
Software Analytics for Incident Management of

Online Services: An Experience Report
Jian-Guang Lou, Qingwei Lin, Rui Ding,

Qiang Fu, Dongmei Zhang

Microsoft Research Asia, Beijing, P. R. China

{jlou, qlin, juding, qifu, dongmeiz}@microsoft.com

Tao Xie

University of Illinois at Urbana-Champaign

Urbana, IL, USA

taoxie@illinois.edu

Abstract ˗ As online services become more and more popular,

incident management has become a critical task that aims to

minimize the service downtime and to ensure high quality of the

provided services. In practice, incident management is

conducted through analyzing a huge amount of monitoring data

collected at runtime of a service. Such data-driven incident

management faces several significant challenges such as the

large data scale, complex problem space, and incomplete

knowledge. To address these challenges, we carried out two-year

software-analytics research where we designed a set of novel

data-driven techniques and developed an industrial system

called the Service Analysis Studio (SAS) targeting real scenarios

in a large-scale online service of Microsoft. SAS has been

deployed to worldwide product datacenters and widely used by

on-call engineers for incident management. This paper shares

our experience about using software analytics to solve engineers’

pain points in incident management, the developed data-analysis

techniques, and the lessons learned from the process of research

development and technology transfer.

Index Terms -- Online service, service incident diagnosis,

incident management.

I. INTRODUCTION

Software industry has been under the movement from tra-

ditional shrink-wrapped software to online services (e.g.,

from shrink-wrapped Microsoft Office to online Microsoft

Office 365). Online service systems such as online banking

systems and e-commerce systems have been increasingly

popular and important in our society.

Online services differ from traditional shrink-wrapped

software in various aspects, including their characteristics of

continuously running along with aiming for 24x7 availability

of services. However, during operation of an online service,

there can be a live-site service incident: an unplanned inter-

ruption/outage to the service or degradation in the quality of
the service. Such incident can lead to huge economic loss or

other serious consequences. For example, the estimated aver-

age cost of one hour’s service downtime for Amazon.com is

$180,000 [19]. Online services such as Amazon, Google, and

Citrix have experienced live-site outages during the past cou-

ple of years [1][16].

Therefore, service providers have invested great efforts on

service-quality management to minimize the service down-

time and to ensure high quality of the provided services. For

example, an important aspect of service-quality management

is incident management [3]: once a service incident occurs,

the service provider should take actions immediately to diag-

nose the incident and restore the service as soon as possible.

Such incident management needs to be efficient and effective

in order to ensure high availability and reliability of the ser-

vices.

A typical procedure of incident management in practice

(e.g., at Microsoft and other service-provider companies) goes

as follow. When the service monitoring system detects a ser-

vice violation, the system automatically sends out an alert and

makes a phone call to a set of On-Call Engineers (OCEs) to

trigger the investigation on the incident in order to restore the

service as soon as possible. Given an incident, OCEs need to

understand what the problem is and how to resolve it. In ideal

cases, OCEs can identify the root cause of the incident and fix

it quickly. However, in most cases, OCEs are unable to iden-

tify or fix root causes within a short time. For example, it

usually needs to take a long delay to fix the root causes (e.g.,

code defects), to conduct regression testing of the new build,

and to re-deploy it to datacenters. Such whole process causes

much delay before the service can be recovered and continue

to serve the users. Thus, in order to recover the service as

soon as possible, a common practice is to restore the service

by identifying a temporary workaround solution (such as re-

starting a server component) to restore the service. Then after

service restoration, identifying and fixing the underlying root

cause for the incident can be conducted via offline postmor-

tem analysis.

Incident management of an online service differs from the

debugging of shrink-wrapped software in two main aspects.

First, incident management requires the service provider to

take actions immediately to resolve the incident, as the cost of

each hour’s service downtime is high [19]. Second, due to the

requirement of continuously running, unlike shrink-wrapped

software, when an incident occurs in an online service, it is

usually impractical to attach a debugger to the service to con-

duct diagnosis.

In practice, incident management of an online service

heavily depends on monitoring data collected at runtime of

the service such as service-level logs, performance counters,

and machine/process/service-level events. Such monitoring

data typically contains information to reflect the runtime state

and behavior of the service. Based on the monitoring data,

service incidents are timely detected in the form of service

anomalies and quality issues. To collect such data, the service

system is instrumented with an instrumentation infrastructure

(e.g., the System Center Operations Manager [4]) and contin-

uously monitored. For example, a service system at Microsoft

under our study generates about 12 billion lines of log mes-

sages each day for incident management.

mailto:dongmeiz%7d@microsoft.com

Given that incident management of online services is data-

driven by nature, it is a perfect target problem for software-

analytics research. Software analytics [25][26][27] has recent-

ly emerged as a promising and rapidly growing research area

for data-driven software engineering, with strong emphasis on

industrial practice. In particular, software analytics is to uti-

lize data-driven approaches to enable software practitioners to

perform data exploration and analysis to obtain insightful and

actionable information for completing various tasks around

software systems, software users, and software development

process. In software analytics, a great amount of work on

successful technology transfer has already been conducted at

the Software Analytics group at Microsoft Research Asia, e.g.,

performance debugging in the large [14], clone detection [10].

In this paper, we formulate incident management of an

online service as a software-analytics problem [25][27],

which can be tackled with phases of task definition, data

preparation, analytic-technology development, and deploy-

ment and feedback gathering. The task of incident manage-

ment is defined to consist of two parts: (1) incident investiga-

tion and diagnosis, and (2) healing suggestion for actions tak-

en to recover the service as soon as possible. Data preparation

aims to collect monitoring data of the service for incident

management. Analytic-technology development is to develop

an incident-management system by formulating problems and

developing algorithms and systems to explore, understand,

and get insights from the data. During deployment and feed-

back gathering, feedback is gathered on how practitioners use

the developed system in their routine daily work, and then it

is used to guide further improvement of the system under

consideration.

By tackling incident management with software analytics,

we have developed the first industrial system for incident

management of online services and deployed the system with-

in Microsoft. Producing high impact on industrial practices,

our system is being used continuously since 2011 by Mi-

crosoft engineers for effective and efficient incident manage-

ment of Service X (we use an alias here due to confidentiali-

ty). Our system for Service X incorporates various novel

techniques that we have developed for addressing significant

real-world challenges of incident management posed in large-

scale online services.

Throughout the two-year process of conducting software-

analytics research for producing such high-impact system, we

have gained a set of lessons learned, which are valuable for us

and for the broad community of software engineering to carry

out successful technology transfer and adoption. We started

the project on data-driven performance analysis for online

services in 2010. It took us two years to conduct algorithm

research, build the diagnosis system, and make the system

indispensable for the service-engineering team of Service X.

In this paper, we share our lessons learned in our project

through three dimensions: solving real problems in practice,

improving performance and usability of the developed system,

and investing in system building.

