Transferring an Automated Test Generation Tool to
Practice: From Pex to Fakes and Code Digger

Nikolai Tillmann

Microsoft Research

. Redmond, WA, USA
nikolait@microsoft.com

ABSTRACT

Producing industry impacts has been an important, yet challenging
task for the research community. In this paper, we report expe-
riences on successful technology transfer of Pex and its relatives
(tools derived from or associated with Pex) from Microsoft Re-
search and lessons learned from more than eight years of research
efforts by the Pex team in collaboration with academia. Moles, a
tool associated with Pex, was shipped as Fakes with Visual Studio
since August 2012, benefiting a huge user base of Visual Studio
around the world. The number of download counts of Pex and its
lightweight version called Code Digger has reached tens of thou-
sands within one or two years. Pex4Fun (derived from Pex), an ed-
ucational gaming website released since June 2010, has achieved
high educational impacts, reflected by the number of clicks of the
“Ask Pex!” button (indicating the attempts made by users to solve
games in Pex4Fun) as over 1.5 million till July 2014. Evolved from
Pex4Fun, the Code Hunt website has been used in a very large pro-
gramming competition. In this paper, we discuss the technology
background, tool overview, impacts, project timeline, and lessons
learned from the project. We hope that our reported experiences can
inspire more high-impact technology-transfer research from the re-
search community.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques—
Object-oriented programming; D.2.5 [Software Engineering]: Test-
ing and Debugging—Symbolic execution

General Terms

Languages, Experimentation

Keywords

Testing; Symbolic execution; Technology transfer

1. INTRODUCTION

Producing industry impacts (such as producing successful tech-
nology transfer and adoption) has often been an important task

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ASE’14, September 15-19, 2014, Vasteras, Sweden.

Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642941.

Jonathan de Halleux
Microsoft Research
~ Redmond, WA, USA
jhalleux@microsoft.com

Tao Xie
University of lllinois at
Urbana-Champaign
Urbana, IL, USA
taoxie@illinois.edu

for academic or industrial researchers when conducting research.
However, it is generally challenging to transfer research results into
industrial practices. In recent years, a set of promising research re-
sults around automated software engineering tools have been pro-
duced by the research community and demonstrated to be useful
on various real-world open source projects. There are substantial
opportunities for exploiting these research results to improve in-
dustrial practices of automated software engineering. Furthermore,
there are substantial demands from software practitioners to ad-
dress urgent and critical issues in their industrial practices.

However, demonstrating effectiveness of proposed research tools
on open source code or even industrial code (as often reported in
the research literature) does not naturally lead to successful transfer
or adoption of the tools in industrial practices. The research com-
munity [27, 48, 78] has already realized gaps between academic
research and industrial practices, and has called for training and
education of researchers and practitioners in conducting success-
ful technology transfer and adoption. Furthermore, there have been
various cases of successful technology transfer on static bug find-
ing [23,81], dynamic bug finding [26], and software analytics [31,
32,46,76,77].

In this paper, we report experiences on successful technology
transfer of Pex [63], denoting the (P)rogram (Ex)ploration tool, and
its relatives (tools derived from or associated with Pex) from Mi-
crosoft Research and lessons learned from more than eight years
of research efforts by the Pex team in collaboration with academia.
Moles [34], a tool associated with Pex, was shipped as Fakes with
Visual Studio since August 2012, benefiting a huge user base of Vi-
sual Studio around the world. The number of download counts of
Pex and its lightweight version called Code Digger [15] has reached
tens of thousands within one or two years. Pex4Fun [66, 74] (de-
rived from Pex), an educational gaming website released since June
2010, has achieved high educational impacts, reflected by the num-
ber of clicks of the “Ask Pex!” button (indicating the attempts made
by users to solve games in Pex4Fun) as over 1.5 million till July
2014. Evolved from Pex4Fun, the Code Hunt [62,64] website has
been used in a very large programming competition.

The rest of the paper is organized as follows. Section 2 presents
the technology background for the Pex project. Section 3 presents
the overview of Pex and its relatives. Section 4 presents the indus-
try, educational, and research impacts of the Pex project. Section 5
illustrates the project timeline. Section 6 discusses the lessons
learned and Section 7 concludes.

2. TECHNOLOGY BACKGROUND

In this section, we present the technology background underly-
ing the Pex project: Dynamic Symbolic Execution (Section 2.1),
which is the technology that Pex has realized; parameterized unit

‘ Qassl.cs

[u@cwassubraryz StringExtensions

public class StringExtensions
1

1loWorld®

ze(string value)

var sb = nes

alse; // are]we writing a word
r c in value)

= Run Pex Explorations

Pex Exploration Results - stopped - 11 tests 123 runs

1eplorstion: StringExtensionsTest Capitalize(String vahue) - Pk~

Marker Commany

value resut Summary/Exception EmorMessage f
=
AsgumentullEsception Value cannot be null || 1

HEEE6EB60

Figure 1: User interface of applying Pex

testing (Section 2.2), which is the technology that provides a play-
ground and motivation for Pex; fitness-guided path exploration (Sec-
tion 2.3), which is a key technology that allows Pex to improve its
effectiveness and efficiency.

2.1 Dynamic Symbolic Execution

Dynamic Symbolic Execution (DSE) [38, 54] is a variation of
symbolic execution [29,43] and leverages runtime information from
concrete executions. DSE is often conducted in iterations to sys-
tematically increase code coverage such as block or branch cover-
age. In each iteration, DSE executes the program under test with
a test input, which can be a default or randomly generated input in
the first iteration or an input generated in one of the previous iter-
ations. During the execution of the program under test, DSE per-
forms symbolic execution in parallel to collect symbolic constraints
on program inputs obtained from predicates in branch statements
along the execution. The conjunction of all symbolic constraints
along an executed path is called the path condition. Then DSE
flips a branching node in the executed path to construct a new path
that shares the prefix to the node with the executed path, but then
deviates and takes a different branch. DSE relies on a constraint
solver such as Z3 [35] to (1) check whether such a flipped path is
feasible; if so, (2) compute a satisfying assignment — such assign-
ment forms a new test input whose execution will follow along the
flipped path.

2.2 Parameterized Unit Testing

A key methodology that Pex supports is parameterized unit test-
ing [67], which extends previous industry practice based on closed,
traditional unit tests (i.e., unit test methods without input param-
eters). In parameterized unit testing, unit test methods are gen-
eralized by allowing parameters to form parameterized unit tests.
This generalization serves two main purposes. First, parameterized
unit tests are specifications of the behavior of the methods under
test: not only exemplary arguments to the methods under test, but
also ranges of such arguments. Second, parameterized unit tests
describe a set of traditional unit tests that can be obtained by in-
stantiating the methods of the parameterized unit tests with given
argument-value sets. An automatic test generation tool such as Pex
can be used to generate argument-value sets for parameterized unit
tests.

2.3 Fitness-Guided Path Exploration

DSE, or symbolic execution in general, suffers from the path ex-
ploration problem: there are typically a huge or infinite number
of paths in the code under test for the DSE engine to explore. To
tackle this exploration problem, the Pex team developed the Fitnex

search strategy [75] for guiding the DSE engine (Pex) to achieve
the target test coverage quickly. The guided search provided by
the Fitnex strategy alleviates issues encountered by previous DSE
search strategies such as (bounded) exhaustive search [38, 54] or
random search [28]. In particular, the Fitnex strategy assigns to al-
ready explored paths fitness values computed by program-derived
fitness functions. (Fitness functions have been traditionally used
in search-based test generation [47].) A fitness function measures
how close an explored path is in achieving the target test coverage.
A fitness gain is also measured for each explored branch: a higher
fitness gain is given to a branch if flipping a branching node for
the branch in the past helped achieve better fitness values. Then
during path exploration, the Fitnex strategy prefers to flip a branch-
ing node whose corresponding branch has a higher fitness gain in a
previously explored path with a better fitness value. The Pex team
integrated the Fitnex strategy with other fair-choice search strate-
gies [75], which work well for other types of exploration problems.
Such integration of the Fitnex and other strategies achieves the ef-
fect of getting the best of both in practice.

3. PEX AND ITS RELATIVES

In this section, we present the overview of Pex (Section 3.1) and
its relatives, i.e., tools that are derived from or associated with Pex,
including Code Digger (Section 3.2), Moles/Fakes (Section 3.3),
and Pex4Fun/Code Hunt (Section 3.4).

