
Pex4Fun: A Web-Based Environment for

Educational Gaming via Automated Test Generation

Nikolai Tillmann, Jonathan de Halleux

Microsoft Research

One Microsoft Way

Redmond, WA, USA

Email: {nikolait,jhalleux}@microsoft.com

Tao Xie

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL, USA

Email: taoxie@illinois.edu

Judith Bishop

Microsoft Research

One Microsoft Way

Redmond, WA, USA

Email: jbishop@microsoft.com

Abstract—Pex4Fun (http://www.pex4fun.com/) is a web-based
educational gaming environment for teaching and learning pro-
gramming and software engineering. Pex4Fun can be used to
teach and learn programming and software engineering at many
levels, from high school all the way through graduate courses.
With Pex4Fun, a student edits code in any browser – with
Intellisense – and Pex4Fun executes it and analyzes it in the cloud.
Pex4Fun connects teachers, curriculum authors, and students
in a unique social experience, tracking and streaming progress
updates in real time. In particular, Pex4Fun finds interesting and
unexpected input values (with Pex, an advanced test-generation
tool) that help students understand what their code is actually
doing. The real fun starts with coding duels where a student
writes code to implement a teacher’s secret specification (in the
form of sample-solution code not visible to the student). Pex4Fun
finds any discrepancies in behavior between the student’s code
and the secret specification. Such discrepancies are given as
feedback to the student to guide how to fix the student’s code to
match the behavior of the secret specification.

This tool demonstration shows how Pex4Fun can be used in
teaching and learning, such as solving coding duels, exploring
course materials in feature courses, creating and teaching a
course, creating and publishing coding duels, and learning
advanced topics behind Pex4Fun.

I. INTRODUCTION

Teaching and learning programming and software engi-

neering have received a lot of attention from researchers

and educators. Various programming environments such as

Alice [13], Scratch [12], [11], and Greenfoot [9], have been

provided for instilling fun into students’ programming-learning

experiences, especially for beginner learners. These program-

ming environments have achieved significant success [22], [6]

in helping teach and learn programming concepts for beginner

learners. However, these environments typically target at some

specialized programming languages other than mainstream

programming languages. In addition, these environments pri-

marily target at teaching and learning programming without

focusing on software engineering.

As part of our research efforts on educational software

engineering [24] and browser-based software for technology

transfer [3], we have developed a web-based educational

gaming environment for teaching and learning programming

and software engineering, called Pex4Fun1 [19] (denoting Pex

1http://www.pex4fun.com/

for Fun) for mainstream programming languages such as C#,

Visual Basic, and F#. It works on any web-enabled device,

even a smart phone [20]. It comes with an auto-completing

code editor, providing a user with instant feedback similar

to the code editor in Microsoft Visual Studio. It is a cloud

application with the data in the cloud, enabling a user to use

it anywhere where Internet connection is available.

New learners of programming can play games there to

master basic programming concepts. Learners of software engi-

neering can play games there to master advanced programming

concepts and software engineering concepts. Even experienced

software engineers can play games to improve their skills

while having fun.

Teachers can create virtual classrooms in the form of

courses by customizing existing learning materials and games

or creating new materials and games; teachers can enjoy the

benefits of automated grading of game exercises assigned to

students.

Behind the scene of Pex4Fun, its underlying technology is

called dynamic symbolic execution [7], [14], [4], which has

been realized by a white-box testing tool called Pex [17], the

backbone of Pex4Fun. Pex4Fun has been gaining popularity

in the community: since it was released to the public in June

2010, the number of clicks of the “Ask Pex!” button (indicating

the attempts made by users to solve games at Pex4Fun) has

reached over 1.3 millions (1,318,839) as of August 29, 2013.

The rest of the paper is organized as follows. Section II

presents the background information on the technology and

supporting tool underlying the Pex4Fun environment. Sec-

tion III presents the overview of the Pex4Fun environment.

Section IV presents the tool usage scenarios. Section V

presents related work. Section VI discusses the potential

impact of the environment to the broader community.