In summary, this paper makes the following main contri-

butions:

• The formulation of incident management of online

services as a software-analytics problem, which can be tackled

with phases of task definition, data preparation, analytic-

technology development, and deployment and feedback

gathering.

• The first industrial system developed and deployed for

incident management of Service X (a geographically

distributed, web-based service serving hundreds of millions of

users) and various novel techniques incorporated in the system

for addressing significant real-world challenges.

• A set of lessons learned (throughout the two-year

process of conducting software-analytics research for

producing such high-impact system), which are valuable for us

and for the broad community of software engineering to carry

out successful technology transfer and adoption.

The rest of the paper is organized as follows. Section II in-

troduces Service X. Section III presents our formulation of

service-incident management as a software-analytics problem.

Section IV presents the resulting SAS system and its tech-

niques. Section V discusses related work. Section VI presents

the lessons learned, and Section VII concludes the paper.

II. BACKGROUND OF SERVICE X

Service X is a web-based, external-facing Microsoft ser-

vice. Similar to other online services, Service X is expected to

provide high-quality service on 24x7 basis. During a certain

period of time when running the service, the Service X teams

were facing great challenges in improving the effectiveness

and efficiency of their incident management in order to pro-

vide high-quality service. We set up our goals to help the Ser-

vice X teams solve the incident-management problems. In

addition, because the architecture of Service X is representa-

tive of typical multi-layer online services, we expect that our

techniques designed for Service X are general enough to be

applied to other similar online services.

A. Overview of Service X

Service X is a geographically distributed, web-based ser-

vice serving millions of users simultaneously. Figure 1 illus-

trates the architecture of Service X. There are more than 10

different types of server roles in the system, including web

front end servers, application servers serving various applica-

tion services, and database servers, etc.

In order to provide high-quality service, Service X is in-

strumented at development time and continuously monitored

at runtime. The monitoring data collected for Service X main-

ly consists of three types: performance counters, events from

the underlying Windows operating system, and the logs creat-

ed by various components of Service X. The monitoring data

is used to detect service incidents in the form of availability

or latency issues. When a service incident is detected, the

monitoring system of Service X would automatically send an

alert email and make a phone call to a team of service engi-

neers, namely On-Call Engineers (OCEs), to trigger the inves-

tigation of the incident. The monitoring data would then be

used by the OCEs to diagnose the incident and help decide on

what actions to take in order to restore Service X as quickly

as possible.

Web Front End Servers

… ...

Content Applications Other Applications

… ...

… ...

… ...

Database Farm

T
e

le
m

e
try

 a
n

d
 M

a
n

a
g

e
m

e
n

t F
a

rm

Active

Monitors

Debug

Agents

Management

Servers

Load Balancer

Incoming User

Requests

Datacenter

Internet

Figure 1. System overview of Service X

B. Pain points and challenges

Incident management is a challenging task because OCEs

are under great time pressure to restore the service. From the

communication with the OCEs, we learned the following

challenges faced by them in incident management. Although

these challenges are from the OCEs of Service X, such chal-

lenges are general to engineers of other online services be-

cause of high resemblance of Service X to general online ser-

vices.

Large-volume and irrelevant data. The monitoring data is

the primary sources for OCEs to diagnose a service incident

and identify the restoration actions. The volume of the moni-

toring data is huge due to the large scale of the Service X sys-

tem. For example, currently, about 12 billion log entries are

generated each day by various service components. The

amount will increase rapidly as the number of users increases

and/or the number of user requests increases. In addition,

most of the monitoring data is irrelevant to a particular inci-

dent. From the diagnosis perspective, there is a huge amount

of irrelevant data. OCEs would have to manually sift through

the huge amount of monitoring data in order to identify the

portions relevant to the underlying incident. Sometimes OCEs

would not even have a clue on where to start. This process is

just like finding a needle in a haystack.

Highly complex problem space. There are many potential

causes that may incur a service incident, such as hardware

failures, networking issues, resource competition, code de-

fects, and configurations. In general, various types of moni-

toring data need to be collected in order to gather enough in-

formation that reflects the symptoms of complex causes, be-

cause each type of data usually reflects only certain aspects of

the service system. For example, performance counters are

helpful when diagnosing service issues caused by resource

competition. In the case of Service X, as aforementioned,

performance counters, system events, and logs are collected

as monitoring data. When working on incident management,

OCEs would not only need to manually analyze each type of

the monitoring data, but also need to be able to correlate dif-

ferent types of data in order to obtain thorough understanding

of the service incident. It is inefficient to manually look for

answers in such a highly complex problem space.

Incomplete and disaggregated knowledge. Diagnosing

service incidents often needs decent knowledge about the

service system. However, in practice, such kind of knowledge

is often not well organized or documented. A large-scale

online service system usually consists of many components.

These components are usually developed by different teams.

Very few engineers have detailed knowledge about the entire

system. Therefore, the experts of the service system usually

become the bottleneck for incident management. We indeed

have such observation with the Service X teams. In addition,

from the communication with the OCEs of Service X, we also

learned that there was no systematic mechanism for them to

share knowledge learnt from past service incidents. Although

each incident was recorded in a database, there was no sup-

port on reusing the information of those incidents except

manual work. Due to the constraints of incomplete and dis-

aggregated knowledge, service engineers are often slow to

resolve service incidents, resulting in long Mean Time to Re-

store (MTTR) for the service.

In the case of Service X, the service engineers used to suf-

fer from the aforementioned pain points during a certain peri-

od of time when they were running Service X. Their MTTR

was about 2 hours during that time, and 90% of the time was

spent on manual inspection of the monitoring data in order to

diagnose problems and identify the right restoration actions.

III. INCIDENT MANAGEMENT AS SOFTWARE

ANALYTICS

As discussed in Section II, there are a set of practical chal-

lenges in the incident management of Service X. Because the

core problem is how to effectively and efficiently analyze the

huge amount of monitoring data in order to come up with the

diagnosis and restoration actions, we formulate the incident-

management problem as a software-analytics problem. We

utilized the four-step approach of developing software analyt-

ics projects [25][27] to define the objectives of our project,

conduct data collection, develop analytics techniques and an

analysis system leveraging those techniques, as well as de-

ploying the analysis system and getting feedback. The analy-

sis system that we developed is named as the Service Analy-

sis Studio (SAS).

In this section, we present the four steps of developing

SAS. We first define the objectives of SAS. Then we illus-

trate the different types of monitoring data used for analyzing

service incidents. We further discuss the four primary analy-

sis techniques that we developed. Finally, we discuss the user

interface design of SAS and collection of user feedback in

real deployment.

A. Objectives

We defined four main objectives for SAS, in order to help

the OCEs of Service X to overcome the practical challenges

in their incident-management effort.

Automating analysis. SAS should have the capability to

automatically identify the information relevant to the cause of

the incident under investigation from the huge amount of

monitoring data. The identified information should provide

insightful clues for OCEs to determine the problematic site of

the incident, therefore significantly reducing the investigation

effort.