3.1 Pex

Based on DSE, Pex [63] is an automatic white-box test genera-
tion tool for .NET., which has been integrated into Microsoft Visual
Studio as an add-in. Starting from a method that takes parameters
(either a parameterized unit test or a method under test), Pex per-
forms path-bounded model checking by repeatedly executing the
program and solving constraint systems to obtain inputs that will
steer the program along different execution paths, following the
idea of DSE. Pex uses the theorem prover and constraint solver
73 [35] to reason about the feasibility of execution paths, and to
obtain ground models for constraint systems (Pex was one of the
major reasons for initiating the Z3 project). The unit tests that Pex
generates can be executed by various unit test frameworks (such
as MSTest, NUnit, and xUnit) without Pex. Figure 1 shows the
user interface of applying Pex in Visual Studio. Pex can be invoked
anywhere in the Visual Studio code editor (via clicking the con-
text menu item of “Run Pex Explorations”) and does not require
any pre-existing tests. The results are presented as an input-output
table as shown in the lower-right part of Figure 1. Each row rep-
resents a set of inputs to the method under test and the observed
return value or exception. The results can be easily saved in the
Visual Studio solution as traditional unit tests. The generated tests
can also be debugged just like any other unit tests.

3.2 Code Digger

Code Digger [15], the first Visual Studio extension from the Pex
team for Visual Studio 2012, generates test data that show different
behaviors of the .NET code under test. Figure 2 shows the user
interface of applying Code Digger in Visual Studio. Code Digger
can be invoked through clicking the context menu item “Generate
Inputs / Outputs Table” in the Visual Studio code editor. The gen-
eration result is a table showing for which inputs the code under
test produces which outputs, as shown in the lower-left part of Fig-
ure 2. The table helps the developers understand the behavior of
the code, and it may also uncover hidden faults. Under the hood,
Code Digger uses Pex to systematically explore paths in the code,
trying to generate a test suite that achieves high code coverage.

—lpublic class Classl

{
= public static void Test(int i)
i
if (i == 123) Refactar
throw new Exceptio Organize Usings
} Generate Sequence Diagram...
q 9
t
100 % - ¥ Show on Code Map

) Show Related ltems on Code Map

Generate Inputs / Qutputs Table
.

Inputs / Outputs - stopped

i Summary / Exception L

@ 0 '& Run Tests

® 123 Exception Debug Tests

Figure 2: User interface of applying Code Digger

Out of the box, Code Digger works on only public .NET code
that resides in Portable Class Libraries. But options are available
to allow the developers to configure Code Digger to explore other
.NET projects. By restricting the code exploration to Portable Class
Libraries, Code Digger avoids problems with code that has depen-
dencies on a particular platform that the Pex engine does not un-
derstand (Portable Class Libraries are a neat way in .NET to ensure
that there are no external dependencies). In addition, when using
Code Digger, developers do not need to change their project under
test (e.g., without the need of creating a new test project, as needed
in Pex); therefore, Code Digger can be conveniently used by some
developers in a project team even when some other developers in
the same project team do not use Code Digger.

3.3 Moles/Fakes

In software testing especially unit testing, it is often desirable to
test individual units (such as classes) in isolation. In other words,
all irrelevant environment dependencies should be mocked or sim-
ulated, so that the unit tests for the code under test run quickly and
give deterministic results. Ideally, to address the problem, develop-
ers can refactor the code under test by introducing explicit interface
boundaries and allowing different interface implementations. How-
ever, in practice, it is often not feasible to refactor existing legacy
code under test, especially the code from a third party.

To address the issue, the Pex team developed a new lightweight
framework called Moles [34]. The Moles framework allows the
test code to provide alternative implementations for non-abstract
methods of any .NET type. Using code instrumentation, the Moles
framework redirects calls of a method to its alternative implemen-
tation. The Moles framework has been designed to work together
with Pex to enable automated test generation. Pex can analyze only
.NET managed code. Consequently, when the program execution
invokes a method (e.g., a system-library method) not implemented
in .NET managed code, Pex cannot infer the constraints that reflect
the behavior of that method, and thus Pex cannot generate test data
to achieve high code coverage. Moles allows developers to replace
any method at test time with .NET code that simulates its behavior,
which in turn facilitates test generation with Pex.

Achieving high industry impacts (see Section 4.1 for details),
Moles has been shipped with Visual Studio (since Visual Studio
2012) with the new name of Microsoft Fakes [17]. Similar to
Moles, Fakes comes in two flavors: a stub and a shim. A stub
replaces a class with a small substitute that implements the same in-
terface. To use stubs, developers have to design their application so
that each component (e.g., a class or group of classes designed and
updated together and typically contained in an assembly) depends
only on interfaces, and not on other components. A shim modifies
the compiled code of developers’ application at run time so that in-
stead of making a specified method call, it runs the shim code that

' behavior
Secret Impl == Player Impl

Player Implementation

@\;ﬁf S

class Player {
public static int Puzzle(int x) {
return X;

ecret Implementation

class Secret {
public static int Puzzle(int x) {
if (x <= 0) return 1;
return x * Puzzle(x-1);

}

m\/yf%

}

class Test {
public static vaid Driver(int x) {
if (Secret.Puzzle(x) != Player.Puzzle(x))
throw new Exception(“Mismatch”);

}

} X |yourresult | secretimplementation result
111 1
22 2
3 (3 [Mismatch

Output/Exception

CASI]

Figure 3: Workflow of playing an example coding duel in
Pex4Fun or Code Hunt

< LEVEL: 00.04 b ATTEMPTS: 1
Y PN N B e T e

RESETLEVEL SWITCHTOC#

PECTEDRESULT YOURRESULT DESCRIPTION

Figure 4: User interface of playing a coding duel in Code Hunt

the developers’ test provides. Shims can be used to replace calls
to assemblies (such as .NET assemblies) that the developers cannot
modify.

3.4 Pex4Fun/Code Hunt

Pex4Fun [66, 74] (http://www.pexforfun.com/) is an
interactive gaming platform for teaching and learning program-
ming and software engineering (supporting .NET programming lan-
guages such as C#, Visual Basic, and F#). It is a browser-based
teaching and learning environment [24] with target users as teach-
ers, students, and even software practitioners, etc. The core type of
Pex4Fun games is a coding duel [65] where the player has to solve
a particular programming problem. Figure 3 shows the workflow of
playing an example coding duel in Pex4Fun or Code Hunt [62, 64]
(evolved from Pex4Fun, with more details in the end of this sec-
tion). A coding duel created by a game creator (who could be any
user of Pex4Fun) consists of two methods with the same method
signature and return type'. One of these two methods is the secret
(golden) implementation (shown in the top-left part of Figure 3),
which is not visible to the player. The other is the player imple-
mentation (shown in the top-right part of Figure 3), which is visi-
ble to the player and can be an empty implementation or a faulty
implementation of the secret implementation. The player imple-

!"The method signature of a coding duel must have at least one input
parameter. The return type of a coding duel must not be void.

mentation can include optional comments to give the player some
hints in order to reduce the difficulty level of gaming.

After a player selects a coding-duel game to play, the player’s
winning goal is to modify the player implementation (visible to the
player) to make its behavior (in terms of the method inputs and re-
sults) to be the same as the secret implementation (not visible to the
player). Apparently, without any feedback or help, the player has
no way to guess how the secret implementation would behave. The
player can get some feedback by clicking the button “Ask Pex” (or
“Capture Code” in Code Hunt) to request the following two types
of feedback: (1) under what sample method input(s) the player im-
plementation and the secret implementation have the same method
result and (2) under what sample method input(s) the player im-
plementation and the secret implementation have different method
results.

Pex4Fun applies Pex on the synthesized test driver code (for
comparing the returns of the two implementations, as shown in the
lower-left part of Figure 3) to generate such feedback (as shown in
the lower-right part of Figure 3) and determine whether the player
wins the game: the player wins the game if Pex cannot generate
any method input to cause the player implementation and the se-
cret implementation to have different method results.

Evolved from Pex4Fun, Code Hunt [62, 64] (http://www.
codehunt . com/) instills more fun and entertaining effects, adds
hint generation, adds language support to Java, etc. There are four
steps to follow in playing games in Code Hunt. In Step 1, from
the suggested sequence of sectors in the game, the player discov-
ers a secret code segment by selecting a sector. In Step 2, after
the player clicks a sector, the player is presented with the player’s
code, as shown in the left part of Figure 4. Then the player clicks
the “Capture Code” button (as shown in the top-middle part of Fig-
ure 4, equivalent to the “Ask Pex” button in Pex4Fun) to analyze the
behavioral differences of the secret code segment and the player’s
code. Then Code Hunt displays the feedback on the behavioral
differences (as shown in the right part of Figure 4). In Step 3,
based on the feedback, the player then modifies the player’s code to
match the secret code segment’s behavior. Then the player iterates
through Steps 2 and 3 until no behavioral differences of the secret
code segment and the player’s code can be found by Code Hunt. In
this case, the player reaches Step 4, winning the game.

