
Mining Test Oracles of Web Search Engines

Wujie Zheng1, Hao Ma2, Michael R. Lyu1, Tao Xie3 and Irwin King1,4

1Computer Science and Engineering, The Chinese University of Hong Kong, China
2Internet Services Research Center (ISRC), Microsoft Research, Redmond, USA

3Department of Computer Science, North Carolina State University, USA
4AT&T Labs Research, San Francisco, USA

{wjzheng, lyu, king}@cse.cuhk.edu.hk, haoma@microsoft.com, xie@csc.ncsu.edu

Abstract—Web search engines have major impact in people’s
everyday life. It is of great importance to test the retrieval
effectiveness of search engines. However, it is labor-intensive
to judge the relevance of search results for a large number of
queries, and these relevance judgments may not be reusable
since the Web data change all the time. In this work, we propose
to mine test oracles of Web search engines from existing search
results. The main idea is to mine implicit relationships between
queries and search results, e.g., some queries may have fixed
top 1 result while some may not, and some Web domains may
appear together in top 10 results. We define a set of items
of queries and search results, and mine frequent association
rules between these items as test oracles. Experiments on major
search engines show that our approach mines many high-
confidence rules that help understand search engines and detect
suspicious search results.

Keywords-software testing, search engines, test oracles

I. INTRODUCTION

Web search engines are becoming more and more impor-
tant for people to search for information in the World Wide
Web. Given a query, a good search engine should return
desired search results that possess various properties such
as relevance, authority, and freshness. Providing inadequate
search results could mislead or dissatisfy users. As an
example, Figure 1 shows the clarification message put in
the official PuTTY (a free telnet/ssh client) Website due to
the unexpected change of Google’s search results.

However, it is difficult to test search engines due to the
lack of test oracles. In particular, since the Web data and
the information need of users keep changing, the desired
search results may change along the time, even when the
search engines do not change. Existing approaches on search
engine testing/evaluation rely on relevance judgments of
search results, collected either explicitly [8] or implicitly
[7]. It is labor-intensive to manually label a large number
of relevance judgments of search results, i.e., test oracles
for the queries, and these relevance judgments may not be
reusable due to the dynamic nature of the Web. On the other
hand, implicit relevance judgments such as clickthrough data
(the set of results that the users click on) suffer from various
biases such as the position bias and summary bias [10]. In
particular, if a desired result is not found by a search engine,
there is no clickthrough data of it.

Figure 1. Declaration from the official PuTTY Website for Google’s search
result change

In this work, we propose to reduce the effort of manual la-
beling by mining pseudo test oracles of Web search engines.
Previous work on specification mining [2], [4], [5] suggests
that one can mine likely invariants or frequent patterns
as specifications (i.e., test oracles) from the execution of
existing tests. Violations of these mined test oracles are
suspicious and may reveal potential faults of the systems
under test. Using such approaches, testers of Web search
engines can label only the suspicious search results, which
are often in a small number, without missing many bugs.

However, mining specifications of Web search engines is a
non-trivial task. Many interesting patterns of search engines
may need to be mined from search results of multiple days
or multiple search engines. We need to integrate all these
search results for mining, regardless of the changes in a
search engine’s implementation or the differences in differ-
ent search engines’ implementations. Existing specification
mining approaches often mine patterns with regard to system
implementations, and therefore are not suitable for Web
search engines.

To address this problem, we define a set of items for
search results of Web search engines, and mine rules be-
tween these items as pseudo test oracles. Our approach first
defines items of queries, search results, matches between
queries and search results, and search engine identities.
These items reveal many aspects of the search results, and
are not affected by the differences of the engine imple-
mentations. Search results of different search engines in



different time are transformed to itemsets of these items.
Our approach then applies association rule mining [1] to
mine rules between the items. The mined rules are saved as
pseudo test oracles. Given new search results, our approach
detects the search results that violate the mined rules, and
presents them to testers for manual labeling.

We evaluate our approach on search results of Google
and Bing for 4232 queries within 4 months, which were
collected by ourselves. We choose Google and Bing to test
because they are the most popular search engines nowadays.
The queries consist of 800 common queries used in the
KDD-Cup 2005 competition task [9] and 3432 hot queries
of Google and Yahoo1. We collected the search results of
the queries from December 25, 2010 to April 21, 2011.
Our approach mines many high-confidence rules that help
to understand search engines. Our approach can also detect
suspicious search results that may reveal potential search
engine faults.

