditions) collected by Pex’s exploration. Based on the infor-
mation required by the aforementioned algorithm on auxiliary query construction, for
each program under test, we then perform our algorithm to construct auxiliary queries.
We use ZQL as the SQL parser to get structures from the program queries and incorpo-
rate the intermediate information collected by Pex to form auxiliary queries. We form
auxiliary queries following the aforementioned algorithm on auxiliary query construc-
tion. We then execute the auxiliary queries against the existing database and generate
new test inputs. For the program-input generation, we use Z3 developed at Microsoft
as the constraint solver. We create test inputs in forms that can be executed by Pex
using the generated input values. We then run the test inputs previously generated by
Pex and the new test inputs generated by our approach, and then record new statistics.

5.2 Code coverage

We show the evaluation results in Tables 4 and 5. For each table, the first part (Columns
1-3) shows the index, method names, and the category (three cases as aforementioned)

@ Springer

Autom Softw Eng

Table 5 Evaluation results on UnixUsage (10 % sample, TO = time out, TC = no. of generated test inputs)

Covered (blocks) Runs time (s)
No. Method Case Total ~ Pex Pex+ours Increase Pex Ours TC Pex Ours
(blocks) (%)
1 courseNameExists 1 7 6 7 14.29 17 3 3 13.1 5.6
2 getCourseIDByName 1 10 6 10 40.00 14 3 3 12.0 6.0
3 computeFileTo 2 25 8§ 25 68.00 35 7 6 TO 7.9
NetworkRatio
ForCourseAndSessions
outputUserName 1 14 9 14 35.71 18 4 4 174 5.5
deptNameExists 1 13 9 13 30.77 18 3 3 226 4.8
computeBeforeAfter 2 24 8 24 66.67 109 8 7 31.2 7.1
RatioByDept
7 getDepartmentIDByName 1 11 7 11 36.36 92 3 3 TO 5.9
computeFileToNet 2 21 20 21 4.76 33 6 5 TO 6.3
workRatioForDept
9 officeNameEXxists 1 11 7 11 36.36 18 3 3 237 5.8
10 getOfficeldByName 1 9 5 9 44.44 18 3 3 29.6 5.6
11 raceExists 1 11 7 11 36.36 18 3 3 16.6 59
12 userIdExists(versionl) 1 11 7 11 36.36 18 3 3 213 6.1
13 transcriptExist 1 11 7 11 36.36 18 3 3 183 6.3
14 getTranscript 1 6 5 6 16.67 14 2 2 172 6.2
15 commandExists(versionl) 1 10 6 10 40.00 14 2 2 17.0 6.1
16 categoryExists 1 11 7 11 36.36 18 3 3 152 5.5
17 getCategoryByCommand 1 8 5 8 37.50 17 2 2 16.1 5.5
18 getCommandsByCategory 1 10 6 10 40.00 17 2 2 164 5.7
19 getUnixCommand 1 6 5 6 16.67 17 2 2 215 53
20 retrieveUsageHistoriesByld 1 21 7 21 66.67 86 3 3 287 5.1
21 userIdExists(version2) 1 11 7 11 36.36 19 3 3 144 5.2
22 commandExists(version2) 1 11 7 11 36.36 21 3 3 16.2 4.8
23 retrieveMaxLineNo 1 10 7 10 30.00 53 3 3 TO 6.6
24 retrieveMaxSequenceNo 1 10 7 10 30.00 35 3 3 TO 4.7
25 getSharedCommand 1 11 7 11 36.36 118 3 3 TO 4.9
Category
26 getUserInfoBy 3 47 15 47 68.09 153 4 3 TO 5.4
27 doesUserldExist 1 10 9 10 10.00 74 2 2 223 53
28 getPrinterUsage 3 34 27 34 20.59 115 4 3 399 5.8
All methods (total) 394 258 394 3452 1197 93 89 1270.7 215.8

each method belongs to. The second part (Columns 4-7) shows the code coverage
result. Column 4 “total(blocks)” shows the total number of blocks in each method.
Columns 5-7 “covered(blocks)” show the number of covered blocks by Pex without
our approach’s assistance, the number of covered blocks by Pex together with our
approach’s assistance, and the percentage increase, respectively.