Handling heterogeneity. SAS should be able to analyze

the various types of monitoring data collected from different

data sources. In the case of Service X, the types of monitoring

data included performance counters, system events, and logs

generated by different service components. Each data source

provides the diagnostic information of Service X from a cer-

tain aspect. Different from all previous work [6][8][9][24]

that focused on only a single type of data source (e.g., system

metrics), SAS aims to provide a comprehensive analysis of

the various types of data from all data sources to support the

diagnosis of service incidents.

Accumulating knowledge. SAS should provide a mecha-

nism to accumulate and leverage the knowledge about the

incidents. Similar to other services in the real world, the same

incident of Service X may reoccur due to various reasons. For

example, the bug fix for the root cause of the incident has not

yet been deployed, a temporary workaround solution stops to

take effect, or the service suffers repetitively from high work-

load and resource competition. Accumulating the knowledge

about past incidents can help improve the effectiveness and

efficiency of incident management. If OCEs can quickly de-

termine that a new incident is similar to a previous one, then

they will be able to quickly restore the service by leveraging

the diagnosis effort of the previous one. SAS is targeted to

accumulate the knowledge of past incidents by constructing a

historical incident repository, and to leverage such knowledge

to resolve new incidents.

Supporting human-in-the-loop (HITL). SAS should pro-

vide flexible and intuitive user interfaces in order to enable

OCEs to effectively and efficiently interact with the analysis

results and the monitoring data. The diagnosis of a service

incident is a complex decision-making process. Given the

complexity and diversity of service incidents, it is too ambi-

tious and not realistic in practice to build and deploy a fully

automatic diagnosis system in real production environments.

Therefore, rather than making incident management fully

automatic, we keep the OCEs in the loop to make decisions

on the diagnosis and identification of restoration actions.

Meanwhile, we fully utilize the power of data-analysis algo-

rithms to provide as much information as possible to facilitate

the decision making of the OCEs.

B. Monitoring Data of Service X

As introduced in previous sections, different types of data

are collected in order to monitor the quality of Service X, as

well as diagnosing service incidents. In this section, we dis-

cuss each type of the monitoring data in detail. We also ex-

plain how the quality of Service X is measured and how ser-

vice incidents are detected.

Detecting incidents during service operation is often based

on the Key Performance Indicators (KPI), such as the average

request latency and request-failure rate. In the case of Service

X, for each user request, the response time is recorded at the

service side (as the request duration) along with the HTTP

status code (http-status-code) of the response to the request.

The http-status-code indicates the returned status of a given

web request, e.g., 200 refers to “OK” and 500 refers to “In-

ternal Server Error”. The duration indicates the total response

time, e.g., duration>10 seconds indicates that the user has

experienced very slow response. These two attributes are used

to calculate the KPIs for Service X. Each KPI is calculated

once per time epoch (i.e., 5 minutes in the system of Service

X). For example, for each time epoch, the 95-percentile laten-

cy is calculated based on the duration values of all requests

within the time epoch. KPI values are monitored to provide

an overall description about the health state of Service X from

users’ perspective. In practice, the values of KPIs are checked

against certain specified Service Level Objective (SLO). The

SLO is defined to be the acceptable value ranges of KPIs.

When Service X is running, if a KPI’s value (e.g., average

latency) violates the SLO, a KPI violation, i.e., service inci-

dent, is detected, and alerts are sent out to notify that the ser-

vice is in a SLO-violation state. The diagnosis of a service

incident is to find out the problematic site that causes the ser-

vice to violate the SLO.

Besides KPIs, performance counters and system events,

which are collectively named as system metrics, are also col-

lected for the diagnosis purpose. System metrics record the

measurement results of the system, including the resource

usage of processes and machines (e.g., the CPU utilization,

disk queue lengths, and I/O operation rate), request workload

(e.g., the number of requests), SQL-related metrics (e.g., the

average SQL lock waiting time), and application-specific

metrics (e.g., the cache hit ratio, the number of throttled re-

quests). These metrics are collected via OS facilities (e.g.,

Windows Management Instrumentation (WMI)) and stored in

a SQL database. Similar to KPIs, each system metric is also

aggregated over time epochs. For example, two metric values

are calculated for the CPU-usage metric over an epoch: the

average (or median) value and the maximum value of CPU

usage within the epoch. There are more than 1200 different

types of metrics collected in Service X.

Another important type of data collected in Service X is

transactional logs. Transactional logs are generated during

system execution, and they record detailed information about

the system’s runtime behaviors when processing user requests.

Each log entry contains the following fields: the timestamp,

request ID (TxID), event ID, and detailed text message.

• A request ID is a Global Unique Identifier (GUID)

representing a request instance. Service X can serve multiple

requests simultaneously using concurrent threads. These

threads write log entries to the same file as they execute,

resulting in a log file with interleaving entries of different

requests. The log entries can be grouped into different

sequences using request IDs. In this way, each group

represents the log sequence produced when serving a

particular request.

• An event ID is a unique identifier representing an

event-logging statement in the source code. The event ID in a

log entry indicates which logging statement prints out this

entry. The event ID bridges the logs with the source code –

given a log sequence represented by a request ID, the

execution path of modules and functions in the source code

can be identified. Usually, different types of requests generate

different log sequences due to different program logics.

Sometimes the same type of requests can also generate

different log sequences due to different input and

configuration values, etc.

After data preparation, we need to design a set of data-

driven analysis techniques targeting at the real scenarios in

Service X. These techniques can automatically extract the

information from the monitoring data and guide OCEs to find

out the problematic site of an incident.

IV. TECHNIQUES IN SAS

A set of data-driven techniques for diagnosing service in-

cidents have been developed in SAS for incident diagnosis in

Service X. Each of these techniques targets at a specific sce-

nario and a certain type of data. In this section, we briefly go

through some analysis techniques designed for different types

of data, along with the SAS user interfaces and deployment-

time feedback.

Because poor predictions are produced by just directly ap-

plying standard classification algorithms or state-of-the-art

information-retrieval techniques without considering charac-

teristics of logs in our scenario [11][12], we designed and

extended our techniques based on carefully considering do-

main-specific characteristics of software-generated data to

achieve satisfying performance.

A. Identification of Incident Beacons from System

Metrics

When engineers diagnose incidents of online services,

they usually start from hunting for a small subset of system

metrics that are symptoms incurred by the causes of the inci-

dents. We name such kind of metrics as service-incident bea-

cons. A service-incident beacon is formed from a combina-

tion of metrics with unusual values that produce a symptom.

It could help directly pinpoint the potential incident causes or

could provide intermediately useful information leading engi-

neers to locate the causes. For example, when a blocking and

resource-intensive SQL query blocks the execution of other

queries accessing the same table, symptoms can be observed

on monitoring data: the waiting time on the SQL-inducing

lock becomes longer, and the event “SQL query time out fail-

ure” is triggered. Such metrics can be considered as incident

beacons. There are more than 1200 system metrics in Service

X. We developed an analysis technique that helped OCEs

effectively and efficiently identify service-incident beacons

from such huge number of system metrics.