II. BACKGROUND OF ASSOCIATION RULE MINING

Our approach is based on a data mining technique called
association rule mining [1]. For ease of discussion, we
briefly review some basic terminologies of association rules.

Let I = {i1, i2, . . . , im} denote a set of items. Let D be
a database of transactions, where each transaction T is a set
of items such that T ⊆ I . A collection of zero or more items
is called an itemset. T contains an itemset X if X ⊆ T . The
support of an itemset X , denoted as sup(X), is the number
of transactions in D that contain X . We call an itemset X a
frequent itemset if its support is large, i.e., sup(X)> minsup,
where minsup is a threshold of support. For example, con-
sider a datebase {{a, b, c}, {a, d, e}, {a, b}}. The support of
the itemset {a} is 3 and the support of the itemset {a, b, c}
is 1. If minsup = 2, the frequent itemsets are {a}, {b}, and
{a, b}.

Definition 1 (Association rule) An association rule is an
implication expression of the form X ⇒ Y , where X ⊆ I
and Y ⊆ I are two disjoint itemsets, i.e., X ∩ Y = ∅.

We can measure the importance of an association rule
X ⇒ Y using support and confidence. The support of X ⇒
Y is equal to the support of the union set X ∪ Y . The
confidence of the rule X ⇒ Y , denoted as conf(X ⇒ Y ), is
the percentage of transactions containing X that also contain
Y . For example, in the example database described above,
the support and confidence of the rule a ⇒ b is 2 and 2/3,
respectively.

For a database of itemsets, the problem of mining asso-
ciation rules is to find all association rules with support ≥
minsup and confidence ≥ minconf , where minsup
and minconf are the corresponding support and confidence
thresholds, respectively.

1Bing used to have a service of hot queries named Bing xRank, which
however has been shut down.

Extracting Input/Output

Properties as Items

Queries and Search

Results For Mining

Mining Association Rules

Examined by Testers

Association Rules

as Test Oracles

Suspicious Search

Results

Detecting Violations

Queries and Search

Results For Testing

Itemset Database

Figure 2. Approach

Table I
EXAMPLE ITEMS

Category Item Description (Example) Items
Query The query. Q:ase 2011
Query A word in the query. QW:ase
Query The query type (hot, common). HotQ
Query The number of words in the query. OneWord
Query The number of words in the query. TwoWords
Search The domain of the top 1 search result. top1:
Result continuinged.ku.edu
Search The domain of a top 10 search result. top10:
Result continuinged.ku.edu
Search The Alexa Ranks of the top 10 ALLGE1K
Result results’ top private domains are

all greater than 1,000.
Match The whole query does not NoTitleHasQ

appear in the title of any top 10 result.
Search The search engine that returns the SE:google
Engine search results.

III. APPROACH

Figure 2 presents an overview of our approach. The main
idea of our approach is to mine rules between items of
queries and search results automatically. An item describes
a property of the input (query) or the output (search results),
e.g., a word in the query, the URL domain of a top 10 search
result, and whether the URLs contain the query. Our ap-
proach first extracts input/output items from existing queries
and search results. Our approach then mines association
rules of the items. The mined rules are saved as pseudo test
oracles. Given new queries and search results, our approach
detects suspicious search results that violate mined rules,
and presents them to testers for manual labeling.

A. Extracting Items from Queries and Search Results

We consider items of four broad categories: (i) items
based on the query, (ii) items based on the results, (iii) items
based on the matching between the query and the results,
and (iv) search engine identities. Items of the query category
consist of the query words, the query type, the number of
words in the query, etc. Items of the search result category



consist of the URL domain of the top 1 search result, the
URL domains of top 10 search results, etc. Items of the
matching category consist of whether the query appears in
the title of any top 10 search result, etc. Items of the search
engine category consist of the search engine names. Table I
provides a list of example items. In general, any properties
of the queries and the search results, such as the link and
traffic information of the Webpage that a search result points
to, can be used as items.

Given a set of search results (and their queries), our
approach extracts the items and builds a database of itemsets
for the search results.

B. Mining Association Rules

Our approach employs association rule mining to mine
implicit rules between different items. It first mines frequent
itemsets from the database. Our approach uses a threshold
for the length of rules (i.e., the number of items in the
rules), denoted as maxL. Given a length threshold maxL,
our approach adopts the Apriori algorithm [1] to generate
frequent itemsets up to length maxL iteratively.