@ Springer

Autom Softw Eng

Within the rRisk1t application, 17 methods are found to contain program inputs
related with database attributes. Among them, 14 methods belong to Case 1, 2 methods
belong to Case 2, and 1 method belongs to Case 3. In addition, 11 methods contain
simple SELECT queries, 3 methods contain DPNF queries, and 3 methods contain
queries with group-by and aggregation. These 17 methods contain 943 code blocks
in total. Test inputs generated by Pex without our approach’s assistance cover 588
blocks while Pex with our approach’s assistance covers 871 blocks. In fact, Pex with
our approach’s assistance can cover all branches except those branches related to
exception handling.

The unixusage application contains 28 methods whose program inputs are related
with database attributes, with 394 code blocks in total. Among 28 methods, 23 methods
belong to Case 1, 3 methods belong to Case 2, and 2 methods belong Case 3. In addition,
25 methods contain simple SELECT queries, 2 methods contain DPNF queries, and 1
method contains a query with group-by and aggregation. Pex without our approach’s
assistance covers 258 blocks while Pex with our approach’s assistance covers all
394 blocks. The unixUsage application constructs a connection with the database in
a separate class that none of these 28 methods belong to. Thus, failing to generate
inputs that can cause runtime database connection exceptions has not been reflected
when testing these 28 methods.

Note that the code coverage reported in Tables 4 and 5 is the same as the result of
the conference version Pan et al. (2011b) of this paper. The reason is that, for both
sampling ratios 10 and 5 %, the sizes of sampled subsets are still large, using which
Pex could achieve code coverage as high as it could try while our approach could help
get effective additional program input values for achieving higher code coverage than
Pex.

We pick method No. 1 getallzipcode of RiskIt as a basic example to illustrate
the evaluation details. Method getal1zipcode takes a string type variable zipcode
as parameter and combines it into an SQL query. The domain for zipcode is too large
for Pex to choose an appropriate value. Hence, the while loop cannot be entered by
Pex without our approach’s assistance. After running the constructed auxiliary query
against the existing database state, with the aforementioned two sampling ratios, we
get 158 distinct zipcode values for the 10 % sample and 81 for the 5% sample. As
the program input, any one of these 158 or 81 values can be used as the program
input in order to cover the while loop in Line 08. The method contains 39 blocks
in total. Pex without our approach’s assistance covers 17 blocks while Pex with our
approach’s assistance covers 37 blocks. The two not-covered blocks belong to the
catch statements, which mainly deal with program exceptions at runtime.

Method No. 12 filterEstimatedIncome of RiskIt has a program input parameter
String getIncome thatisinvolvedinamathematical formulacomparing with the SQL
query’s returned record values. We use the constraint solver Z3 to derive appropriate
program input values. We notice that for method No. 13, our approach covers the
same number of blocks as Pex does. This method takes one state name as input,
combines it into a query string, queries the total number of the unemployed people
living in this state, and calculates the unemployment rate. Pex without our approach’s
assistance generates a random string value for state names. The number of records
returned is always zero, which can still incur the program execution. However, Pex

@ Springer

Autom Softw Eng

with our approach’s assistance can generate meaningful state names such as “NC” and
meaningful records can be returned during the testing.

Within the riskIt and UnixUsage applications, only one method, method No. 14
of RiskIt, incurs data instantiation. For this method, we need to generate and insert
new records into the database because the existing database state does not contain any
record that satisfies the executed query’s conditions. For example, in method No. 14
calculateScore, one branch condition checks whether the returned result’s attribute
occupation is equal to Federal government. Unfortunately, among the existing 1.2
million records, there are no such record including this attribute value. Thus, our
approach detects this issue and inserts corresponding auxiliary records into the data-
base. We notice that methods No. 13 and No. 14 involve aggregate calculations at
the code level. Following aforementioned algorithm dealing with aggregate calcula-
tions, we construct GROUP BY queries to determine appropriate inputs for these two
methods.