4. IMPACTS

In this section, we present the impacts that the Pex project has
made in the industry community (Section 4.1), the education com-
munity (Section 4.2), and the research community (Section 4.3).

4.1 Industry Impacts

Inside Microsoft, Pex was applied to a core component of the
.NET architecture, which had already been extensively tested over
five years by approximately 40 testers within Microsoft. The com-
ponent is the basis for other libraries, which are used by thousands
of developers and millions of end users. Pex found various issues
in this core component, including a serious issue. Furthermore,
there have been many other successful cases for applying Pex on
Microsoft code bases.

In the broad software industry, Pex has had high download counts
in industry and academia, e.g., 30,388 during a 20-month period of
February 2008 - October 2009, including 17,366 downloads with
the academic license and 13,022 downloads with the Devlabs in-
dustrial license. The release of Pex (including Moles) has led to
an active user community (including members largely from the
industry). From the period of October 2008 till November 2010,

the MSDN forum dedicated to Pex and Moles included more than
1,400 forum posts made by the user community.

Microsoft Fakes was shipped with the Ultimate editions of Vi-
sual Studio since Visual Studio 2012, benefiting a huge user base
of Visual Studio around the world. The substantial benefits and
impacts of Microsoft Fakes were also reflected by the Visual Stu-
dio user community’s request to “Provide Microsoft Fakes with
all Visual Studio editions”. The request post states “Include Mi-
crosoft Fakes with all editions of Visual Studio including Profes-
sional edition rather than being restricted to developers with Ul-
timate editions of Visual Studio. This will allow all Visual Stu-
dio developers to leverage the capabilities of the Fakes mocking
library since mocking/stubbing is a necessary part of every devel-
oper’s Unit Testing toolbelt.” This request got 1,457 votes from the
Visual Studio user community.

Since Code Digger [15] was shipped to the Visual Studio Gallery
in April 2013, the number of download counts of Code Digger is
31,165 (as of July 2014). There have been many very positive user
comments on Code Digger. Some quotes are below:

e “Very easy to use and quickly see the potential input sanita-
tion problems!”

e “What an awesome tool.. Help us to explore our logic by
providing accurate input parameter for each logic branch..
You should try this as one of your ultimate tool :) It really
saves a lot of our time to explore every logic branch in our

apps..”

e “Great tool to generate unit tests for parameter boundary
tests. I like to see it integrated into Visual Studio and the
testing features as far as in ReSharper! :)”

e “What a fantastic tool. Whilst it’s not bullet proof, it shows
amazing promise. I ran the Code Digger over a number of
real-world methods and it immediately identified dozens of
edge cases we hadn’t thought of. This is getting rolled-out to
my team TODAY! Well done. Brilliant. Really brilliant.”

e “Top stuff here. Very anxious for more of the Pex features
that were available in VS 2010 Pex & Moles (like auto-gen
unit tests). This tool is poised to become indispensable for
anyone writing solid suites of unit tests.”

4.2 Educational Impacts

Pex4Fun [66,74] has been gaining high popularity in the commu-
nity: since it was released to the public in June 2010, the number
of clicks of the “Ask Pex!” button (indicating the attempts made
by users to solve games in Pex4Fun) has reached over 1.5 million
(1,544,979) as of July 28, 2014. Pex4Fun has provided a number of
open virtual courses (similar to MOOC:s in spirit) including learn-
ing materials along with games used to reinforce students’ learning.

In May 2011, Microsoft Research hosted a contest on solving
coding duels [8] at the 2011 International Conference on Software
Engineering (ICSE 2011). During the main ICSE program, confer-
ence attendees could register a nickname in Pex4Fun and complete
as many coding duels as possible within the ICSE 2011 main con-
ference period. Whoever solved the most coding duels by the end
of the period won the contest. The ICSE 2011 coding-duel con-
test received 7,000 Pex4Fun attempts, 450 duels completed, and 28
participants (though likely more, since some did not actually enter
the official ICSE 2011 course to play the coding duels designed for
the contest).

Recently, Pex4Fun inspired the new contest form [22] in the
2013 ICFP Programming Contest [7]. Competing entirely over the
Internet, more than 300 participating teams of programmers from
around the world were asked to complete a series of programming

tasks, using any programming languages and tools that they de-
sired, to address an extremely challenging scenario in program syn-
thesis. Results were assessed using Microsoft Research’s Z3 [35]
running in Windows Azure to compare submitted solutions to ac-
tual solutions to determine correctness, in a similar way as coding
duels in Pex4Fun. The generic problem description was “guess the
implementation of a black-box function implemented in a simple
functional language through querying a web server for information
about the input/output behavior of the function.” Over the contest’s
72 hours, Z3 received about a million requests and successfully de-
cided all, except about 300 problem instances, within an imposed
time limit of 20 seconds, the overwhelming majority within a mat-
ter of a few milliseconds.

Various Pex4Fun users posted their comments on the Internet to

express their enthusiasm and interest (even addiction) to Pex4Fun [74].

Here we included some examples. “PEX4fun could become a bet-
ter FizzBuzz than FizzBuzz.”, “it really got me *excited*. The part
that got me most is about spreading interest in/teaching CS: I do
think that it’s REALLY great for teaching | learning!”, “Frankly
this is my favorite game. I used to love the first person shooters and
the satisfaction of blowing away a whole team of Noobies play-
ing Rainbow Six, but this is far more fun.”, “Teaching, learning -
isn’t this really the same, in the end? In fact, for me personally,
it’s really about leveraging curiosity, be it mine or someone else’s
- at best both! And PexForFun (+ all the stuff behind) is a great,
promising platform for this: you got riddles, you got competition,
you get feedback that makes you think ahead...”, “I’'m afraid I'll
have to constrain myself to spend just an hour or so a day on this
really exciting stuff, as I'm really stuffed with work”, “PexForFun
improves greatly over projecteuler w.r.t. how proposed solutions
are verified; in fact what it adds is that you don’t just get a ‘nope’
but something more articulate, something you can build on. That’s
what I think is really great and exciting - let’s push it even further
now!”

Evolved from Pex4Fun, Code Hunt [62, 64] offers more fun and
entertaining effects, hints for players, language support for Java
besides C#. In April 2014, Code Hunt was used at a very large
competition called Beauty of Programming in the Greater China
Region. In three rounds, 2,353 students scored in the game, with
an average 55.7% puzzles solved across this large number. Code
Hunt is being offered for more competitions, as ongoing efforts.

4.3 Research Impacts

The Pex team has published a set of papers on Pex or its rel-
atives along with experimental extensions of Pex [20]. Work on
experimental extensions of Pex was mostly conducted in collabora-
tion with the Automated Software Engineering research group led
by the third author at North Carolina State University (before July
2013) and then at the University of Illinois at Urbana-Champaign
(since July 2013).

As of July 2014, the major publication on Pex [63] published in
2008 has got 464 citations. The major publication on parameterized
unit testing [67] published in 2005 has got 172 citations. The major
publication on the fitness-guided path exploration [75] published in
2009 has got 102 citations. All the preceding citation counts were
derived from Google Scholar in July 2014.

Pex itself is not open source and only some extensions of Pex
are open source [19] (including extensions [75] being part of Pex
releases and other extensions [30,53,58,60,61,72,79] as research
exploration). However, Pex has been used by other third-party re-
searchers from academia (who did not have direct collaboration
with the Pex team on carrying out the academic research) in dif-
ferent ways. First, some researchers (e.g., [49-52, 80]) made ex-

tensions of Pex by leveraging the APIs of Pex (without requiring to
access the Pex source code). Second, some researchers (e.g., [33,
37,56]) compared Pex (as a stand-alone state-of-the-art test gener-
ation tool) with their new approaches in empirical evaluations.

5. PROJECT TIMELINE

The initial idea of Pex arose from the Spec Explorer project [70],
which produced a model-based testing tool with an embedded model
checker for (a subset of) .NET. At the core of Spec Explorer was
XRT [40], a self-contained runtime of (a subset of) .NET that en-
abled the dynamic analysis and exploration of model programs writ-
ten in (a subset of) .NET. While it is possible to apply this engine
not just on specially written model programs, but also on carefully
chosen real-world .NET code that stays in the supported .NET sub-
set [67, 68], it became also clear that it would be a very labori-
ous task to extend the self-contained runtime XRT to support the
full, or at least a very broad, subset of the .NET runtime. The
required work would have clearly exceeded the manpower of the
research team. It was under this consideration that the Pex project
was started based on the idea of instrumenting, monitoring, and
guiding execution paths in the commercial .NET runtime. We next
list the timeline of the Pex project.

In 2005, Pex was started by the Pex team (at Microsoft Re-
search), which initially included only the first author. Then in
September 2006, the second author joined the Pex team.