II. BACKGROUND: AUTOMATED TEST GENERATION

We next present the underlying technology (dynamic sym-

bolic execution) and supporting tool (Pex) for the Pex4Fun

environment.

Dynamic symbolic execution (DSE) [7], [14], [4] is a

variation of symbolic execution [8], [5] and leverages runtime

information from concrete executions. DSE is often conducted

in iterations to systematically increase code coverage such as



Fig. 1. The user interface of the Pex4Fun website

block or branch coverage. In each iteration, DSE executes the

program under test with a test input, which could be a default

or randomly generated input in the first iteration or an input

generated in one of the previous iterations. During the execu-

tion of the program under test, DSE performs symbolic exe-

cution in parallel to collect symbolic constraints on program

inputs obtained from predicates in branch statements along the

execution. The conjunction of all symbolic constraints along

an executed path is called the path condition. Then DSE flips

a branching node in the executed path to construct a new path

that shares the prefix to the node with the executed path, but

then deviates and takes a different branch. DSE relies on a

constraint solver to (1) check whether such a flipped path is

feasible; if so, (2) compute a satisfying assignment — such

assignment forms a new test input whose execution will follow

along the flipped path.

Pex [17] is an automatic white-box test-generation tool for

.NET, based on DSE. Pex has been integrated into Microsoft

Visual Studio as an add-in. Pex can generate test inputs that

can be integrated with various unit testing frameworks such as

NUnit2 and MSTest3. Pex was applied to test a core component

of the .NET architecture, which had already been extensively

tested over five years by approximately 40 testers within Mi-

crosoft. The component is the basis for other libraries, which

are used by thousands of developers and millions of end users.

Pex found various issues in this core component, including a

serious issue. Pex was used in classroom teaching at different

universities as well as various tutorials both within Microsoft

(such as internal training of Microsoft developers) and outside

Microsoft (such as tutorials at .NET user groups) [23].

III. OVERVIEW OF PEX4FUN

The Pex4Fun environment [19] includes coding duels as the

major type of games for learning various concepts and skills

in programming and software engineering. Figure 1 shows a

screen snapshot of the user interface of the Pex4Fun website,

which shows an example coding duel being solved by a student.

Figure 2 shows the workflow of creating and playing the

example coding duel.

In particular, in a coding duel, a student’s task is to

implement the Puzzle method (shown on the top-right side

2http://www.nunit.org/
3http://msdn.microsoft.com/en-us/library/ms182489(v=vs.80).aspx

Fig. 2. The workflow of creating and playing a coding duel

of Figure 2 and in Figure 1) to have exactly the same behavior

as another secret Puzzle method, which is never visible to

the student (shown on the top-left side of Figure 2), based

on feedback in the form of some selected values where

the student’s current version of the Puzzle method behaves

differently as well as some selected values where it behaves

the same way (shown near the bottom of Figure 1 and near

the right-bottom of Figure 2).

In the example coding duel, the Puzzle method is public

static int Puzzle(int x). The feedback given to the

student on some selected input values is displayed as a table

near the bottom of the screen (in Figure 1). A table row

beginning with a check mark in a green circle indicates

that the corresponding test is a passing test. Formally, the

return values of the secret implementation and student im-

plementation (i.e., the Puzzle method implementation) are

the same for the same test input (i.e., the Puzzle method

argument value). A table row started with a red circle with

a cross indicates that the corresponding test is a failing test:

the return values of the secret implementation and student

implementation are different for the same test input. In the

table, the second column “x” indicates the test input. The third

and fourth columns “your result” and “secret implementation

result” indicate the return values of the student implementation

and secret implementation, respectively. The last two columns

“Output/Exception” and “Error Message” give more details for

the failing tests.

A student can solve a simple coding duel with iterations

each with the following five main steps. (1) Click an example

coding duel from the Pex4Fun website; then the student can

see a student implementation that does not do much. (2) Click

“Ask Pex!” to see how the student implementation differs

from the secret implementation [16]. (3) Compare the student

implementation’s result to the secret implementation’s result.