Within the risk1t and unixUsage applications, there is only one method, method
No. 15, which contains multiple queries (four queries). The method accepts an input
ssn and constructs various queries on different tables. We observe that all four queries
are independent with each other. We construct one auxiliary query for each original
query and derive effective values for the input ssn.

For methods No. 16 and No. 17 of riskIt, their parameters have complex abstract
data types that are predefined in other classes. For example, the data type of method
getOneZipcode’s parameter is Invitation. One field ssy of the object Invitation
appears in the query. Pex is able to generate an object with the type Invitation as
input; however, Pex cannot associate the field ssy with the database attribute ssn.
Our approach constructs the auxiliary query, retrieves meaningful ssn values from the
database, and then builds new meaningful object with the data type 1nvitation as the
program input.

Three methods from the rRiskIt and one method from the unixUsage contain queries
with group-by and aggregation. For example, method No. 6 of unixusage contains one
group-by query that calculates summations of system usage for two separate sessions
by considering each department as one group. Its program input parameter semester
is incorporated in the WHERE clause of the embedded group-by query. The result
set is iterated for calculating the system usage ratio for each department. Following
the aforementioned algorithm that deals with group-by and aggregation, we form an
auxiliary query based on the original query by modifying the GROUP BY clause using
the semester attribute. Executing the auxiliary query will then return a set of string
values for qualified semesters.

5.3 Cost

In Tables 4 and 5, the third part (Columns 8—12) shows the cost. Column 10 shows the
number of test inputs generated by our approach. Columns 8 and 11 “Pex” show the
number of runs and the execution time used by Pex without our approach’s assistance.
We notice that, for both applications, Pex often terminates with “time out”. The reason
is that Pex often fails to enter the loops of iterating the returned result records. Columns
9 and 12 “ours” show the additional number of runs by Pex with assistance of our

@ Springer

Autom Softw Eng

approach and the extra execution time (i.e., the time of constructing auxiliary queries,
deriving program input values by executing auxiliary queries against the existing
database, and running new test inputs) incurred by our approach. For the execution
time used by Pex and extra execution time incurred by our approach, due to space
limit, we only list the results for the 10 % sample in the tables and we summarize the
results for the 5 % sample. The number of runs required by Pex and our approach and
the number of generated test inputs by our approach are the same as the 10 % sample,
as under both sampling ratios, we need the same number of runs to collect information
required by our approach and correspondingly generate the same number of test inputs
to cover desired program code. For risk1t, Pex uses 1598.7 s in total for all methods
while our approach uses additional 51.3 s in total. For unixusage, Pex uses 1066.3 s
in total for all methods while our approach uses additional 124.7 s in total. For the 5 %
sample, both Pex and our approach use less time than the 10 % sample. The reason is
that running queries against databases with smaller sizes costs less time.

We observe that the most parts of the execution time of both Pex and our approach
come from the queries’ execution against the database as the associated two databases
contain large numbers of records. Although we conduct samplings from the records,
the sizes of the samples are still large.

The results show that, for both applications, Pex with assistance of our approach
achieves much higher code coverage with relatively low additional cost of a few runs
and a small amount of extra execution time. In our evaluation, we set the TimeOut as
120s. For those “time out” methods, Pex could not achieve new code coverage even
given larger TimeOut values. Our approach could effectively help cover new branches
not covered by Pex with relatively low cost.

Note that in our current evaluation, we loosely integrate Pex and our approach:
we perform our algorithms only after Pex finishes its previous exploration (i.e., after
applying Pex without our approach’s assistance) since our algorithms rely on the
intermediate information collected during Pex’s exploration. We expect that after our
approach is tightly integrated into Pex, our approach can effectively reduce the overall
cost of Pex integrated with our approach (which is currently the sum of the time
in Columns 9 and 10). In such tight integration, our algorithms can be triggered
automatically when Pex fails to generate test inputs to satisfy branch conditions that
are data-dependent on a query’s execution or its returned result set.