Our analysis technique consists of three steps. First, using

anomaly detection, we discretize the values of system metrics

to indicate normal or abnormal states of those metrics. The

reason is that a service-incident beacon often has exceptional-

ly high or low values that are significantly out of its normal

value range during the period of the incident. Second, we

apply correlation analysis to identify incident beacons from

suspicious metrics using the historical monitoring data. In

particular, with the discretized metric values and the SLO

states (indicating whether the SLO is violated or not) of a KPI

in each epoch, we mine all the possible association rules be-

tween the abnormal metrics and the service violations by lev-

eraging an algorithm for mining Class Association Rules

(CARs) [17]. These mined CARs are stored as incident-

beacon candidates for the diagnosis purpose. Third, given a

newly detected service incident and its corresponding metrics

and KPIs during the time period of the incident, we calculate

the log likelihood for each CAR candidate obtained in Step 2

to assess how likely it is related to the underlying service in-

cident. The metrics involved in the CARs with top rankings

are provided as service-incident beacons to the OCEs. The

technical details of our analysis technique can be found else-

where [12].

Figure 2. The recall results

Figure 3. The precision results

We tested some state-of-the-art algorithms proposed to

solve similar problems [6][8][9], found that they did not work

well for Service X because of the following two main charac-

teristics of incidents of Service X, and then designed our own

analysis technique to deal with such characteristics. First,

most incidents of Service X last less than 2 hours. Each inci-

dent contains only a small number of epochs. When a model

is learned for each incident, the previously proposed learning

algorithms [6][8][9] would suffer from the over-fitting prob-

lem due to the insufficient amount of training data. Our tech-

nique reduces the chance of over-fitting because incident bea-

cons are selected from the candidates that are significant rules

mined out of the entire historical data set. Second, in practice,

a false negative (i.e., a real incident beacon not being reported)

can often incur high investigation cost for OCEs, because

OCEs would have to go through all the metrics to find the

relevant ones. Unlike classification-based techniques that

identify a single model [6][8][9] for each incident, our CAR-

mining technique can discover all rules that satisfy given re-

quirements including the minimal support, confidence, and

lift values. Therefore, our technique can help reduce the false-

negative ratio when there are coupling effects [12] in the un-

derlying incidents. The profound differences between classi-

fication and association-rule mining [13] can help illustrate

why a mining-based technique works for Service X.

We evaluated our analysis technique using real data of

Service X. For example, on a data set of 36 incidents, with

0

20

40

60

80

100

0 5 10 15

re
ca

ll
(%

)

Threshold of metric number

Ours
L1-LR

nearly the same precision, our technique achieved a high re-

call (~90%) compared to the recall of ~60% obtained using

L1-Logistic Regression (in short as L1-LR, an algorithm in

state-of-the-art research [9]). Figures 2 and 3 show the recall

and precision results, respectively, as we change the threshold

of the number of selected metrics from 1 to 10. We can ob-

serve that our technique can achieve better recall and preci-

sion in all cases than the technique of L1-LR. In practice, a

threshold of 5 or 6 is a good choice. The characteristics of

incidents of Service X, such as the short-period violation and

coupling effect, are common among many other online ser-

vices. Therefore, our analysis technique can also be applied to

other online services.

B. Mining Suspicious Execution Patterns

Besides system metrics, the transactional logs also provide

rich information for diagnosing service incidents. When scan-

ning through the logs, OCEs usually look for a set of log

events that show up together in the log sequences of failed

requests but not in the ones of the succeeded requests. Such a

set of log events are named as suspicious execution patterns.

A suspicious execution pattern could be very simple, e.g., an

error message that indicates a specific fault in the execution.

It could also be a combination of log events of several opera-

tions. For example, a normal execution path looks like {task

start, user login, cookie validation success, access resource R,

do the job, logout}. In contrast, a failed execution path may

look like {task start, user login, cookie not found, security

token rebuild, access resource R error}. The failure occurred

because resource R cannot recognize the new security token

when the old cookie was lost. The code branch reflected by

{cookie not found, Security token rebuild, access resource X

error} indicates a suspicious execution pattern.

As discussed in previous sections, a huge number of logs

are generated at any time when Service X is running. It is

critical to automatically identify suspicious execution patterns

in order to free OCEs from manually scanning the logs. We

propose a mining-based technique to automatically identify

suspicious execution patterns. The basic idea behind our

technique is that, given a set of logs for failed requests and

succeeded requests, respectively, execution patterns shared by

more failed executions and fewer succeeded executions are

more suspicious than others. The details of our technique can

be found elsewhere [11]. Our technique mainly consists of

two steps.

First, we mine execution patterns by modeling the

trunk/branch relations of program-execution paths with a

Formal Concept Analysis (FCA) [2] technique. Given a set of

transactional logs, we treat each request as an object, the set

of events (corresponding to this request) as attributes, and

then we apply FCA to obtain a lattice graph. Each node in the

graph is a concept. Each concept, denoted as c, contains two

elements: intent and extent. 𝐼𝑛𝑡(𝑐) (denoting the intent of

concept c) is an event set, and Ext(c) (denoting the extent of

concept c) is a request set. In the graph, each parent concept

contains the common path of its children, and each child con-

cept contains a different branch structure in code paths. Then,

we further extract a complementary set ∆𝐸𝑠 = 𝐼𝑛𝑡(𝑐)\𝐼𝑛𝑡(𝑝)

(the log events that are in node c but not in node p) for every

parent-child node pair (p, c) in the graph. All extracted com-

plementary sets ∆𝐸𝑠 are stored as candidates of suspicious

execution patterns for further evaluation.

Second, we use a score named as Delta Mutual Infor-

mation (DMI) to measure the suspicious level of each execu-

tion pattern. DMI is defined as 𝐷𝑀𝐼(∆𝐸𝑠) = 𝑀(𝑋𝑐 , 𝑌) −

𝑀(𝑋𝑝, 𝑌) , where 𝑀(𝑋𝑐, 𝑌) and 𝑀(𝑋𝑝, 𝑌) represent mutual

information defined on Xc (a Boolean random variable de-

fined on concept c, with the variable value as 1 if the request

belongs to 𝐸𝑥𝑡(𝑐) and as 0 otherwise) and Y (the fail/success

status of a given request, e.g., 1 if the request is failed). Theo-

retical analysis has shown that DMI can properly measure the

contribution of ∆Es for failure correlation [11]. By walking

through all edges in the lattice graph, we select all ∆𝐸𝑠 as

suspicious execution patterns if each of them has a large DMI

value, and then present them to OCEs for diagnosis.

In the practice of Service X, several patterns appeared in

incidents in long term, such as ones related to SQL timeout or

user-authentication rejection. Some patterns were live in short

term, specific to some versions of software, or improper con-

figurations; these patterns disappeared after software upgrade.