(4) Analyze the differences and change the code to match the

secret implementation’s results for all input values or as many

input values as the student can. (5) Click “Ask Pex!” again.

Repeat this process until the student wins the coding duel (i.e.,



no failing tests being reported in the table by Pex) or cannot

make any progress.

IV. TOOL USAGE SCENARIOS

Pex4Fun (http://www.pex4fun.com/) brings programming

and software engineering with fun to a student’s web browser.

Enjoying fun experiences, a student can write, compile, and

run code in order to learn programming concepts, practice

programming and software-engineering skills, and analyze

the behavior of code interactively. In particular, this tool

demonstration shows how Pex4Fun can be used to teach and

learn programming and software engineering via the following

aspects.

• Solve puzzles. The main Puzzle method used in Pex4Fun

can take parameters and return values. In order to run

such a puzzle method, someone must provide argument

values. A student can click “Ask Pex!”, and then Pex [17],

the underlying test-generation engine, automatically finds

interesting argument values by analyzing the code.

• Solve coding duels. A coding duel is an interactive

puzzle. In a coding duel, a student’s task is to implement

the Puzzle method to have exactly the same behavior

as another secret Puzzle method. To start with a simple

coding duel, the student can click an example coding duel

from the website.

• Explore course materials in feature courses. The cur-

rent feature courses include C# for fun (for C# learners),

Parameterized Unit Testing [21], [18] (for developer-

testing learners [25], [23]), Code Contracts [1] in .NET

(for specification learners).

• Create and teach a course. Pex4Fun can be used to build

interesting, engaging, demanding classes on mathematics,

algorithms, programming languages, software engineer-

ing, or problem solving in general. Teachers can use an

integrated wiki to author classes built upon puzzles and

coding duels. In particular, a teacher combines existing

pages into a course. The pages might have been written

by the teacher or by any other author. The teacher invites

students to the course by sharing a registration link with

them. A course can have multiple teachers. Any user can

become a student by registering for a course through the

registration link. The student can then work through the

pages that are part of the course.

• Create and publish coding duels. A user can create

and publish coding duels via five main steps. (1) Sign in,

so that Pex4Fun can maintain coding duels for the user.

(2) Write a specification starting from a puzzle template

where the user can write the specification as a Puzzle

method that takes inputs and produces an output. (3)

Create the coding duel by clicking a button “Turn This

Puzzle Into A Coding Duel” (appearing after the user

clicks “Ask Pex!”). (4) Edit visible program text next by

clicking the coding duel Permalink URL, which opens

the coding duel, and by filling in a slightly more useful

outline of the implementation (with optional comments)

that somebody else will eventually complete. (3) Publish

after the user finishes editing the visible Puzzle method

text by clicking the “Publish” button.

V. RELATED WORK

Previous work [10], [2] advocated using a “Game First” ap-

proach to teaching introductory programming. The compelling

level of course assignments and example contents has been

much emphasized. With compelling assignments, students are

much more likely to learn because they are interested, and

visual components in developed games allow students to more

easily see mistakes in their code. The Pex4Fun environment

shares a similar motivation but putting the realization of the

compelling factor in the style of interactive-gaming-based

coding duels.

Maloney et al. [12] designed a visual game around the

programming concepts of loops and arrays in introductory

courses. In particular, students could change loops and arrays

in programs in an interactive and visual way. Then the game

provides immediate feedback and helps students visualize

program executions. Their evaluation results show that the

game helped students better understand these programming

concepts. The Pex4Fun environment also provides immediate

feedback to students in terms of their student implementation’s

behaviors compared against the secret implementation.

Spacco et al. [15] developed Marmoset4, an automated

snapshot, submission and testing system. The system captures

snapshots of students’ programming projects to a centralized

code repository whenever the students save their source files.

Such a collected fine-grained revision history offers teachers a

unique perspective into the development process for students.