5.4 Threats to validity

The threats to external validity primarily include the degree to which the subject pro-
grams and existing database states are representative of true practice. The studied two
open source database applications are of medium size. The studied existing database
states have 1.2 million records and 0.25 million records, respectively. These threats
could be reduced by more experiments on wider types of subjects and existing data-
base states in future work. The threats to internal validity are instrumentation effects
that can bias our results. Faults in our prototype, manual efforts for some not-yet-
automated parts, and the underlying Pex and ZQL tools might cause such effects. To
reduce these threats, we manually inspected sampled runtime traces of our approach
for each program subject. One threat to construct validity is that our evaluation makes

@ Springer

Autom Softw Eng

use of the block coverage as the measurement of the effectiveness of database applica-
tion testing. There exist some coverage metrics (Kapthammer and Soffa 2003) specific
for database application testing, and we plan to investigate such coverage metrics and
compare them with the block coverage in further future studies.

6 Related work

Database application testing has attracted much attention recently (Chays 2004; Chays
et al. 2004, 2008; Deng and Chays 2005; Kapthammer and Soffa 2003; Zhou and
Frankl 2011a,b, 2012; Emmi et al. 2007; Li and Csallner 2010; Wu et al. 2005,
2007). The AGENDA project (Chays 2004; Chays et al. 2004; Deng and Chays 2005)
addressed how to generate test inputs to satisfy basic database integrity constraints. In
Chays et al. (2008), parametric queries and constraints on query results during input
generation were addressed. The AGENDA database testing toolkit can automatically
generate a database state given information about the schema, some generation func-
tions for individual attributes and some user-selected heuristics. The tool also generates
test inputs from a simple analysis of the program being verified. The user must then
add to each test input preconditions that are checked just before it is executed and that
will prevent a case from being executed against an inappropriate database state. Since
only one database state is created per test suite, this problem of failed test is likely to
become more severe as the size of the test suite grows. An issue with AGENDA is
that it cannot guarantee that executing the test query on the generated database states
can produce the desired query results. For performance testing, the PPGen prototype
system was developed by Wu et al. (2005) and Wu et al. (2007) to generate mock data-
bases by reproducing the statistical distribution of realistic database states. However
PPGen assumes constraints are explicit and focus on SQL workload’s performance
testing.

There is a potential inefficiency involved in generating test descriptions and inputs.
The approach of Kapfhammer and Soffa (2003) included within the test description a
full specification of the database state against which is to be run and of the database
state that should be produced if the test has executed successfully. For example, each
DBUnit test is accompanied by an XML file describing the data set required for the test.
Before each test run, DBUnit clears the database state and inserts the data described
by the XML file. However, it is inefficient since the database must be continually
destroyed and recreated between tests, even when significant parts of the database
could have been reused by the succeeding tests.

DSE has been explored in database application testing (Willmor and Embury
2006a,b; Emmi et al. 2007; Li and Csallner 2010; Pan et al. 201 1b; Taneja et al. 2010).
Willmor and Embury (2006a) developed an approach that builds a database state for
each test case intensionally, in which the user provides a query that specifies the pre-
and post-conditions for the test case. Symbolic execution was used to generate input
and database state that will satisfy certain coverage requirements or certain require-
ments on the intermediate or final results of queries. Emmi et al. (2007) developed an
approach for automatic test generation for a database application. The approach was
based on DSE and used symbolic constraints in conjunction with a constraint solver
to generate both program inputs and database states. In Pan et al. (2011b) and this