C. Detection of Malfunctioned Role Instance

In addition to analyzing the system metrics and transac-

tional logs, based on the characteristics of the system archi-

tecture of online services, we also developed a statistics-based

technique to help with incident management.

As discussed in Section II, usually there are multiple serv-

er roles in a large-scale online service system, e.g., front end

server and SQL server. There are often a number of instances

for each role running on different servers, under the control of

a load balancer that distributes the workload among the peer

instances. The configurations of these peer servers with the

same role are usually homogeneous for simplicity and robust-

ness. Therefore, when the service is at a healthy state, differ-

ent instances of the same role should have similar behaviors.

If the behavior of one instance deviates far from its peer in-

stances, then this instance is likely to act in an abnormal state.

Such behavioral differences can help us quickly detect the

instances of malfunctioned server roles.

The detection algorithm consists of two steps. First, a met-

ric (denoted as 𝑉) reflecting the health state of a role is select-

ed, and its values are monitored for each role instance. For a

specific role, we calculate its values across all the instances in

the time epoch of investigation, and learn a probabilistic

model from the calculated metric values. In SAS, for sim-

plicity, we use Gaussian distribution 𝑁(𝜇, 𝜎) to model the

metric. The parameters (𝜇, 𝜎) are estimated using a robust

estimation method to reduce the interference of outliers:

{
𝜇 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑉)

𝜎 = 1.48 × 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑣 − 𝜇|∀𝑣 ∈ 𝑉)

Second, we identify the role instances whose correspond-

ing metric values are far from the distribution 𝑁(𝜇, 𝜎).
In SAS, we use the preceding technique to detect the mal-

functioned instances of three roles: the front end server, ap-

plication server, and SQL server. This technique is simple,

and yet we have found it highly effective in real practice. It

can often locate the problematic servers with high accuracy,

thus effectively narrowing down the investigation scope for

OCEs. This technique is not limited to Service X, being gen-

eral and applicable to common online services.

D. Leveraging Previous Effort for Recurrent Incidents

Similar incidents may reoccur due to reasons discussed in

Section III-B. Therefore, leveraging the knowledge from past

incidents can help improve the effectiveness and efficiency of

incident management. The key here is to design a technique

that automatically retrieves the past incidents similar to the

new one, and then proposes a potential restoration action

based on the past solutions.

Incident retrieval. There is rich information associated

with each service incident, e.g., timestamp, monitoring data,

and text describing the symptoms, diagnosis, taken actions,

and results, etc. The monitoring data is the most important

because it faithfully reflects the states of the service system

during the incident. Therefore, we use the monitoring infor-

mation to derive signatures to represent the incidents for the

retrieval purpose. Using the technique discussed in Section IV,

we mine out the suspicious execution patterns in transactional

logs, and use such patterns as signatures for each incident.

Then we define a similarity metric to compare a new inci-

dent to past ones. We treat each incident as a document, each

execution pattern as a term, and the corresponding DMI score

as the weight of the term. We then use the Generalized Vector

Space Model [22] to calculate the similarity of two incidents.
Table 1. Healing actions

Healing-action adaptation. According to our empirical

study of healing actions in the incident repository, we find

that most healing actions can be formatted as a tuple <verb,

target, location>, where “verb” denotes an action and “target”

denotes a component or service. Table 1 shows all “verbs”

and “targets” in SAS. When we retrieve a similar historical

incident, we extract the verb and target from its description

text. For example, we extract “reboot” as the verb and “SQL

server” as the target from the description “We found few SQL

servers with high memory usage and few servers were not

able to connect through SSMS. Availability is back up after

rebooting these SQL machine SQL32-003”. We determine the

location using the technique that detects the malfunctioned

server role.

Evaluation. We have evaluated the effectiveness of our

technique using the “leave-one-out” strategy based on 77 real

incidents of Service X. These cases are grouped into 8 catego-

ries; we measure the accuracy of our technique’s effective-

ness in suggesting a correct healing action for each “new is-

sue” (i.e., the one that is left out during “leave-one-out”).

Both the two results show that our approach is effective. The

average accuracy of top-1 recommendation is 0.90. More

detailed results including the ROC curves of our technique

can be found elsewhere [11].

E. Usability

As a practical tool, making the analysis results actionable

and understandable to OCEs is very important. Otherwise, the

tool would not make real impact or be widely used by OCEs.

Figure 4. An example analysis report

One pain point of the OCEs is to sift through a huge

amount of monitoring data when working on a service inci-

dent. To address such pain point, we defined two design ra-

tionales for presenting the analysis results in SAS: concise-

ness and comprehensiveness. Based on the results generated

using different analysis techniques, SAS can automatically

compose an analysis report using a predefined decision tree.

This report serves as the primary form of presentation for

SAS to communicate its analysis results to OCEs. As shown

in Figure 5, the report is concise, and yet contains compre-

hensive information about the underlying incident. The report

has three parts. It first provides information on the impact of

the incident, e.g., the number of failed user requests and the

number of impacted users. Such information helps the OCEs

to assess the severity of the incident. The second part of the

report provides information for assisting effective diagnosis

including the summary of the underlying issue (if found), a

list of similar incidents in the past, and links to the detailed

diagnosis results of each type of the monitoring data. This

report provides an easy and systematic way for service engi-

neers to consume the analysis results, and thus greatly im-

proves the usability of SAS. For example, OCEs can quickly

get an overview of the incident and understand what was go-

ing on during the period of the incident. They can also obtain

detailed information for further investigation through a single

mouse click. The third part of the report recommends service-

recovery actions adapted from those for similar incidents in

the past. For example, in Figure 4, the suggested action is to

reset the IIS on a specific front end server.

In addition, we present the results of suspicious execution

patterns in an easy-to-understand way in SAS. Many terms in

verb target verb target

recycle App-pool re-image WFE

restart IIS or Service rotate WFE

reboot WFE rotate SQL

reboot SQL patch WFE

reset DB patch SQL

There is an internal server error related issue.

Datacenter: DC1

Start time: 9/4/2012 3:48:00 AM End time: 9/4/2012 3:58:00 AM

Impact:

Influenced requests 1000

Influenced end users 100

Diagnosis:

This issue is a problem of “Credential loss”. The source of the issue mainly locates at Front End Server—

“FE001”.

Here are similar previous occurrences of the issue:

 Incident ID 91236: 3/14/2012 10:49:00 AM (see detail)

 Incident ID 91271: 7/26/2012 14:25:00 AM (see detail)

See also:

Malfunctioned Frontend Servers 973 of 1000 failed requests related to FE001.

 Malfunctioned SQL Servers No malfunctioned SQL servers detected.

Suspicious Metrics No highly correlated metrics found.

 Suspicious Execution Patterns 1 major pattern in the logs covers 973 of 1000 failed requests.