In March 2007, the Pex team blogged about the Pex tool to the
public [2].

In May 2008, the first version of Pex (under a Microsoft Re-
search License) was released to the public. It was integrated with
Visual Studio 2008 Professional.

In September 2008, Pex integrated the Fitnex [75] search strat-
egy in combination with other fair-choice strategies (the source
code of Fitnex was also released as open source [18]).

In October 2008, an early version of Code Digger was released
for supporting Visual Studio 2008 and Visual Studio 2010. Code
Digger allows to start the path exploration from the code under
test, not from an already existing unit test or even parameterized
unit test.

In October 2008, Pex became one of the first three DevLabs
projects [11], and available as a Microsoft Download for Visual
Studio 2010 Community Technology Preview (CTP). The new Mi-
crosoft Download comes under a Microsoft Pre-Release Software
License for Pex. This license is different from the Microsoft Re-
search License agreement: this license does not explicitly rule out
all forms of commercial use. Note that some of DevLabs projects
may turn into features in Microsoft’s existing shipping products;
some may be open-sourced by Microsoft to the community.

In October 2008, Stubs, a simple framework for .NET test stubs
was released with Pex.

In May 2009, Pex included a new feature, Unit Tests as Inputs.
Before using heavy-weight constraint solving to explore hard-to-
reach execution paths, Pex can leverage already existing unit tests
that call parameterized unit tests: Pex scans their body to extract
the parameter values, and then Pex uses these values to seed the
exploration. (In the past, Pex would have seeded the exploration
by simply using the default values for all parameters, and nothing
else.)

In September 2009, Moles [34], a lightweight detour framework,
was released with Pex. Moles is a new extension of the Stubs
framework: it lets developers replace any .NET method (including
static methods) with their own delegate.

In December 2009, an extension of Stubs to write models, was
released with Pex. With stubs and moles, the Pex team provided

a framework to write record/replay tests (i.e., mock-based tests)
against any .NET type, interface or not. The extension further al-
lows developers to write simple implementations with behavior that
can be used to replace the external system during testing. The ben-
efit of using the extension is that the resulting test cases are much
more robust to code changes since the tests specify the state of the
system, rather than a sequence of method calls and outcomes.

In January 2010, the Stubs framework was renamed to the Moles
framework. The Pex team decided to make the Moles the center of
the framework and as a consequence, renamed “Stubs” to “Moles”.

In March 2010, after more than a year of community feedback
on DevLabs, Pex and Moles took the next step and had become
Visual Studio 2010 Power Tools.

In April 2010, a Facebook page on Pex and Moles [5] was launched

to better build its user community.

In May 2010, Moles was released as a standalone tool on Visual
Studio Gallery [13].

In June 2010, Pex integrated Rex [71], being smarter about reg-
ular expressions.

In June 2010, Pex4Fun was announced, being a web site that
brings code to life. Pex4Fun on the web was a radically simplified
version of the fully featured Pex Power Tool for Visual Studio. The
website came with a set of code puzzles, where a player’s task is
to simply guess what a given Puzzle method does, by studying the
code of the Puzzle method.

In July 2010, the game type of coding duels, being interactive
puzzles, was introduced in Pex4Fun. Coding duels are different
from those simple puzzles announced in June 2010.

In August 2012, Visual Studio 2012 was released, including Mi-
crosoft Fakes, which was evolved from the Moles framework. The
Microsoft Visual Studio product team took over and owned the
code base of Moles/Fakes, relieving the Pex team from subsequent
maintenance efforts of the code base.

In April 2013, Code Digger, an extension for Visual Studio 2012,
was shipped to the Visual Studio Gallery [15]. After shipping the
Moles framework as Fakes in Visual Studio 2012, this effort on
Code Digger was the subsequent step of bringing the Pex project
to the latest and greatest development environment. Since then,
ongoing efforts have been taken for further technology transfer of
Code Digger/Pex.

In February 2014, Code Hunt, evolved from Pex4Fun, was re-
leased to the public [4] and formally announced in May 2014 [3].
It is a significant extension of Pex4Fun by instilling more fun and
entertaining effects, adding hint generation, adding language sup-
port to Java, etc.

6. LESSONS LEARNED IN TOOL TRANS-
FER

In this section, we illustrate main lessons learned from the Pex
project in terms of technology transfer and adoption.

6.1 Evolving “Dreams”

Tool researchers typically would like their “dreams” of tool adop-
tion to become true. However, turning “dreams” to be true can be
a long process (or even may not be possible at times) and tool re-
searchers would need to evolve their dreams by being adaptive to
evolve their focus to different types of tools or variants of their ini-
tial tools.

As discussed in the project timeline (Section 5), before the Pex

project was started, the first author, along with some other researchers

at Microsoft Research, worked on the Spec Explorer project [70],
a model-based testing tool with an embedded model checker for

(a subset of) .NET. Although the Spec Explorer project led to sub-
stantial adoption in the Microsoft’s Protocol Documentation pro-
gram [39], the Spec Explorer tool did not reach wide adoption
by practitioners. During the promotion of adopting the Spec Ex-
plorer tool (e.g., within Microsoft), it was observed that systematic
training of test engineers played a critical role in their adoption of
model-based testing methodologies or tools [39]. The adoption of
the Spec Explorer tool at Microsoft was driven by having more ex-
perienced test engineers to mentor less experienced ones; however,
experienced test engineers might not be commonly available, thus
becoming a bottleneck in the tool-adoption process.

After observing the difficulties of “shaping” the target tool users
(e.g., via training), the first author moved on to propose and fo-
cus on a more lightweight formal-testing methodology, parameter-
ized unit testing [67, 68], which relies on specifications written in
unit tests to provide test oracles, and relies on an automatic white-
box test generation tool to provide test data. At this timing, the
Pex project was born (in 2005). Although the Pex team and the
third author had great passion and high hope in promoting parame-
terized unit testing (in combination with automatic test generation
provided by Pex) in practice, such methodology seemed to get well
accepted and adopted by only a relatively small subset of advanced
developers. A large portion of developers did not seem to popu-
larly write parameterized unit tests, likely due to higher abstract
thinking skills required when writing specifications encoded in pa-
rameterized unit tests.

Then the Pex team relaxed the usage of Pex to be beyond the
usage scenario of requiring parameterized unit tests before running
Pex: developers can simply run Pex even when they do not write
any parameterized unit tests. Such new mode of Pex along with
Code Digger was provided to attract more developers as tool users.

Furthermore, after observing the strong needs of tool support for
mocking (independent of whether Pex or another automatic test-
generation tool is used), the Pex team further invested efforts to
develop Moles [34], a lightweight detour framework. Only some
time after that point, in August 2012, Moles was shipped as Fakes
with Visual Studio, benefiting a huge user base of Visual Studio
around the world (being the first such shipped tool from the Pex
project).

Although Moles has relatively simple technologies behind the
scene, interestingly its timing of being shipped with Visual Studio
was earlier than other more sophisticated tools such as Pex from
the Pex project. In addition, Pex4Fun and Code Hunt, educational
websites based on Pex, also got high educational impacts. How-
ever, in the future, Pex itself may get as wide adoption as (or even
wider adoption than) Moles/Fakes or Pex4Fun/Code Hunt.

6.2 Dealing with “Chicken and Egg”’ Problem

In the Pex project setting, there are two types of tool transfer
and adoption: (1) convincing the target users such as developers
in Microsoft product teams or developers in the broad .NET user
community to use Pex or its relatives; (2) convincing target tool
vendors such as the Microsoft Visual Studio product team to ship
parts of Pex or its relatives with future releases of Visual Studio.

Typically, the second type of tool transfer and adoption would
succeed only after the first type has succeeded, because the tar-
get tool vendors would like to see a large enough user base of
the tools before committing to ship such tools in their future prod-
uct releases. Tools with public releases already typically will first
be shipped at Microsoft DevLabs [11] or Microsoft Visual Stu-
dio Gallery [14] for some time before being considered for being
shipped with Visual Studio.

In fact, in early phases of transferring a tool, accomplishing the
first type of tool transfer and adoption is quite challenging. The
chicken and egg problem occurred when developers were faced
with the decision on adopting Pex in early phases. Below are ex-
ample conversations that occurred in early stages of tool adoption
between a developer or project manager and the Pex team:

e Developer/manager: “Who is using your tool?”
e Pex team: “Do you want to be the first?”
e Developer/manager: “I love your tool but no.”

Developers or project managers in industry tend to be conser-
vative and might wait and see more substantial success stories of
using a tool before they commit to adopt the tool. It is generally
difficult to recruit the first early tool-adopters but having success
stories of these early tool-adopters could help convince others to
follow the adoption.