@ Springer

Autom Softw Eng

extended version, we were focused on program-input generation given an existing
database state, avoiding the high overhead of generating new database states during
test generation. Pan et al. (2014) recently proposed the SynDB approach that can
automatically generate both program inputs and database records by comprehensively
incorporating multiple constraints from both program code and database states. The
technique is also based on DSE. Li and Csallner (2010) considered a similar scenario,
i.e., how to exploit existing databases to maximize the coverage under DSE. However,
their approach constructs a new query by analyzing the current query, the result tuples,
the covered and not-covered paths, and the satisfied and unsatisfied branch conditions.
It can neither capture the close relationship between program inputs and results of
SQL queries, nor generate program inputs to maximize code coverage. Recent work
of Taneja et al. (2010) proposed an approach called MODA by replacing a real data-
base with mock object. Normal executions like calls to a database are replaced with
calls to itself. Symbolic execution on the mock database performs the same result as
concrete execution. In this way, it avoids interactions with real database.

Other than choosing high code coverage as the main goal, test-generation for data-
base applications also has other requirements. Halfond and Orso (2006) presented
a set of testing criteria called command form coverage. It is claimed that all com-
mand forms should be covered if issued to the associated database. We developed an
approach from Pan et al. (2011a) that leverages DSE to generate database states to
achieve advanced structural coverage criteria such as boundary value coverage and
logical coverage. The authors in Kapfhammer and Soffa (2008) described a coverage
monitoring method for database applications.

Testing of SQL statements has also attracted attention recently (Tuya et al. 2007;
Guptaetal. 2010; delaRivaetal. 2010; Tuyaetal. 2010). delaRivaetal. (2010) defines
a SQL coverage criterion called SQLFpc based on the modified condition decision
coverage. In Tuya et al. (2006), Tuya et al. developed a tool to automatically generate
mutants of SQL queries. In Tuya et al. (2010), Cabal and Riva developed a method
of generating records to satisfy the criterion developed in de la Riva et al. (2010). In
Gupta et al. (2010) and Shah et al. (2011), generating test data for killing SQL mutants
was investigated. However, these approaches do not consider program constraints and
cannot deal with database applications directly. Zhou and Frankl (2009) proposed
the IDAMA approach that conducts mutation testing for database applications. The
approach is developed to evaluate the performance of mutant-killing based on some
given database states.

Testing of database management systems (DBMS) has also attracted much attention
(Binnig et al. 2007a,b; Khalek et al. 2008; Bruno et al. 2005). Bruno et al. (2005)
introduced a specification language called DGL to generate databases with complex
synthetic distributions and inter-table correlations. However, the method does not take
queries into consideration while generating the data. Hence, executing the test queries
might not return meaningful results. Khalek et al. (2008) proposed a black-box testing
approach using the Alloy toolset and developed an ADUSA prototype to generate
database states and expected results of executing given queries on generated database
states, given a database schema and an SQL query as input. Binnig’s papers, Binnig et
al. (2007a,b), used symbolic execution and were based on symbolic query processing
to generate query-aware databases. These approaches used the information from the

@ Springer

Autom Softw Eng

queries to constrain the data generator to generate query-aware databases. Specifically,
the generated database can guarantee the size of the intermediate join results to test
the accuracy of the cardinality-estimation components or guarantee the input and the
output sizes for an aggregation operator in order to evaluate the performance of the
aggregation algorithm. In Binnig et al. (2008), Binnig et al. developed a technique
called MRQP which can be used to specify and generate test databases for OLTP
applications. The technique can help a tester specify the test database for each test
case individually using declarative test database specification language. The database
generator then creates a test database for a given database schema which returns the
given expected result for each query of the specification. The authors Khalek and
Khurshid (2010) focused on the automated generation of queries instead of only the
data.