Suggested actions based on similar past incident (ID 91236):

Reset the IIS service on the front end server FE001.

the machine-learning and data-mining areas are not easily

accessible to OCEs. For example, many OCEs are not famil-

iar with execution patterns or FCA. In SAS, we use a UI to

highlight the common difference between logs of succeeded

and failed requests, and facilitate OCEs to intuitively manipu-

late the log sequences for understanding the contribution of

different log messages to the failure.

F. Deployment and Feedback

SAS was first deployed to the datacenters of Service X

worldwide in June 2011. The OCEs of Service X have been

using SAS for incident management since then. Now, they

heavily depend on SAS. Because of its importance for Service

X, we were required to make sure the high availability of SAS.

However, in practice, it is very difficult to estimate how much

OCE time a tool helps save. In order to assess the impact of

SAS in practice, we have instrumented SAS and started to

collect its usage data since 2012. The usage data records all

the interactions between users and SAS. Based on the usage

data, we can answer questions such as “who uses which anal-

ysis module at what time on what data?”

According to the usage data from a 6-month study, about

91% of OCEs used SAS to accomplish their incident-

management tasks. SAS was used to diagnose about 86% of

service incidents. Along with engineers from Service X teams,

we investigated whether the analysis results of SAS were use-

ful for diagnosing an incident. The ground truth is set up ac-

cording to the product-ticketing system. In particular, for each

service incident, a ticket is created in the ticketing system to

record the detailed information of the diagnosis process of the

service incident including symptoms, email threads, diagnosis

results, and recovery actions. We use the recorded tickets as

the ground truth, and compare them with our analysis results

to conduct the evaluation. The results are considered useful if

(1) they can directly help locate the cause of the incident; (2)

they can locate the malfunctioned component; or (3) they can

find out the problematic site to help OCEs to reduce their

investigation scope. The data in these 6 months shows that

SAS helped diagnose about 76% of the service incidents that

SAS was used for.

There are two main reasons why SAS failed to provide

useful diagnosis information for the remaining 24% service

incidents. First, sources of incident causes were not covered

by the monitoring system. For example, in the production

environment of Service X, several incidents were caused by a

malfunctioned Active Directory (AD) controller. Since no

monitoring information was collected on AD servers back

then, SAS could not provide useful clues for diagnosis. Sec-

ond, there are inconsistencies and errors in the transactional

logs. Such factor may impact the precision of our incident

retrieval algorithm.

In summary, with the techniques of data analysis, SAS

tackled challenges in practice, and it helped OCEs of Service

X improve their effectiveness and efficiency of incident man-

agement. We expect that the analysis techniques and design

principals of SAS can be applied to other online services.

V. RELATED WORK

Previous work applies statistical-analysis techniques (i.e.,

machine learning and data mining) to tackle the scale and

complexity challenges in incident management. We discuss

related work in three categories.

Incident-beacon identification. Previous work

[6][8][9][15][24] mainly focused on finding suspicious sys-

tem metrics that may be related to the incident under investi-

gation. Given the data of system-SLO states (violation or

compliance) and system metrics, Cohen et al. [6][8][15][24]

proposed the Tree-Augmented-Network (TAN) approach to

deduce a TAN model, which uses a few system metrics to

predict system-SLO states. Their approach identifies the met-

rics used by the deduced TAN model as service-issue beacons.

Bodik et al. [6] adapted their approach by adopting a different

model, named as L1-Logistic Regression, to identify highly

correlated metrics more accurately. However, these previous

classification-based approaches [6][8][9][15][24] usually ana-

lyze each performance issue one by one, and have a number

of limitations (suffering from the over-fitting problem when

learning a classifier for a performance issue with short dura-

tion, identifying only general symptoms as incident beacons,

etc.)[12]. Our techniques in SAS tackle these problems by

mining CARs from historical data, and then selecting the best

ones from the candidates by matching them with the perfor-

mance issue under investigation.

Known-incident association. As discussed earlier, associ-

ating a newly incoming incident with a previous known inci-

dent is very useful in incident management. Yuan et al. [23]

used classification techniques to classify system problems

into different categories. However, in real practice, classifica-

tion-based techniques are often not applicable due to lack of

labeled samples. In addition, a classification-based technique

often cannot check whether an incident is a totally new one or

similar to a previous one. Previous work [6][8][9][15][24]

retrieved similar previous incidents by defining similarity

based on the beacons of incidents (those beacons are used as

incident signatures). Another set of research efforts in the area

of mining bug repositories is also related to our known-

incident association technique. The basic idea of such scenar-

io is to apply web-search techniques on a bug repository

where each bug report is considered as a web document.

Ashok et al. [5] implemented a search system for similar-bug

retrieval to speed up bug fixing based on the natural-language

text, dumped traces, and outputs described in the bug reports.

Some other work [20][21] uses mining or classification tech-

niques on textual information to cluster or detect duplicate

bug reports. These techniques would not be effective in our

problem setting because the textual information is a much

weaker representation of an incident compared to the moni-

toring data associated with the incident. Furthermore, the tex-

tual information is also incomplete or imprecise [11]. Differ-

ent from the previous work, we extract incident signatures by

analyzing the difference between the logs of failed requests

and succeeded requests. In SAS, we go further to provide

healing suggestions by leveraging the solutions of previous

incidents in the incident repository.

Fault localization. Automated localization of faults/bugs

is a major research area in software engineering. Two kinds

of localization techniques are used in SAS. The basic idea of

our technique for execution-pattern mining is similar to pre-

vious work [18][20] in that we all leverage the differences

between the logs of failed and succeeded requests. Sun et al.

[20] evaluated patterns mined from both correct and incorrect

runs to detect duplicate bug reports. Our work uses contrast

information to achieve high accuracy of signature generation.

Cellier [7] applied FCA to fault localization by using con-

cepts to find interesting clusters. In contrast to these previous

techniques on fault localization, our work is motivated by

addressing challenges of incident management.

The above-discussed previous work focused on develop-

ing techniques for a single type of data sources, and none of

them has been deployed to a real-world online service system.

In our work, we conducted comprehensive analysis on vari-

ous monitoring-data types to handle real-world problems, and

developed the SAS system, which has been used in real pro-

duction environments.

VI. LESSONS LEARNED

We started the project on data-driven performance analy-

sis for online services in 2010. It took us two years to conduct

algorithm research, build the diagnosis system, and make the

system an indispensable system for the engineering team of

Service X. In this section, we share some of our experiences

and the lessons learned along the way.

A. Solving Real Problems

Solving real problems is one of the key factors to the suc-

cess of SAS. We did not, however, take the problem-driven

approach right at the beginning of the project, and we learned

the lesson the hard ways.

When we first knew about the various challenges of Ser-

vice X, we went on the usual research route looking into the

research literature on existing work to understand state-of-

the-art techniques in the area. We found that using a machine-

learning technique to classify, retrieve, and predict service

violations had been an interesting topic, and a classification-

based technique was the mainstream solution. We analyzed

the pros and cons of several popular classification-based

techniques, implemented, and tested them using the real data

that we obtained from Service X. However, the results were

not satisfactory as discussed in Section IV-A; therefore, we

decided to research on this topic in order to improve the recall

and precision. We spent a few months along this direction and

did get better results later.