To address such challenges, the Pex team was persistent in tack-
ling real-world challenges, finding early adopters, addressing tech-
nical and non-technical barriers for technology adoption in indus-
try (e.g., providing a tool license that does not prohibit commercial
use), etc. In addition, the Pex team adopted the strategy of incre-
mental shipping, e.g., shipping Code Digger before aiming to ship
the full-fledge Pex.

To convince target users (e.g., developers from industry) to be-
come early adopters of the Pex tool, the Pex team selected and
demonstrated how Pex can be applied on complex real-world classes
such as the ResourceReader class [1] from the .NET framework. It
is important to go beyond simple textbook classes (such as simple
well-isolated data structures as often used in testing research pa-
pers) because the target users might have a pre-impression that a
research tool might not work well on real-world cases.

To convince the Microsoft Visual Studio product team to ship
Moles as Fakes in Visual Studio, the Pex team selected and demon-
strated successful and important scenarios of applying Moles such
as assisting unit testing of SharePoint code. Among Microsoft Pat-
terns & Practices’, the SharePoint Guidance [12] highlighted the
use of Moles for testing SharePoint code. Successfully addressing
pain points of testing such important type of code provided strong
incentives for the Visual Studio product team to ship Fakes. In
general, it is very important to demonstrate that the tool to be trans-
ferred can be applied to address one important scenario very well:
the more important the scenario is and the better the scenario is ad-
dressed, the stronger case it is to convince the target tool vendors
to ship the tool.

In addition, to make a strong case, it is important to provide
quantitative information (for reflecting the tool’s importance or ben-
efit extent) to the target tool vendors. It is a common practice of
releasing a tool as an installation file via the Internet and keep-
ing track of the download counts, without keeping track of which
organization’s members downloaded the tool or whether/how the
downloaded tool was used. However, based on our experiences,
there are three main issues with such common practice. First, a
member of an organization (e.g., a developer from a company) can
download the tool’s installation file and share the file with other
members of the organization. Thus, counting only one download
in this case does not faithfully reflect the reality. Second, those who
downloaded or installed the tool do not necessarily use the tool in
their work (in a regular basis). Thus, it is important to incorporate
a mechanism of collecting tool usage information (such as those in
the Microsoft Customer Experience Improvement Program [10]).

*Microsoft Patterns & Practices provide popular recommendations
on designing and developing custom applications using the Mi-
crosoft platform.

Third, not all tool downloads or usages are equal: downloads or
usages by members of important customer companies are valued
more by the target tool vendors than downloads or usages by oth-
ers. Thus, it is important to identify the organization affiliations of
those who downloaded or used the tool.

6.3 Considering Human Factors

In the research literature, there was little discussion on human
consumption of the generated tests (user studies on test generation
tools conducted by Fraser et al. [36] briefly touched on such is-
sue). Based on substantial user feedback on Pex, it is important to
generate user-friendly tests for users to digest and interact with.

As apast anecdotic example, a user of Code Digger asked a ques-
tion on string values generated by Code Digger previously [15]:
“Code digger generates a lot of “\0” strings as input. I can’t find
a way to create such a string via my own C# code. Could any
one show me a C# snippet? I meant zero terminated string.” The
Pex team responded “In C#, a \0 in a string does not mean zero-
termination. It’s just yet another character in the string (a very sim-
ple character where all bits are zero), and you can create as Pex
shows the value: “\07.”

As another past anecdotic example, below are conversations be-
tween a developer and the Pex team on desired representative val-
ues for generated test inputs by Pex:

e Developer: “Your tool generated “\0”
e Pex team: “What did you expect?”
e Developer: “Marc.”

More recently, Pex (inheritably along with Code Digger) has
been improved with a number of techniques to take human fac-
tors into account. For example, the latest version of Pex tries to use
human-friendly characters and integers. Pex now prefers human-
readable characters over strange Unicode characters, if both cover
the same execution path. Similarly, Pex now prefers small integers
that do not cause overflows over big integers that cause overflows,
if both cover the same execution path.

To accomplish these techniques, Pex modifies some outputs of
73 instead of taking Z3’s outputs directly as test data. Pex includes
a wrapper around Z3 to give additional guidance to Z3 in its con-
straint solving. For example, Pex feeds Z3 the original constraints
from path exploration along with additional basic range constraints
such integers being between 0-100; if no solution is provided by
73, then Pex falls back to the default setting without additional
guidance. In some other cases, Pex starts with small test data and
iteratively queries Z3 to see whether the provided small test data
(such as the array length being a small value) can be the solution
to the original constraints; if not, Pex increases the value of the test
data and queries Z3 again.

Because users need to interact with the generated tests, even the
naming convention of the generated tests would matter to the users.
Below are conversations between a developer and the Pex team on
desired naming of generated tests by Pex:

e Developer: “Your tool generated a test called FooOO1. I don’t
like it.”
e Pex team: “What did you expect?”

e Developer: “Foo_Should_Fail_When_The_Bar_Is_Negative.

When developers write traditional test methods manually, they
use meaningful naming conventions for these test methods. It is
natural for developers to expect to see meaningful naming for gen-
erated test methods (especially when no parameterized unit tests
are written, and the generated test methods are used for robustness
checking as directly inspected by the developers). In response to
user feedback like the above, the Pex team improved the naming

convention in various ways, e.g., when a test throws an exception,
“Throws’ + ExceptionTypeName is added to the name of the gen-
erated test method.

Pex incorporates a number of techniques to minimize the users’
inspection or investigation efforts. Pex includes techniques to pro-
duce fewer “Object Creation” messages that are not actually rel-
evant to better engage the users to cooperate with Pex to address
those challenges faced by Pex [72]. Pex includes techniques to
suppress warnings that are hard to understand (they are still shown
in the diagnostic mode) or do not matter. Pex also allows users to
manually suppress “Object Creation” messages that are not rele-
vant in the users’ context by clicking the “ignore” button. Pex also
provides convenient views such as the Global Event View, the Ex-
ploration Tree View, and the Exception Tree View to enable users
to conveniently navigate through the path-exploration results.

Pex incorporates various convenient mechanisms to seek feed-
back from users. For example, the Pex team added the thumbs-up
and thumbs-down buttons along with a link on “Send Feedback”
(for asking questions in the Pex forum) in the Pex result view.

6.4 Performing Well on Best-Case Scenarios
While Averagely on Worst-Case Scenarios

In general, a proposed technique, such as a search strategy, may
often have its best-case application scenarios and its worst-case sce-
narios. For example, most previous approaches to DSE [38,54] typ-
ically use a fixed “depth-first, backtracking” search strategy, where
the next execution path would always share the longest possible
prefix with the previous execution path. Therefore, much resource
may be allocated to analyze small parts of the program under test
before moving on. The worst-case scenarios for such search strat-
egy would be code including a loop with its loop bound dependent
on program inputs, because such search strategy would try to un-
fold the same loop forever.

A patch to such search strategy (as often adopted by previous
approaches to DSE) is to impose a fixed bound on the number of
iterations of a loop. But then the worst-case scenarios for such
search strategy would be code including branches whose coverage
would require the number of iterations of a loop to be beyond the
imposed fixed bound. Some other well-known search strategies,
such as breadth-first search, do not get stuck in the same way as
depth-first search, but it does not take into account the structure of
the program, having its own worst-case scenarios.

To allow Pex to be applied generally well on a variety of real-
world code, the Pex team could not afford to adopt any of the
above-mentioned search strategies, which typically work quite well
on their best-case scenarios but quite poorly on their worst-case
scenarios. To address such issues, before September 2008, Pex
preferred a fair choice between all such unexplored branches of the
explored execution tree. Pex included various fair strategies, which
partition all branches into equivalence classes, and then picked a
representative of the least often chosen class. The equivalence
classes clustered branches by mapping them according to different
criteria.

In September 2008, Pex combined the new Fitnex [75] strategy
with its above-mentioned fair-choice strategy. Such combination in
fact enables to perform well on best-case scenarios while perform-
ing averagely on worst-case scenarios. The best-case scenarios for
Fitnex include code whose coverage is amenable to fitness func-
tions, and the worst-case scenarios include code whose coverage is
not amenable to fitness functions. For Fitnex’s worst-case scenar-
ios, the search-strategy combination can make Pex to perform very
similarly to its fair-choice strategy.

Although such search-strategy combination does not read like a
significant portion of our proposed work in the published paper [75]
on Fitnex, the combination design is very critical to enable the in-
tegration of Fitnex to Pex releases. To our best knowledge, there
was no or little discussion on such desirable characteristic of “per-
forming well on best-case scenarios while averagely on worst-case
scenarios” for a proposed new technique in the research literature.
However, such desirable characteristic is a precondition for a tech-
nique to be integrated into a tool aiming for adoption in practice.