SQL queries could involve nested subqueries with aggregation functions, union/unio-
all, distinct, and group-by views, etc. A large body of work exists on query transforma-
tion in databases. Various decorrelation techniques (e.g., Kim 1982; Dayal 1987) have
been explored to unnest complex queries into equivalent single level canonical queries.
Kim Kim (1982) first showed four basic types of nesting, Type-A, Type-N, Type-J and
Type-JA, and developed query transformation algorithms to rewrite nested queries into
equivalent, flat queries. Dayal (1987) refined and extended all of the previous optimza-
tion work to a unified approach for processing queries that contain nested subqueries,
aggregates and quantifiers, which enable unnesting queries with more than one nest-
ing level. Queries with non-aggregated subqueries can be unnested as shown in (Kim
1982; Dayal 1987; Ganski et al. 1987). Unnesting of aggregate subqueries has been
studied extensively in (Gupta et al. 1995; Chaudhuri and Shim 1994). Recent work of
Ahmed et al. (2006) showed that almost all types of subqueries can be unnested except
those that are correlated to non-parents, whose correlations appear in disjunction, or
some ALL subqueries with multi-item connecting condition containing null-valued
columns. However, when transforming correlated subqueries into canonical forms,
viewed tables or derived tables are introduced, which incur challenges in auxiliary
query reconstruction. Note that viewed tables and derived tables are used temporarily
only for query optimization/execution and do not exist in physical databases.

7 Conclusion and future work

In this paper, we have presented an approach that takes database applications and a
given database as input, and generates appropriate program input values to achieve
high code coverage. In our approach, we employ DSE to analyze the code under test
and formulate auxiliary queries based on extracted constraints to generate program
input values. We incorporate a data-instantiation component in our framework to deal
with the case that no effective program input values can be attained. We determine
how to generate new records and populate them in the new database state. We also
extend our approach of program-input generation to database applications including
canonical queries and group-by queries. Empirical evaluations on two open source
database applications showed that our approach can assist Pex, a state-of-the-art DSE
tool, to generate program inputs that achieve higher code coverage than the program
inputs generated by Pex without our approach’s assistance.

@ Springer

Autom Softw Eng

In our future work, we plan to extend our technique to construct auxiliary queries
directly from embedded complex queries (e.g., nested queries), rather than from their
transformed norm forms. Real database applications may involve complex expres-
sions (e.g., transforming program inputs in predicates of SQL statements or iterat-
ing returned results after query execution). We will study strategies of dealing with
complex expressions in database application testing. Many real database applications
include not just single queries, but rather they include multiple queries embedded in the
application program. In our future work, we plan to extend our approach on auxiliary
query reconstruction to attain effective program input values when multiple queries
are embedded. An execution path of an application can also involve the execution of
a sequence of SQL statements including both SELECT queries and state-modifying
SQL statements such as INSERT,UPDATE and DELETE. We aim to explore how
to extend our approach to state-modifying SQL statements. Finally we will conduct
empirical evaluations with more real-world applications.

Acknowledgments This work was supported in part by U.S. National Science Foundation under CCF-
0915059 for Kai Pan and Xintao Wu, and under CCF-1349666, CNS-1434582, CCF-1434596, CCF-
1434590, and CNS-1439481 for Tao Xie.

References

Ahmed, R., Lee, A.W., Witkowski, A., Das, D., Su, H., Zait, M., Cruanes, T.: Cost-based query transfor-
mation in Oracle. In: Proceedings of International Conference on Very Large Data Bases (VLDB), pp.
1026-1036 (2006)

Binnig, C., Kossmann, D., Lo, E.: Reverse query processing. in: Proceedings of IEEE International Con-
ference on Data Engineering (ICDE), pp. 506-515 (2007a)

Binnig, C., Kossmann, D., Lo, E., Ozsu, M.T.: QAGen: generating query-aware test databases. In: Proceed-
ings of ACM SIGMOD Conference pp. 341-352 (2007b)

Binnig, C., Kossmann, D., Lo, E.: Multi-RQP: generating test databases for the functional testing of OLTP
applications. in: International Workshop on Testing Database Systems (DBTest), p. 5 (2008)

Bruno, N., Chaudhuri, S.: Flexible database generators. In: Proceedings of International Conference on
Very Large Data Bases (VLDB), pp. 1097-1107 (2005)