We presented to the engineering team from Service X the

improvements that we made over the state-of-the-art tech-

niques, and we got feedback such as “interesting”, “good”,

and “useful”, as well as questions and comments such as “this

technique alone cannot solve our problems”, and “do you

guys look at logs as well?”, “How can you help find the root

cause?”, etc. It was then when we realized that we missed two

important issues. One was that there were other data sources

(e.g., service logs) that were important for analyzing service-

quality issues but we did not leverage. The other was that the

problem that we worked on was important, but it may not be

the most important one and it was not the whole problem.

Since we had a real system running, and there were practi-

tioners who faced real challenges and were willing to talk

with us, we decided to reset the project and take a problem-

driven approach in order to ensure that our research would

address the real problems. After a few rounds of communica-

tion with the Service X teams, we clearly identified that the

top priority for Service X at that time was to greatly reduce

the Mean-Time-To-Restore (MTTR), and the primary chal-

lenges included dealing with large-scale and heterogeneous

data, and leveraging disaggregated knowledge learned from

past incidents, etc. Based on these challenges and real-world

scenarios, we formulated the incident-management problem

of online services as a software-analytics problem, and re-

searched and developed SAS as discussed in the previous

sections.

B. Improving Techniques in Practice

Robustness. In a large-scale online-service system, data

missing and noise can be common. In the design of tech-

niques, much effort was spent on tuning the underlying algo-

rithms to make them robust in the real scenarios. For example,

in order to improve the robustness of our algorithm of mal-

functioned-role detection, median values and Medians of Ab-

solute Difference (MAD) are used to estimate the Gaussian

parameters. In addition, during the detection stage, we use

Bayesian inference by setting a low a-prior failure probability

(e.g., 1e-5), which can largely reduce the rate of false posi-

tives. In our execution-pattern analysis, each execution pat-

tern is represented by a sub-set of log events rather than a

sub-sequence of log events to improve algorithm robustness.

Because many distributed-system components serve a single

user request collaboratively and their log events may be dis-

ordered due to machine-time bias, an algorithm based on exe-

cution patterns with temporal sequential events is not robust

enough in practice. In addition, our empirical study shows

that an event set is an effective abstraction for our problem

context (similar observations were also made by Cellier [7]).

Performance. In addition to the enabling algorithms for

analyzing the large-scale and heterogeneous data, perfor-

mance plays an important role in the adoption of SAS in prac-

tice. In order to speed up the investigation of service incidents,

OCEs need to obtain relevant information as quickly as pos-

sible. We paid a lot of attention to ensure high performance

when designing and implementing SAS.

In order to enable real-time analysis leveraging historical

data, we designed a background service to incrementally pro-

cess new generated data as it came in, and save the intermedi-

ate results for on-demand analysis later on. Our service runs

once every 5 minutes, collects the metric data newly generat-

ed during the past 5 minutes, calculates the KPIs and metric

values from the data, and runs some analysis modules. For

example, the first two steps of the technique for identifying

incident beacons (see Section IV-A) run as a part of the back-

ground service to learn a set of CARs incrementally. The

learned CARs are stored as intermediate results, and then are

used later for on-demand analysis. On the contrary, the third

step is often run on demand. When an OCE tries to investi-

gate a service incident, he/she often selects the time period of

the incident for analysis through the UI of SAS, and lets SAS

run the third step of the technique on the metrics for the time

period under investigation. Because the third step does not

require heavy computation, an OCE can obtain incident bea-

cons immediately.

We also have some special designs in the module of exe-

cution-pattern analysis to improve the performance. First, we

automatically cache log sequences of a few succeeded re-

quests in a local file, and update the cache every day in the

background service. Doing so can help speed up the on-

demand analysis by reducing the data-fetching time. Second,

during the on-demand analysis, we select a 20-minute time

window where the service has the worst performance among

the time range of the incident under investigation, and use

only the failed requests in the window for analysis to reduce

the computational cost of execution-pattern analysis. Such

design can largely improve the interactivity of SAS. When an

analysis step did take a relatively long time, e.g., a few sec-

onds, related information would be displayed to notify users

on what analysis was running along with its progress.

C. Availability

Besides the interactivity and the performance, high avail-

ability is also very important for a tool designed for online

services. When a service incident occurs, OCEs need to use

the tool for investigating and resolving the incident as quickly

as possible. If the tool is unavailable at that time, OCEs have

to spend extra time to restore the tool or to investigate the

incident through other ways (e.g., manually inspecting the

instrumented data). Therefore, it is important to guarantee the

high availability of SAS. In order to improve the robustness

of SAS, the background service of SAS is designed to be au-

to-recoverable from failures. For example, there are a set of

check points in the service code. At each check point, we ver-

ify the states of the service, and record the states and all in-

termediate results in files. When the service fails, it is restart-

ed automatically by the operating system, and then, it recov-

ers its states from the latest check-point files. During the past

year, we encountered one case: we were called in during a

mid-night to fix a SAS issue because OCEs were unable to

get the latest analysis report from SAS; such issue was caused

by that the account used for SAS was deleted by an operator

by mistake.

D. Investing in System Building

In addition to conducting algorithm research, we also built

the entire SAS system, which was deployed in the datacenters

of Service X worldwide. The engineering cost in building

such a system was not low. We did not build SAS to its cur-

rent state all at once. Instead, we took a step-by-step way and

added functionalities incrementally. Doing so did not only

help pave the way to creating real impact in three main ways

(as discussed below), but also helped us maintain the engi-

neering investment within the manageable scope.

First, having a working system helped demonstrate the re-

search value and built trust with the product-team partners.

Usually, product teams are under tight schedule and they

would not have cycles for “distractions” once they are in the

full development mode. In the case of providing online ser-

vices, they are quite sensitive about deploying systems or

tools that consume resources in datacenters and might impact

the services in any way. Considering these practical issues,

we built SAS v1.0 with the primary functionality of discover-

ing problematic execution patterns associated with the given

service incident by analyzing the service logs. This function-

ality greatly reduced the scope of log investigation from thou-

sands of lines of logs to just tens of lines. We first demon-

strated the effectiveness of SAS using historical logs. Then

we got the permission to run it within the internal deployment

environment of Service X. This step was critical because SAS

was made available for the first time to the teams of Service

X for troubleshooting, and this step demonstrated that running

SAS had negligible impact on Service X. After SAS v1.0 was

used to help troubleshoot some incidents, we got the permis-

sion to deploy it to the production environment of one data-

center. The success there created the demand of worldwide

deployment into all datacenters.

Second, a working system helped us get timely feedback.

The feedback allowed us to observe the troubleshooting expe-

riences of service engineers, and it helped us understand how

well the service engineers used SAS. At the same time, we

instrumented SAS to collect how service engineers used it in

the real settings. This data provided quantitative metrics for

us to measure the impact of our work. The investigation on

why SAS was not used for or could not help with certain inci-

dents could lead to new research problems.