Similar to this aspect, the Pex4Fun environment also captures

snapshots of students’ revisions of the student implementation

whenever the students click the “Ask Pex!” button to request

feedback from Pex. Similarly, teachers can investigate the duel-

solving process for students. When using Marmoset, students

can also explicitly submit projects to the Marmoset system to

request Marmoset to run these submissions against a suite of

unit tests developed by the teachers to evaluate the functional

correctness of a submission. In contrast, the teachers are not

required to develop a suite of tests for evaluating functional

correctness of a student implementation against the secret

implementation. Instead, Pex is used to serve this evaluation

purpose. In addition, tests generated by Pex are not a fixed

set, unlike the tests used by Marmoset: Pex generates differ-

ent tests depending on the program behavior of a student’s

submitted student implementation, accomplishing the goal of

personalized or customized feedback for each student.

VI. POTENTIAL IMPACT TO BROADER COMMUNITY

The Pex4Fun environment has been gaining popularity in

the community: since it was released to the public in June

2010, the number of clicks of the “Ask Pex!” button (indicating

the attempts made by users to solve games at Pex4Fun)

has reached over 1.3 millions (1,318,839) as of August 29,

4http://marmoset.cs.umd.edu/



2013. Pex4Fun has provided a number of open virtual courses

including learning materials along with games used to rein-

force students’ learning (http://www.pex4fun.com/Page.aspx#

learn/courses). Pex4Fun was adopted as a major platform for

assignments in a graduate software engineering course. A

coding-duel contest (http://www.pex4fun.com/icse2011) was

held at a major software engineering conference (ICSE 2011)

for engaging conference attendees to solve coding duels in a

dynamic social contest.

The Pex4Fun environment serves as a high-impact example

to show that a sophisticated software engineering technique

(e.g., automated test generation) can be successfully leveraged

to underpin educational gaming and automatic grading in a

web-based system that can scale to hundreds of thousands of

users.

ACKNOWLEDGMENT

Tao Xie’s work is supported in part by NSF grants

CCF-0845272, CCF-0915400, CNS-0958235, CNS-1160603,

a NIST grant, a Microsoft Research Software Engineering In-

novation Foundation Award, and NSF of China No. 61228203.

REFERENCES

[1] M. Barnett, M. Fähndrich, P. de Halleux, F. Logozzo, and N. Till-
mann. Exploiting the synergy between automated-test-generation and
programming-by-contract. In Proceedings of the 31st International

Conference on Software Engineering (ICSE), Companion, pages 401–
402, 2009.

[2] J. D. Bayliss. Using games in introductory courses: tips from the
trenches. In Proceedings of the 40th ACM Technical Symposium on

Computer Science Education (SIGCSE 2009), pages 337–341, 2009.
[3] J. Bishop, J. de Halleux, N. Tillmann, N. Horspool, D. Syme, and

T. Xie. Browser-based software for technology transfer. In Proceedings

of the 2011 Annual Research Conference of the South African Institute

for Computer Scientists and Information Technologists (SAICSIT 2011),

Industry Oriented Paper, pages 338–340, 2011.
[4] C. Cadar and D. R. Engler. Execution generated test cases: How to make

systems code crash itself. In Proceedings of the 12th International SPIN

Workshop on Model Checking Software (SPIN 2005), pages 2–23, 2005.
[5] L. A. Clarke. A system to generate test data and symbolically execute

programs. IEEE Trans. Softw. Eng., 2(3):215–222, 1976.
[6] S. Fincher, S. Cooper, M. Kölling, and J. Maloney. Comparing Alice,

Greenfoot & Scratch. In Proceedings of the 41st ACM Technical

Symposium on Computer Science Education (SIGCSE 2010), pages 192–
193, 2010.

[7] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2005),
pages 213–223, 2005.