Chaudhuri, S., Shim, K.: Including group-by in query optimization. In: Proceedings of International Con-
ference on Very Large Data Bases (VLDB), pp. 354-366 (1994)

Chays, D.: Test data generation for relational database applications. PhD thesis, Computer and Information
Science, Polytechnic University (2004)

Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I., Weyuker, E.J.: An AGENDA to test relational
database applications. J. Softw. Test. Verif. Reliab. 14, 17-44 (2004)

Chays, D., Shahid, J., Frankl, P.G.: Query-based test generation for database applications. In: International
‘Workshop on Testing Database Systems (DBTest), p. 6 (2008)

Dayal, U.: Of nests and trees: a unified approach to processing queries that contain nested subqueries,
aggregates, and quantifiers. In: Proceedings of International Conference on Very Large Data Bases
(VLDB), pp. 197-208 (1987)

de la Riva, C., Cabal, M.J.S., Tuya, J.: Constraint-based test database generation for SQL queries. In:
International Workshop on Automation of Software Test (AST), pp. 67-74 (2010)

Deng, Y., Chays, D.: Testing database transactions with AGENDA. In: Proceedings of International Con-
ference on Software Engineering (ICSE), pp. 78-87 (2005)

Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database applications. In: Proceedings
of International Symposium on Software Testing and Analysis (ISSTA), pp. 151-162 (2007)

Ganski, R.A., Wong, H.K.T.: Optimization of nested SQL queries revisited. In: Proceedings of ACM
SIGMOD Conference, pp. 23-33 (1987)

Godefroid, P., Luchaup, D.: Automatic partial loop summarization in dynamic test generation. In: Proceed-
ings of International Symposium on Software Testing and Analysis (ISSTA), pp. 23-33 (2011)

@ Springer

Autom Softw Eng

Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data warehousing environments. In:
Proceedings of International Conference on Very Large Data Bases (VLDB), pp. 358-369 (1995)

Gupta, B.P,, Vira, D., Sudarshan, S.: X-data: generating test data for killing SQL mutants. In: Proceedings
of IEEE International Conference on Data Engineering (ICDE), pp. 876-879 (2010)

Halfond, W.G.J., Orso, A.: Command-form coverage for testing database applications. In: Proceedings of
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 69-80 (2006)
Kapfhammer, G.M., Soffa, M.L.: A family of test adequacy criteria for database-driven applications. In: Pro-
ceedings of the 9th European Software Engineering Conference held jointly with 11th ACM SIGSOFT

International Symposium on Foundations of software engineering (ESEC/FSE), pp. 98-107 (2003)

Kapfhammer, G.M., Soffa, M.L.: Database-aware test coverage monitoring. In: Proceedings of the 1st India
Software Engineering Conference (ISEC), pp. 77-86 (2008)

Khalek, S.A., Khurshid, S.: Automated SQL query generation for systematic testing of database engines.
In: Proceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 329-332 (2010)

Khalek, S.A., Elkarablieh, B., Laleye, Y.O., Khurshid, S.: Query-aware test generation using a relational
constraint solver. In: Proceedings of IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 238-247 (2008)

Kim, W.: On optimizing an SQL-like nested query. ACM Trans. Database Syst. 7(3), 443—469 (1982)

King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385-394 (1976)

Li, C., Csallner, C.: Dynamic symbolic database application testing. In: Proceedings of International Work-
shop on Testing Database Systems (DBTest), pp. 01-06 (2010)

Microsoft Research Foundation of Software Engineering Group: Pex: Dynamic Analysis and Test Genera-
tion for NET

Pan, K., Wu, X., Xie, T.: Database state generation via dynamic symbolic execution for coverage criteria.
In: Proceedings of International Workshop on Testing Database Systems (DBTest), pp. 01-06 (2011a)

Pan, K., Wu, X., Xie, T.: Generating program inputs for database application testing. In: Proceedings of
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 73-82 (2011b)

