
Generating Program Inputs for Database
Application Testing

Kai Pan, Xintao Wu
University of North Carolina at Charlotte

{kpan, xwu}@uncc.edu

Tao Xie
North Carolina State University

xie@csc.ncsu.edu

Abstract—Testing is essential for quality assurance of database
applications. Achieving high code coverage of the database
application is important in testing. In practice, there may exist a
copy of live databases that can be used for database application
testing. Using an existing database state is desirable since it
tends to be representative of real-world objects’ characteristics,
helping detect faults that could cause failures in real-world
settings. However, to cover a specific program code portion (e.g.,
block), appropriate program inputs also need to be generated
for the given existing database state. To address this issue,
in this paper, we propose a novel approach that generates
program inputs for achieving high code coverage of a database
application, given an existing database state. Our approach uses
symbolic execution to track how program inputs are transformed
before appearing in the executed SQL queries and how the
constraints on query results affect the application’s execution.
One significant challenge in our problem context is the gap
between program-input constraints derived from the program
and from the given existing database state; satisfying both types
of constraints is needed to cover a specific program code portion.
Our approach includes novel query formulation to bridge this
gap. Our approach is loosely integrated into Pex, a state-of-the-
art white-box testing tool for .NET from Microsoft Research.
Empirical evaluations on two real database applications show
that our approach assists Pex to generate program inputs that
achieve higher code coverage than the program inputs generated
by Pex without our approach’s assistance.

I. INTRODUCTION

Database applications are ubiquitous, and it is critical to
assure high quality of database applications. To assure high
quality of database applications, testing is commonly used
in practice. Testing database applications can be classified
as functional testing, performance testing (load and stress,
scalability), security testing, environment and compatibility
testing, and usability testing. Among them, functional testing
aims to verify the functionality of the code under test. An
important task of functional testing is to generate test inputs
to achieve full or at least high code coverage, such as block
or branch coverage of the database application under test. For
database applications, test inputs include both program inputs
and database states.

A. Illustrative Example

The example code snippet shown in Figure 1 includes a
portion of C# source code from a database application that cal-
culates some statistic related to mortgages. The corresponding
database contains two tables: customer and mortgage. Their

01:public int calcStat(int type,int zip) {
02: int years = 0, count = 0, totalBalance = 0;

03: int fzip = zip + 1;

04: if (type == 0)

05: years = 15;

06: else

07: years = 30;

08: SqlConnection sc = new SqlConnection();

09: sc.ConnectionString = "..";

10: sc.Open();

11: string query = "SELECT C.SSN, C.income,"

+" M.balance FROM customer C, mortgage M"

+" WHERE M.year=’" + years +"’ AND"

+" C.zipcode=’"+ fzip + "’ AND C.SSN = M.SSN";

12: SqlCommand cmd = new SqlCommand(query, sc);

13: SqlDataReader results = cmd.ExecuteReader();

14: while (results.Read()){
15: int income = int.Parse(results["income"]);

16: int balance = int.Parse(results["balance"]);

17: int diff = income - 1.5 * balance;

18: if (diff > 100000){
19: count++;

20: totalBalance = totalBalance + balance;}}
21: return totalBalance;}

Fig. 1. An example code snippet from a database application under test

schema-level descriptions and constraints are given in Table I.
The calcStat method described in the example code snippet
receives two program inputs: type that determines the years of
mortgages and zip that indicates the zip codes of customers.
A variable fzip is calculated from zip and in our example
fzip is given as “zip+1”. Then the database connection is set
up (Lines 08-10). The database query is constructed (Line 11)
and executed (Lines 12 and 13). The tuples from the returned
result set are iterated (Lines 14-20). For each tuple, a variable
diff is calculated from the values of the income field and
the balance field. If diff is greater than 100000, a counter
variable count is increased (Line 19) and totalBalance is
updated (Line 20). The method finally returns the calculation
result.