6.5 Dealing with Tool Users’ Stereotypical Mind-

set or Habits

Tool users may have specific stereotypical mindsets. In fact,
different subgroups of tool users may have different stereotypical
mindsets. For example, one stereotypical mindset towards an auto-
mated test generation tool is that using such tool would be simply
one mouse click and then everything would work just perfectly.
A developer with such stereotypical mindset could easily get frus-
trated and give up in continuing using a tool when the tool faces
challenges in dealing with the real-world code base that the devel-
oper intends to apply the tool on.

Therefore, setting realistic expectations right away is very im-
portant [73] when introducing a tool such as Pex to the target users,
e.g., developers. Although it is important to illustrate the potential
benefits of the tool to the target users, the tool will typically have
limitations, and these limitations must be clearly communicated to
the target users and how the target users can deal with such lim-
itations. In other words, the target users should be informed and
trained on helping the tool to deal with those faced limitations in
a cooperative way, as advocated in the cooperative testing method-
ology [72]. For example, training the target users to know how to
use Moles or Fakes to isolate environment dependencies is very im-
portant to enable successful application of Pex on real-world code
bases, which tend to have many environment dependencies.

Note that tool users often may not realize the hidden complexity
of the code under test brought by the invocation of some third-
party API method and then blame the tool for the achieved low
code coverage [73]. Below is an example code snippet under test
that a developer applied Pex on and complained about achieved low
code coverage of:

void Sum(int[] numbers) {

string sum = "0";
foreach (int number in numbers) {
sum (int.Parse (sum) + number) .ToString()
}
if (sum == "123")
throw new BugException();

}

In fact, invoking simple API methods such as int.Parse and
int.ToString can incur challenges for Pex or any other test gen-
eration tool, because the implementation code of these API meth-
ods can be complex, including a huge or infinite number of paths
for Pex to explore.

In addition, some tool users may have a stereotypical mindset on
thinking or expecting that a test generation tool (capable of achiev-
ing high code coverage) would detect all or most kinds of faults in
the code under test. It is also important to emphasize the limited
kinds of faults (e.g., crashing or uncaught exceptions) that can be
detected by the tool when the users do not write any specifications
(such as properties in production code under test or parameterized
unit tests) to reflect the intended behavior of the code under test.
For example, it was observed that a developer complained ““Your
tool only finds null references.” When that developer was asked
whether he wrote any assertions, he answered with “Assertion???”.

Some tool users may have existing habits on sticking to partic-
ular development styles such as Test-Driven Development (TDD).
Then convincing them to change their development styles can be
quite difficult. For example, a developer, being a unit testing en-
thusiast, stated that “I do not need test generation; I already prac-
tice unit testing (and/or TDD)”. A developer, being a TDD convert,
stated that “Test generation does not fit into the TDD process”. It
is not easy to change the habit or philosophy of these developers.
Therefore, it is important to highlight how a new advanced technol-
ogy relates to earlier approaches, emphasizing on complementary
aspects instead of differences or total replacement. For example,
if a developer has adopted TDD, it should be emphasized how pa-
rameterized unit testing (in combination of Pex) is a natural gener-
alization of TDD, and not a radically new one or replacement.

During the evolution of Pex, before May 2009, the released ver-
sions of Pex were agnostic of the traditional unit tests manually
written by developers, and would create test data from the scratch.
Then the usage of parameterized unit tests with Pex did not have
complementary or cooperative nature with manually written unit
tests, which quite some developers typically would write. Then the
adoption of Pex faced quite some resistance. To address such is-
sue, in May 2009, the Pex team added a new feature, Unit Tests
as Inputs, to the Pex release. With this feature, Pex can leverage
already existing manually written unit tests that call parameterized
unit tests. So that developers who get used to writing traditional
unit tests can keep their existing habit while seamlessly enjoying
the benefits provided by parameterized unit tests and Pex.

On the other hand, in August 2010, the Pex team added a new
feature, Test Promotion, to allow developers to easily turn an auto-
matically generated test into part of the traditional unit tests man-
ually written by the developers. In particular, when the developers
like a generated unit test, they can click on the “Promote” button to
turn it into a “manually written unit test”. Pex then will move it to
the main test class and remove its attribute that indicates being an
automatically generated unit test.

6.6 Listening to Practitioners

The success of Pex and its relatives largely attributed to that
the Pex team closely interacted with and gathered feedback from
the target tool users directly (e.g., via the MSDN Pex forum, tech
support, outreaching to Microsoft engineers and outside-company
.NET user groups) and indirectly (e.g., via interactions with the
Microsoft Visual Studio product team, being a tool vendor to its
huge user base). As stated in Section 4.1, from the period of Oc-
tober 2008 till November 2010, the MSDN forum dedicated to Pex
and Moles included more than 1,400 forum posts made by the user
community.

Besides interacting directly and indirectly with the target tool
users, the Pex team also proactively attended venues oriented for
software practitioners or with significant audience as software prac-
titioners. Attending one such venue helped shape or reinforce the
founding of the Moles project, which eventually resulted in the
Microsoft Fakes framework shipped with Visual Studio, achiev-
ing substantial industry impacts. We next describe the brief back-
ground on the birth of the Moles project.

Environment dependency (which the units under test commonly
have) has been a well-known problem for unit testing, including
automatic unit-test generation, as aimed by Pex. If environment de-
pendency involves native code, e.g., x86 instructions called through
the P/Invoke mechanism of .NET, then Pex cannot instrument or
monitor such native code. Even when environment dependency
involves managed code and Pex can instrument the code, instru-
menting and monitoring such managed code incur significant per-

formance overhead including the huge path-exploration space to be
explored by Pex.

Initially, to apply Pex on real-world code with environment de-
pendency, developers were suggested to refactor their code by in-
troducing explicit interface boundaries and allowing different in-
terface implementations, i.e., by employing the design pattern of
dependency injection [9]. However, often the time, developers hes-
itate to refactor their production code for only the testing purpose.
In addition, when the code is legacy code, refactoring it is more
difficult (or even infeasible when the legacy code is from a third
party). Instead of further educating developers to refactor their
code for dependency injection, the Pex team decided to take a dif-
ferent route to solve the problem after observing much resistance
from the target tool users on such refactoring.

In August 2008, the Pex team members attended the Agile 2008
conference, a conference in agile development with significant au-
dience from industry. There, the Pex team members observed that
mock objects caught a lot of attentions from practitioners there, be-
ing a hot topic, and there was a strong need of providing effective
tool support for mocking. Then the observation from broad prac-
titioner communities at the conference reinforced the Pex team’s
determination and efforts on starting the Moles project, which was
viewed as critical in enabling the success and adoption of Pex in
practice. After months of tool development efforts, Moles was re-
leased to the public in September 2009, was released as a stan-
dalone tool in the Visual Studio Gallery in May 2010, and was
shipped as Fakes with Visual Studio 2012 in August 2012, achiev-
ing high industry impacts (considering the huge user base of Visual
Studio).

6.7 Collaborating with Academia

Collaborations between the Pex team and the academia have
been very fruitful, playing important factors in developing a num-
ber of key technologies to enable the success of Pex and its rela-
tives. Such collaborations are win-win for both the Pex team and
the collaborating academic researchers. For example, the Pex team
could extend its man power (with only two full-time employees) to
a larger scope in order to feasibly explore both short-term and long-
term research goals. On the other hand, the academic researchers
could (1) focus on important research problems (in practice) deter-
mined with the help of the Pex team, and (2) leverage powerful tool
infrastructures developed by the Pex team so that the academic re-
searchers can focus main efforts on research innovations other than
infrastructure-building engineering efforts, which are also critical
to enable applying proposed tool features (developed for the re-
search innovations) on real-world code bases but which themselves
may not be research innovations.

We classify the collaboration forms as industry-located and academia-

located collaborations as discussed below. Note that below we
mention primarily concrete examples of collaborations that already
directly resulted in or indirectly contributed to technologies as part
of releases of Pex or its relatives.