Our approach then generates the rules with high confi-
dences from the frequent itemsets. Given a frequent itemset
X = {x1, x2, ..., xn}, we can generate 2n − 2 association
rules from it. However, these rules could be highly redun-
dant. Therefore, our approach generates only the rules whose
righthand side has just one item from the frequent itemsets.
That is, for each xi in X , our approach generates a rule
{x1, ..., xi−1, xi+1, ..., xn} ⇒ xi.

Our approach also designs a set of controlling schemes,
including left-hand-side patterns, right-hand-side patterns,
and stop words, to guide the rule generation. These patterns
specify what items are allowed or disallowed to be parts
of association rules. For example, left-hand-side patterns
specify the items that can be employed in the left-hand-side
of rules. A pattern can represent many possible items, e.g.,
a “top10:” pattern represents all possible items for the top
10 search results. In this way, we do not need to enumerate
all possible items in advance.

C. Detecting Violations of Mined Rules

After mining association rules, our approach automati-
cally detects violations of these rules in any given search
results. Our approach ranks the mined rules in descending
order of confidence and support. Given a set of search
results, our approach transforms them to a database of
itemsets, and then checks the rules as follows. From top
to bottom, our approach picks a rule and checks it against
all the itemsets. If the rule is violated by any itemset,
which represents a query and its search results, our approach
outputs the violation as well as the rule. The testers can
then examine the violation, i.e., a suspicious search result,
manually.

IV. EVALUATION

A. Data Collection

We collect two sets of queries for the evaluation. The first
set consists of 800 queries that were used for evaluation in
KDD-Cup 2005 Competition [9]. The second set consists
of 3432 queries that are collected from Google Trends and
Yahoo! Buzz from November 25, 2010 to April 21, 2011.
These two indexes provide the hottest queries submitted to
the corresponding search engine everyday.

We collect the search results of the prepared queries from
December 25, 2010 to April 21, 2011. We apply the Web
services of Google and Bing to collect the top 10 search
results of each query every day. In total, we collect 390797
ranked lists of search results (each list contains the top 10
search results of a query).

B. Mining Rules as Test Oracles

We apply our approach to mine rules from search results
of Google and Bing during December, 25, 2010 to March
31, 2011. We set minsup = 200, minconf = 0.95, and
maxL = 2. For the rules that indicate the best top 1 search
results of queries, there may be much fewer supporting
documents. Therefore, we mine this kind of rules separately
by specifying the left-hand-side and right-hand-side patterns
and set minsup = 20.

1.top10:quotes.nasdaq.com, => top10:finance.yahoo.com,
: 314/314=1.0

2.top10:finapps.forbes.com, => top1:finance.yahoo.com,
: 262/262=1.0

3.top10:absoluteastronomy.com, => SE:bing, : 7657/7657=1.0
4.Q:facebook, => top1:facebook.com, : 182/182=1.0

Figure 3. Example association rules of items

Figure 3 shows some examples of the mined rules. These
rules can be classified into three categories: implications
between Websites, the different opinions of search engines
to certain Websites, and the best top 1 results of queries.

Rules 1 and 2 are example rules between Websites. Rule
1 says that there are 314 itemsets (queries and results)
where the top 10 search results contain quotes.nasdaq.com.
In all these 314 itemsets, the top 10 search results always
contain finance.yahoo.com. In other words, the rule says
that quotes.nasdaq.com being ranked top 10 often implies
finance.yahoo.com being ranked top 10 for the same query.
Rule 2 describes a similar rule.

Rule 3 is an example rule that shows different opinions of
search engines to certain Websites. It says that if the top 10
results contain “absoluteastronomy.com”, the search engine
is likely to be Bing (the confidence is 1.0). In other words,
Google seldom ranks the Website as one top 10 result for
queries while Bing often does. No matter the Website is
good or not, such rules are helpful for understanding the



differences of search engines, and may help testers find
drawbacks of search engines’ spiders or ranking functions.