Pan, K., Wu, X, Xie, T.: Guided test generation for database applications via synthesized database interac-
tions. In: ACM Transactions on Software Engineering and Methodology, 23(2), 12 (2014)

Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Proceedings of the joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), pp. 263-272 (2005)

Seshadri, P., Pirahesh, H., Leung, T.Y.C.: Complex query decorrelation. In: Proceedings of the Twelfth
International Conference on Data Engineering (ICDE), pp. 450—458 (1996)

Shah, S., Sudarshan, S., Kajbaje, S., Patidar, S., Gupta, B.P., Vira, D.: Generating test data for killing SQL
mutants: a constraint-based approach. In: Proceedings of the Twelfth International Conference on Data
Engineering (ICDE), pp. 1175-1186 (2011)

Taneja, K., Zhang, Y., Xie, T.. MODA: automated test generation for database applications via mock objects.
In: Proceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp- 289-292 (2010)

Tuya, J., Cabal, M.J.S., de 1a Riva, C.: SQLMutation: a tool to generate mutants of SQL database queries.
In: Proceedings of the Second Workshop on Mutation Analysis, p. 1 (2006)

Tuya, J., Cabal, M.J.S., de la Riva, C.: Mutating database queries. Inf. Softw. Technol. 49(4), 398-417
(2007)

Tuya, J., Cabal, M.J.S., de la Riva, C.: Full predicate coverage for testing SQL database queries. J. Softw.
Test. Verif. Reliab. 20, 237-288 (2010)

Willmor, D., Embury, S.M.: An intensional approach to the specification of test cases for database appli-
cations. In: Proceedings of International Conference on Software Engineering (ICSE), pp. 102-111
(2006a)

Willmor, D., Embury, S.M.: Testing the implementation of business rules using intensional database tests.
In: TAIC PART, pp. 115-126 (2006b)

Wu, X., Sanghvi, C., Wang, Y., Zheng, Y.: Privacy aware data generation for testing database applications. In:
Proceedings of International Database Engineering and Applications Symposium (IDEAS), pp. 317-326
(2005)

Wu, X., Wang, Y., Guo, S., Zheng, Y.: Privacy preserving database generation for database application
testing. Fundam. Inf. 78(4), 595-612 (2007)

@ Springer

Autom Softw Eng

Zhou, C., Frankl, P.G.: Mutation testing for java database applications. In: Proceedings of IEEE International
Conference on Software Testing, Verification and Validation (ICST), pp. 396405 (2009)

Zhou, C., Frankl, P.G.: Inferential checking for mutants modifying database states. In: Proceedings of IEEE
International Conference on Software Testing, Verification and Validation (ICST), pp. 259-268 (2011a)

Zhou, C., Frankl, P.G.: JDAMA: Java database application mutation analyser. Softw. Test. Verif. Reliab.
21(3), 241-263 (2011b)

Zhou, C., Frankl, P.G.: Empirical studies on test effectiveness for database applications. In: Proceedings
of IEEE International Conference on Software Testing, Verification and Validation (ICST), pp. 61-70
(2012)

@ Springer

	Program-input generation for testing database applications using existing database states
	Abstract
	1 Introduction
	1.1 Illustrative example
	1.2 Problem formalization
	1.3 Proposed solution

	2 Dynamic symbolic execution in database application testing
	3 Approach
	3.1 Auxiliary query construction and program input generation
	3.1.1 Query dependent on program inputs
	3.1.2 Branch conditions after query execution dependent on the result set
	3.1.3 Branch conditions after query dependent on program inputs
	3.1.4 Program input generation

	3.2 Dealing with aggregate calculation
	3.2.1 Cardinality constraints

	3.3 Modifying database state

	4 Dealing with complex queries
	4.1 Canonical query
	4.2 Query with group-by and aggregation

	5 Evaluation
	5.1 Evaluation setup
	5.2 Code coverage
	5.3 Cost
	5.4 Threats to validity

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