Industry-located Collaborations. In the form of industry-located
collaborations, collaborative research is conducted at the collabo-
rating industrial research lab (e.g., Microsoft Research) with aca-
demic researchers as consulting visiting faculty or student interns
paid by the research lab. This form can ease transferring the col-
laborative research outcomes (once demonstrated to be valuable to
be transferred) to be parts of the released industrial tools, with-
out complications of intellectual property (IP) issues. We illustrate
concrete examples of such form as below:

e Faculty visits. The collaborating industrial research lab hosts
a faculty member as a consulting researcher to visit the re-

search lab for conducting collaborative research. For ex-
ample, Xie, the third author of this paper, spent some time
visiting the Pex team during summers in the past several
years. Xie’s visit during 2008 Summer resulted in the Fit-
nex search strategy [75], being integrated as part of the Pex
releases since September 2008 (note that the resulting Fitnex
source code was also released as open source [19] to engage
the research community to develop future extensions of Pex).
Based on a technique of regression test generation [57], Xie’s
visit during 2010 summer resulted in the game type of cod-
ing duels [66,74], being integrated as the major game type of
Pex4Fun since July 2010. Voronkov’s visit resulted in string
analysis [25] integrated in Pex releases.

o Student internships. The internship of Lakhotia [44] resulted
in an approach called FloPSy for handling constraints over
floating point variables, being part of Pex releases (note that
the resulting FloPSy source code was also released as open
source [6] to engage the research community to develop fur-
ther improvement on solving floating point constraints). The
internship of Thummalapenta [59] resulted in an approach
called DyGen for generating tests via mining dynamic traces
recorded during program executions; this approach was inte-
grated in internal releases of a tool extended from Pex. The
internship of Vanoverberghe [69] resulted in the definition
and measurement of state coverage; measuring state cover-
age was integrated in releases of Pex since September 2010,
but it has not been enabled by default due to high runtime
overhead.

Academia-located Collaborations. In the form of academia-
located collaborations, collaborative research is conducted at the
university where the collaborating academic researchers are (e.g.,
North Carolina State University previously and University of Illi-
nois at Urbana-Champaign currently where the third author was/is
affiliated, respectively). Although the collaborative research out-
comes produced in this form cannot be directly incorporated to be
parts of the released industrial tools (e.g., due to IP issues), such
collaborations can still produce substantial indirect impacts on re-
leases of industrial tools:

e [mmediate indirect impacts. In collaboration with the Pex
team, Li et al. [45] identified the challenge of complex reg-
ular expressions faced by Pex, and developed an approach,
called Reggae, to reduce the exploration space of DSE when
dealing with complex regular expressions. The Reggae ap-
proach provided an initial step to address the challenge of
complex regular expressions and inspired researchers at Mi-

crosoft Research to develop a more advanced Rex approach [71],

being part of the Pex releases since June 2010. In collab-
oration with the Pex team, Thummalapenta et al. [60] de-
veloped an approach, called MSeqGen, that statically mines
code bases and extracts sequences related to receiver or ar-
gument object types of a method under test for generating
method sequences in unit-test generation. The MSeqGen
approach directly inspired its dynamic counterpart, called
the DyGen approach, resulted from the internship of Thum-
malapenta [59], being part of internal tool releases, as de-
scribed above. In collaboration with the Pex team, Pandita
et al. [53] developed an approach to guide DSE to achieve
boundary-value and logical coverage. Such approach pro-
vided an initial step to address a request frequently made
by Pex users in demanding more and higher-quality test in-
puts being generated and reported beyond just those achiev-
ing new branch or block coverage. Along with the UnitPlus

approach by Song et al. [55], such approach inspired the def-
inition and measurement of state coverage, produced by the
internship of Vanoverberghe [69], as described above, along
with the work on augmented DSE by Jamrozik et al. [41,42]
(which was part of Jamrozik’s master thesis awarded for the
Poland’s best MSc thesis in computer science).

e Long-term indirect impacts. In collaboration with the Pex
team, Csallner et al. [30] developed the DySy approach, an
invariant inference tool based on DSE, showcasing that Pex
is an extensible platform of dynamic program analysis and
being the first open source Pex extension. In collaboration
with the Pex team, Thummalapenta et al. [61] developed the
Seeker approach, being a state-of-the-art approach for ad-
dressing one of the most critical challenges faced by Pex in
practice: generating desirable method sequences for object-
type method arguments. In collaboration with the Pex team,
Xiao et al. [72] proposed the cooperative testing methodol-
ogy to engage Pex users to cooperate with Pex to address
those challenges faced by Pex. Such methodology has in-
spired and aligned future directions for improving Pex to bet-
ter serve and engage practitioners.

7. CONCLUSION

In this paper, we have reported the technology background, tool
overview, impacts, project timeline, lessons learned from Microsoft
Research’s Pex project, which has been going on for more than
eight years. The Pex project has resulted in Pex, Moles as Fakes,
Code Digger, and Pex4Fun/Code Hunt, which have accomplished
substantial impacts. For example, Moles has been shipped as Fakes
with Visual Studio since August 2012, benefiting a huge user base
of Visual Studio around the world. The number of download counts
of Pex and its lightweight version Code Digger has reached tens
of thousands within one or two years. Pex4Fun, released in June
2010, has achieved high educational impacts, reflected by the num-
ber of clicks of the “Ask Pex!” button as over 1.5 million till July
2014. Code Hunt, evolved from Pex4Fun, has been quickly gaining
popularity. The Pex project at Microsoft Research is still ongoing
for further technology transfer. We hope that our reported expe-
riences can inspire more high-impact technology-transfer research
from the research community.

In future work, we plan to collect quantitative data for further
corroborating the learned lessons reported in this paper. For exam-
ple, we plan to manually study Pex-related questions being asked
by Pex users in StackOverflow [21] and previously in a MSDN Fo-
rum [16]. In addition, we plan to conduct a user survey among Pex
users or conduct a field study among Pex users to gather their feed-
back on using Pex along with learning about their testing practices
assisted by Pex.

Acknowledgments

‘We thank people from Microsoft Research and product teams along
with academic collaborators for their assistance on the Pex project.
Tao Xie’s work is supported in part by a Microsoft Research Award,
NSF grants CCF-1349666, CNS-1434582, CCF-1434596, CCF-
1434590, CNS-1439481, and NSF of China No. 61228203.

8. REFERENCES

[1] Blog post: Fun with the ResourceReader. http://
blogs.msdn.com/b/nikolait/archive/2008/
06/04/fun-with-the-resourcereader.aspx.

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Blog post: Pex, dynamic analysis and test generation for
.NET.
http://blog.dotnetwiki.org/2007/03/08/
PexDynamicAnalysisAndTestGenerationForNet.
aspx.

Blog post: What if coding were a game? http:
//blogs.msdn.com/b/msr_er/archive/2014/
05/15/what-if-coding-were—a—game.aspx.
Facebook Page on Code Hunt Game.
https://www.facebook.com/codehuntgame.
Facebook Page on Pex and Moles.
https://www.facebook.com/PexMoles.

Flopsy - search-based floating point constraint solving for
symbolic execution.
http://pexarithmeticsolver.codeplex.com/.
ICFP Programming Contest 2013.
http://research.microsoft.com/en-us/
events/icfpcontest2013/.

ICSE 2011 Pex4Fun Contest. http:
//research.microsoft.com/ICSE2011Contest.
Inversion of control containers and the dependency injection
pattern. http://www.martinfowler.com/
articles/injection.html, January 2004.

Microsoft Customer Experience Improvement Program.
http://www.microsoft.com/products/ceip/.
Microsoft Devlabs Extensions.
http://msdn.microsoft.com/DevLabs.
Microsoft Patterns & Practices SharePoint Guidance.
http://spg.codeplex.com/.

Microsoft Visual Studio 2010 Moles x86 - isolation
framework for NET. http://
visualstudiogallery.msdn.microsoft.com/
b3b41648-1c21-471f-a2b0-£76d8fb932ee/.
Microsoft Visual Studio Gallery. http://
visualstudiogallery.msdn.microsoft.com/.
Microsoft Visual Studio Gallery: Microsoft Code Digger.
http:
//visualstudiogallery.msdn.microsoft.
com/fb5badda-4ea3-4314-a723-al975cbdabb4.
MSDN Forum on Pex and Moles PowerTool.
http://social.msdn.microsoft.com/Forums/
en-US/home?forum=pex.

MSDN: Isolating code under test with Microsoft Fakes.
http://msdn.microsoft.com/en-us/library/
hh549175 (v=vs.110) .aspx.

Open source Pex extension: Fitnex. http://pexase.
codeplex.com/wikipage?title=Fitnex.

Open source Pex extensions by the Automated Software
Engineering Group at Illinois.
http://pexase.codeplex.com/.

Publications from the Microsoft Research Pex project.
http://research.microsoft.com/projects/
pex/publications.aspx.

Stackoverflow questions tagged with Pex. http:
//stackoverflow.com/questions/tagged/pex.
T. Akiba, K. Imajo, H. Iwami, Y. Iwata, T. Kataoka,

N. Takahashi, M. Moskal, , and N. Swamy. Calibrating
research in program synthesis using 72,000 hours of
programmer time. Technical report, Microsoft Research,
December 2013.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,

S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and D. R.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

Engler. A few billion lines of code later: using static analysis
to find bugs in the real world. Commun. ACM, 53(2):66-75,
2010.