[8] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[9] M. Kölling and P. Henriksen. Game programming in introductory
courses with direct state manipulation. In Proceedings of the 10th Annual

SIGCSE Conference on Innovation and Technology in Computer Science

Education (ITiCSE 2005), pages 59–63, 2005.
[10] S. Leutenegger and J. Edgington. A games first approach to teaching

introductory programming. In Proceedings of the 38th SIGCSE Techni-

cal Symposium on Computer Science Education (SIGCSE 2007), pages
115–118, 2007.

[11] D. J. Malan and H. H. Leitner. Scratch for budding computer scientists.
In Proceedings of the 38th SIGCSE Technical Symposium on Computer

Science Education (SIGCSE 2007), pages 223–227, 2007.

[12] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk. Pro-
gramming by choice: urban youth learning programming with Scratch.
In Proceedings of the 39th SIGCSE Technical Symposium on Computer

Science Education (SIGCSE 2008), pages 367–371, 2008.

[13] R. Pausch, T. Burnette, A. Capeheart, M. Conway, D. Cosgrove,
R. DeLine, J. Durbin, R. Gossweiler, S. Koga, and J. White. A brief
architectural overview of Alice, a rapid prototyping system for virtual
reality. IEEE Computer Graphics and Applications, pages 195–203, May
1995.

[14] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine
for C. In Proceedings of the 10th European Software Engineering Con-

ference held jointly with 13th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (ESEC/FSE 2005), pages 263–
272, 2005.

[15] J. Spacco, D. Hovemeyer, W. Pugh, J. Hollingsworth, N. Padua-Perez,
and F. Emad. Experiences with Marmoset: Designing and using an
advanced submission and testing system for programming courses. In
Proceedings of the 11th Annual Conference on Innovation and Technol-

ogy in Computer Science Education (ITiCSE 2006), pages 13–17, 2006.

[16] K. Taneja and T. Xie. DiffGen: Automated regression unit-test genera-
tion. In Proceedings of the 23rd IEEE/ACM International Conference

on Automated Software Engineering (ASE 2008), pages 407–410, 2008.

[17] N. Tillmann and J. de Halleux. Pex – white box test generation for
.NET. In Proceedings of the 2nd International Conference on Tests And

Proofs (TAP 2008), pages 134–153, 2008.

[18] N. Tillmann, P. de Halleux, and T. Xie. Parameterized unit testing: The-
ory and practice. In Proceedings of the 32nd International Conference on

Software Engineering (ICSE 2010), Companion Volume, Tutorial, pages
483–484, 2010.

[19] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani, and J. Bishop. Teaching
and learning programming and software engineering via interactive
gaming. In Proceedings of the 35th International Conference on

Software Engineering (ICSE 2013), Software Engineering Education

(SEE), pages 1117–1126, 2013.

[20] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, J. Bishop,
A. Samuel, and T. Xie. The future of teaching programming is on mobile
devices. In Proceedings of the 17th Annual Conference on Innovation

and Technology in Computer Science Education (ITiCSE 2012), pages
156–161, 2012.

[21] N. Tillmann and W. Schulte. Parameterized unit tests. In Proceedings

of the 10th European Software Engineering Conference held jointly

with 13th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (ESEC/FSE 2005), pages 253–262, 2005.

[22] I. Utting, S. Cooper, M. Kölling, J. Maloney, and M. Resnick. Alice,
Greenfoot, and Scratch – a discussion. Trans. Comput. Educ., 10:17:1–
17:11, November 2010.

[23] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte. Teaching and training
developer-testing techniques and tool support. In Proceedings of the

25th Annual ACM Conference on Systems, Programming, Languages,

and Applications: Software for Humanity (SPLASH 2010), Educators’

and Trainers’ Symposium, pages 175–182, 2010.

[24] T. Xie, N. Tillmann, and J. de Halleux. Educational software engi-
neering: Where software engineering, education, and gaming meet. In
Proceedings of the 3rd International Workshop on Games and Software

Engineering (GAS 2013), pages 36–39, 2013.

[25] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Future of developer
testing: Building quality in code. In Proceedings of the FSE/SDP

Workshop on the Future of Software Engineering Research (FoSER

2010), pages 415–420, 2010.