Third, a working system helped us build up credibility and

bring in more research opportunities. As more and more

teams came to know the success of SAS, they started to come

to us with their own problems. Some of them were similar to

the challenges of Service X and the others were different. For

the similar problems, we could easily reuse the analysis tech-

niques and modules that we built for SAS. Therefore, the en-

gineering investment really paid off, and it would pay off

more as components in SAS got (re)used more. The different

problems provided new opportunities for us to explore the

online service landscape.

VII. CONCLUSION

Incident management has become a critical task for an

online service to ensure high quality and reliability of the

service. However, incident management faces a number of

significant challenges such as the large data scale, complex

problem space, and incomplete knowledge. To address these

challenges, we developed an industrial system called SAS

based on a set of data-driven techniques to improve the effec-

tiveness and efficiency of incident management in a large-

scale online service of Microsoft. In this paper, we have

shared our experience on incident management for the large-

scale online service including the way of using software ana-

lytics to solve engineers’ pain points in incident management,

the resulting industrial system, and the lessons learned from

the process of research development and technology transfer.

REFERENCES

[1] “Amazon’s S3 cloud service turns into a puff of smoke”. In

InformationWeek NewsFilter, Aug., 2008.

[2] http://en.wikipedia.org/wiki/Formal_concept_analysis

[3] http://en.wikipedia.org/wiki/Incident_management

[4] http://en.wikipedia.org/wiki/system_center_operations_manager

[5] B. Ashok, J. Joy, H.K. Liang, S. K. Rajamani, G. Srinivasa, V.

Vangala. “DebugAdvisor: A recommender system for

debugging”. In Proc. of ESEC/FSE’ 09, pp. 373-382, 2009.

[6] P. Bodik, M. Goldszmidt, A. Fox, D.B. Woodard, H. Andersen.

“Fingerprinting the datacenter: Automated classification of

performance crises”. In Proc. of EuroSys’ 10, pp. 111-124,

2010.

[7] P. Cellier. “Formal concept analysis applied to fault

localization”. In Proc. ICSE Companion’ 08. pp. 991-994, 2008.

[8] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J.S. Chase.

“Correlating instrumentation data to system states: A building

block for automated diagnosis and control”. In Proc. of

USENIX OSDI’ 04, pp. 231-244, 2004.

[9] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, A.

Fox. “Capturing, indexing, clustering, and retrieving system

history”. In Proc. of SOSP’ 05, pp. 105-118, 2005.

[10] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, T. Xie, “XIAO:

Tuning code clones at hands of engineers in practice”. In Proc.

of ACSAC’ 12, pp. 369-378, 2012.

[11] R. Ding, Q. Fu, J.-G. Lou, Q. Lin, D. Zhang, J. Shen, T. Xie,

“Healing online service systems via mining historical issue

repositories”. In Proc. of ASE’ 12, pp. 318-321, 2012.

[12] Q. Fu, J.-G. Lou, Q. Lin, R. Ding, D. Zhang, Z. Ye, T. Xie,

“Performance issue diagnosis for online service systems”. In

Proc. of SRDS’ 12, pp. 273-278, 2012.

[13] A. A. Freitas, “Understanding the crucial differences between

classification and discovery of association rules - a position

paper”. In SIGKDD Exploration, vol.2, no.1, pp. 65-69, 2000.

[14] S. Han, Y. Dang, S. Ge, D. Zhang, T. Xie, “Performance

debugging in the large via mining millions of stack traces”. In

Proc. of ICSE’ 12, pp. 145-155, 2012.

[15] C. Huang, I. Cohen, J. Symons, T. Abdelzaher, “Achieving

scalable automated diagnosis of distributed systems

performance problems”. In Technical Report, HP, 2006.

[16] J. N. Hoover: “Outages force cloud computing users to rethink

tactics”. In InformationWeek, Aug. 16, 2008.

[17] J. Li, H. Shen, R. W. Topor, "Mining optimal class association

rule set". In Proc. of PAKDD’ 01, pp. 364-375, 2001.

[18] C. Liu, X.F. Yan, L. Fei, J.W. Han, S.P. Midkiff. “SOBER:

statistical model-based bug localization”. In Proc. of ESEC/FSE’

05, pp. 286-295, 2005.

[19] D. A. Patterson. “A simple way to estimate the cost of

downtime”. In Proc. of LISA’ 02, pp. 185-188, 2002

[20] C. Sun, D. Lo, X.Y. Wang, J. Jiang, S.C. Khoo. “A

discriminative model approach for accurate duplicate bug report

retrieval”. In Proc. of ICSE’ 10, pp. 45-54, 2010.

[21] X.Y. Wang, L. Zhang, T. Xie, J. Anvik, J.S. Sun. “An approach

to detecting duplicate bug reports using natural language and

execution information”. In Proc. of ICSE’ 08, pp. 461-470,

2008.

[22] S. K. M. Wong, W. Ziarko, P. C. N. Wong, “Generalized vector

spaces model in information retrieval”. In Proc. of ACM SIGIR’

85, pp. 18-25, 1985.

[23] C. Yuan, N. Lao, J.R. Wen, J. Li, Z. Zhang, Y.M. Wang, W. Y.

Ma. “Automated known problem diagnosis with event traces”.

In Proc. of EuroSys’ 06, pp. 375-388, 2006.

[24] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, A. Fox,

“Ensembles of models for automated diagnosis of system

performance problems”. In Technical Report, HP, 2005.

[25] D. Zhang, Y. Dang, J. Lou, S. Han, H. Zhang, T. Xie.

“Software analytics as a learning case in practice: approaches

and experiences”. In Proc. of MALETS’ 11, pp. 55-58, 2011.

[26] D. Zhang, S. Han, Y. Dang, J. Lou, H. Zhang, T. Xie.

“Software Analytics in Practice”. IEEE Software, Special Issue

on the Many Faces of Software Analytics, vol. 30 no. 5, pp. 30-

37, September/October 2013.

[27] D. Zhang, T. Xie. “Software analytics in practice: mini tutorial”.

In Proc. of ICSE’ 12, pp. 997, 2012.

	I. INTRODUCTION
	II. BACKGROUND OF SERVICE X
	A. Overview of Service X
	B. Pain points and challenges

	III. INCIDENT MANAGEMENT AS SOFTWARE ANALYTICS
	A. Objectives
	B. Monitoring Data of Service X

	IV. Techniques in SAS
	A. Identification of Incident Beacons from System Metrics
	B. Mining Suspicious Execution Patterns
	C. Detection of Malfunctioned Role Instance
	D. Leveraging Previous Effort for Recurrent Incidents
	E. Usability
	F. Deployment and Feedback

	V. RELATED WORK
	VI. LESSONS LEARNED
	A. Solving Real Problems
	B. Improving Techniques in Practice
	C. Availability
	D. Investing in System Building

	VII. Conclusion
	References