J. Bishop, J. de Halleux, N. Tillmann, N. Horspool, D. Syme,
and T. Xie. Browser-based software for technology transfer.
In Proc. SAICSIT, Industry Oriented Paper, pages 338-340,
2011.

N. Bjgrner, N. Tillmann, and A. Voronkov. Path feasibility
analysis for string-manipulating programs. In Proc. TACAS,
pages 307-321, 2009.

M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to
Agitator: lessons and challenges in building a commercial
tool for developer testing. In Proc. ISSTA, pages 169-180,
2006.

L. C. Briand. Embracing the engineering side of software
engineering. /[EEE Software, 29(4):96, 2012.

J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. In Proc. ASE, pages 443-446, 2008.

L. A. Clarke. A system to generate test data and symbolically
execute programs. [EEE Trans. Softw. Eng., 2(3):215-222,
1976.

C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy:
Dynamic symbolic execution for invariant inference. In Proc.
ICSE, pages 281-290, 2008.

J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and

A. Teterev. CRANE: Failure prediction, change analysis and
test prioritization in practice - experiences from Windows. In
Proc. ICST, pages 357-366, 2011.

Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie. XIAO:
Tuning code clones at hands of engineers in practice. In
Proc. ACSAC, pages 369-378, 2012.

B. Daniel, T. Gvero, and D. Marinov. On test repair using
symbolic execution. In Proc. ISSTA, pages 207-218, 2010.

J. de Halleux and N. Tillmann. Moles: tool-assisted
environment isolation with closures. In Proc. TOOLS, pages
253-270, 2010.

L. M. de Moura and N. Bjgrner. Z3: An efficient SMT
solver. In Proc. TACAS, pages 337-340, 2008.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg.
Does automated white-box test generation really help
software testers? In Proc. ISSTA, pages 291-301, 2013.

M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak,
and D. Marinov. Test generation through programming in
UDITA. In Proc. ICSE, pages 225-234, 2010.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. PLDI, pages 213-223,
2005.

W. Grieskamp. Microsoft’s protocol documentation program:
A success story for model-based testing. In Proc. TAIC
PART, pages 7-7, 2010.

W. Grieskamp, N. Tillmann, and W. Schulte. XRT—
exploring runtime for .NET architecture and applications.
Electron. Notes Theor. Comput. Sci., 144(3):3-26, Feb. 2006.
K. Jamrozik, G. Fraser, N. Tillmann, and J. de Halleux.
Augmented dynamic symbolic execution. In Proc. ASE,
pages 254-257, 2012.

K. Jamrozik, G. Fraser, N. Tillmann, and J. de Halleux.
Generating test suites with augmented dynamic symbolic
execution. In Proc. TAP, pages 152-167, 2013.

J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385-394, 1976.

[44] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux.
Flopsy: Search-based floating point constraint solving for
symbolic execution. In Proc. ICTSS, pages 142-157, 2010.

[45] N. Li, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Reggae: Automated test generation for programs using
complex regular expressions. In Proc. ASE, pages 515-519,
2009.

[46] J.-G. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie.
Software analytics for incident management of online
services: An experience report. In Proc. ASE, pages
475-485, 2013.

[47] P. McMinn. Search-based software test data generation: a
survey: Research articles. Softw. Test. Verif. Reliab.,
14(2):105-156, 2004.

[48] L. J. Osterweil, C. Ghezzi, J. Kramer, and A. L. Wolf.
Determining the impact of software engineering research on
practice. IEEE Computer, 41(3):39-49, 2008.

[49] K. Pan, X. Wu, and T. Xie. Database state generation via
dynamic symbolic execution for coverage criteria. In Proc.
DBTest, pages 4-9, 2011.

[50] K. Pan, X. Wu, and T. Xie. Generating program inputs for
database application testing. In Proc. ASE, pages 73-82,
2011.

[51] K. Pan, X. Wu, and T. Xie. Automatic test generation for
mutation testing on database applications. In Proc. AST,
pages 111-117, 2013.

[52] K. Pan, X. Wu, and T. Xie. Guided test generation for
database applications via synthesized database interactions.
ACM Trans. Softw. Eng. Methodol., 23(2):12:1-12:27, Apr.
2014.

[53] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided
test generation for coverage criteria. In Proc. ICSM, pages
1-10, 2010.

[54] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In Proc. ESEC/FSE, pages 263-272,
2005.

[55] Y. Song, S. Thummalapenta, and T. Xie. UnitPlus: Assisting
developer testing in Eclipse. In Proc. ETX, pages 26-30,
2007.

[56] J. Strejéek and M. Trtik. Abstracting path conditions. In
Proc. ISSTA, pages 155-165, 2012.

[57] K. Taneja and T. Xie. DiffGen: Automated regression
unit-test generation. In Proc. ASE, pages 407—410, 2008.

[58] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux. eXpress:
Guided path exploration for efficient regression test
generation. In Proc. ISSTA, pages 1-11, 2011.

[59] S. Thummalapenta, J. de Halleux, N. Tillmann, and
S. Wadsworth. DyGen: Automatic generation of
high-coverage tests via mining gigabytes of dynamic traces.
In Proc. TAP, pages 77-93, 2010.

[60] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
W. Schulte. MSeqGen: Object-oriented unit-test generation
via mining source code. In Proc. ESEC/FSE, pages 193-202,
2009.

[61] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
Z. Su. Synthesizing method sequences for high-coverage
testing. In Proc. OOPSLA, pages 189-206, 2011.

[62] N. Tillmann, J. Bishop, N. Horspool, D. Perelman, and
T. Xie. Code Hunt — searching for secret code for fun. In
Proc. SBST, pages 23-26, 2014.

[63] N. Tillmann and J. de Halleux. Pex - white box test
generation for .NET. In Proc. TAP, pages 134-153, 2008.

[64] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop. Code
Hunt: Gamifying teaching and learning of computer science
at scale. In Proc. Learning at Scale, pages 221-222, 2014.

[65] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop.
Constructing coding duels in Pex4Fun and Code Hunt. In
Proc. ISSTA, Tool Demo, pages 445-448, 2014.

[66] N. Tillmann, J. de Halleux, T. Xie, S. Gulwani, and
J. Bishop. Teaching and learning programming and software
engineering via interactive gaming. In Proc. ICSE, Software
Engineering Education (SEE), pages 1117-1126, 2013.

[67] N. Tillmann and W. Schulte. Parameterized unit tests. In
Proc. ESEC/FSE, pages 253-262, 2005.

[68] N. Tillmann and W. Schulte. Parameterized unit tests with
Unit Meister. In Proc. ESEC/FSE, pages 241-244, 2005.

[69] D. Vanoverberghe, J. de Halleux, N. Tillmann, and
F. Piessens. State coverage: Software validation metrics
beyond code coverage. In Proc. SOFSEM, pages 542-553,
2012.

[70] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte,

N. Tillmann, and L. Nachmanson. Formal methods and
testing. chapter Model-based Testing of Object-oriented
Reactive Systems with Spec Explorer, pages 39-76.
Springer-Verlag, 2008.

[71] M. Veanes, J. de Halleux, and N. Tillmann. Rex: Symbolic
regular expression explorer. In In Proc. ICST, pages
498-507, 2010.

[72] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise
identification of problems for structural test generation. In
Proc. ICSE, pages 611-620, 2011.

[73] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte. Teaching
and training developer-testing techniques and tool support. In
Proc. SPLASH, Educators’ and Trainers’ Symposium, pages
175-182, 2010.

[74] T. Xie, N. Tillmann, and J. de Halleux. Educational software
engineering: Where software engineering, education, and
gaming meet. In Proc. GAS, pages 36-39, 2013.

[75] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic
execution. In Proc. DSN, pages 359-368, 2009.

[76] D.Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie.
Software analytics as a learning case in practice: Approaches
and experiences. In Proc. MALETS, pages 55-58, 2011.

[77] D.Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie.
Software analytics in practice. IEEE Software, 30(5):30-37,
2013.

[78] D.Zhang and T. Xie. Pathways to technology transfer and
adoption: Achievements and challenges. In Proc. ICSE,
Software Engineering in Practice (SEIP), Mini-Tutorial,
pages 951-952, 2013.

[79] L.Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and
H. Mei. Test generation via dynamic symbolic execution for
mutation testing. In Proc. ICSM, pages 1-10, 2010.

[80] H.Zhong, S. Thummalapenta, and T. Xie. Exposing
behavioral differences in cross-language api mapping
relations. In Proc. FASE, pages 130-145, 2013.

[81] Y. Zhou. Connecting technology with real-world problems -
from copy-paste detection to detecting known bugs (keynote
abstract). In Proc. MSR, pages 2-2, 2011.