Rule 4 is an example rule of the best top 1 search
results of queries. It says that for the query “facebook”,
“facebook.com” is always ranked top 1 by the search engines
in the collected search results. Violations of such rules,
which might be caused by spamming or phishing Websites,
can confuse users and cause user dissatisfaction. On the
other hand, many queries may not have stable top 1 results
since their meanings are ambiguous and the Web data keep
changing. Therefore, it is important to identify whether a
query has the most suitable top 1 search result automatically.

C. Detecting Violations

We also apply our approach to check the mined rules
against the search results of Google and Bing between April
1, 2011 to April 22, 2011. Figure 4 shows an example
violation of the mined rules.

Q:where to login to john carroll university email,
=> top1:mirapoint.jcu.edu, : 172/180=0.96

Figure 4. An example suspicious search result

The high confidence of the rule in Figure 4 suggests
that for the query “where to login to john carroll uni-
versity email”, the URL “mirapoint.jcu.edu” is often the
best answer. Both Google and Bing agree on this result
for most of the time. We check this URL manually, and
find that it is the entrance of the webmail system of the
John Carroll University. However, on April 1st, 2011, Bing
violates this rule. We check the search results of the query
of Bing in that day. The top 1 search result of Bing is
the URL “http://www.jcu.edu/index.php”, which points to
the homepage of the John Carroll University. A manual
investigation of the URL shows that it is not easy to get the
answer of the query, i.e., the entrance of the mail system,
from the URL. Therefore, the change of the top 1 search
result for this query is inadequate. Collecting such suspicious
cases automatically can help testers identify problems in the
search engines more quickly.

V. RELATED WORK

Our approach is related to dynamic specification mining,
which mines test oracles from the execution of existing
tests. Existing approaches mainly mine three kinds of spec-
ifications: temporal models [2], algebraic models [5], and
operational models [4], [11]. These approaches focus on
mining models of a specific system implementation. Instead,
our approach designs a set of items for the inputs and outputs
of search engines, so as to integrate the search results of
different search engines in different time for mining.

Using the mined test oracles, our approach can reduce the
efforts of manually labeling search results, essentially a test
selection task. Various kinds of code coverage criteria have
been proposed for test selection [6]. Dickinson et al. [3] em-
ployed clustering analysis to select executions from clusters
for result inspection. These approaches select tests based on
the information related to the system implementation, while
our approach mines frequent patterns in the system level
and thus can easily integrate the tests of different systems
in different time.

VI. CONCLUSION

We propose to mine test oracles of Web search engines
from existing search results. We define a set of items of
queries and search results, and mine frequent association
rules between these items as test oracles. We collect a data
set that contains the search results of two major search
engines, namely Google and Bing, for 4232 queries in a
period of 4 months. Evaluation on this data set shows that
our approach mines many high-confidence rules whose vio-
lations are suspicious search results for manual investigation.

ACKNOWLEDGMENT

This work was supported by grants from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CUHK 415311 and CUHK
413210), NSF grants CCF-0725190, CCF-0845272, CCF-
0915400, CNS-0958235, and ARO grant W911NF-08-1-
0443.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. In VLDB, pages 487–499, 1994.

[2] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In
POPL, pages 4–16, 2002.

[3] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster
analysis of execution profiles. In ICSE, pages 339–348, 2001.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dy-
namically discovering likely program invariants to support program
evolution. IEEE Trans. Software Eng., 27(2):99–123, 2001.

[5] J. Henkel and A. Diwan. Discovering algebraic specifications from
java classes. In ECOOP, pages 431–456, 2003.

[6] J. C. Huang. An approach to program testing. ACM Comput. Surv.,
7(3):113–128, 1975.

[7] T. Joachims. Evaluating retrieval performance using clickthrough
data. In Text Mining, pages 79–96. 2003.

[8] K. S. Jones and C. van Rijsbergen. Report on the need for
and provision of an “ideal” information retrieval test collection.
British Library Research and Development Report 5266, University
Computer Laboratory, Cambridge., 1975.

[9] Y. Li, Z. Zheng, and H. K. Dai. KDD CUP-2005 report: facing a
great challenge. SIGKDD Explorations, 7(2):91–99, 2005.

[10] Y. Yue, R. Patel, and H. Roehrig. Beyond position bias: examining
result attractiveness as a source of presentation bias in clickthrough
data. In WWW, pages 1011–1018, 2010.

[11] W. Zheng, M. R. Lyu, and T. Xie. Test selection for result inspection
via mining predicate rules. In ICSE, Companion Volume, pages 219–
222, 2009.