Both program inputs (i.e., input parameters) and database
states are crucial in testing this database application because
(1) the program inputs determine the embedded SQL statement
in Line 11; (2) the database states determine whether the true
branch in Line 14 and/or the true branch in Line 18 can be
covered, being crucial to functional testing, because covering



TABLE I
DATABASE SCHEMA

customer table mortgage table
Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
zipcode String [1, 99999] Foreign Key
name Int year Int

gender String
age Int (0, 100) balance Int (1000, Max)

income Int

a branch is necessary to expose a potential fault within that
branch; (3) the database states also determine how many times
the loop body in Lines 14-20 is executed, being crucial to
performance testing.

B. Problem Formalization

In practice, there may exist a copy of live databases that
can be used for database application testing. Using an existing
database state is desirable since it tends to be representative
of real-world objects’ characteristics, helping detect faults that
could cause failures in real-world settings. However, it often
happens that a given database with an existing database state
(even with millions of records) returns no records (or returned
records do not satisfy branch conditions in the subsequently
executed program code) when the database receives and ex-
ecutes a query with arbitrarily chosen program input values.
For example, method calcStat takes both type and zip as
inputs. To cover a path where conditions at Lines 14 and 18 are
both true, we need to assign appropriate values to variables
years and fzip so that the execution of the SQL statement
in Line 12 with the query string in Line 11 will return non-
empty records, while at the same time attributes income and
balance of the returned records also satisfy the condition in
Line 18. Since the domain for program input zip is large, it
is very likely that, if a tester enters an arbitrary zip value,
execution of the query on the existing database will return no
records, or those returned records do not satisfy the condition
in Line 18. Hence, it is crucial to generate program input
values such that test inputs with these values can help cover
various code portions when executed on the existing database.

C. Proposed Solution

To address this issue, in this paper, we propose a novel ap-
proach that generates program inputs for achieving high code
coverage of a database application, given an existing database
state. In our approach, we first examine close relationships
among program inputs, program variables, branch conditions,
embedded SQL queries, and database states. For example,
program variables used in the executed queries may be derived
from program inputs via complex chains of computations (we
use fzip=zip+1 in our illustrative example) and path condi-
tions involve comparisons with record values in the query’s
result set (we use if (diff>100000)) in our illustrative
example). We then automatically generate appropriate program

inputs via executing a formulated auxiliary query on the given
database state.

In particular, our approach uses dynamic symbolic execution
(DSE) [7] to track how program inputs to the database
application under test are transformed before appearing in the
executed queries and how the constraints on query results
affect the later program execution. We use DSE to collect
various intermediate information.

Our approach addresses one significant challenge in our
problem context: there exists a gap between program-input
constraints derived from the program and those derived from
the given existing database state; satisfying both types of
constraints is needed to cover a specific program code portion.
During DSE, these two types of constraints cannot be naturally
collected, integrated, or solved for test generation. To address
this challenge, our approach includes novel query formulation
to bridge this gap. In particular, based on the intermediate
information collected during DSE, our approach automatically
constructs new auxiliary queries from the SQL queries em-
bedded in code under test. The constructed auxiliary queries
use those database attributes related with program inputs as
the target selection and incorporate those path constraints
related with query result sets into selection condition. After the
new auxiliary queries are executed against the given database,
we attain effective program input values for achieving code
coverage.

This paper makes the following main contributions:
• The first problem formalization for program-input gen-

eration given an existing database state to achieve high
code coverage.

• A novel program-input-generation approach based on
symbolic execution and query formulation for bridging
the gap between program-input constraints from the pro-
gram and from the given existing database state.

• Evaluations on two real database applications to assess
the effectiveness of our approach upon Pex [12], a state-
of-the-art white-box testing tool for .NET from Microsoft
Research. Empirical results show that our approach as-
sists Pex to generate program inputs that achieve higher
code coverage than the program inputs generated by Pex
without our approach’s assistance.

II. DYNAMIC SYMBOLIC EXECUTION IN DATABASE
APPLICATION TESTING

Recently, dynamic symbolic execution [7] (DSE) was pro-
posed for test generation. DSE first starts with default or
arbitrary inputs and executes the program concretely. Along
the execution, DSE simultaneously performs symbolic exe-
cution to collect symbolic constraints on the inputs obtained
from predicates in conditions. DSE flips a branch condition
and conjuncts the negated branch condition with constraints
from the prefix of the path before the branch condition. DSE
then feeds the conjuncted conditions to a constraint solver
to generate new inputs to explore not-yet-covered paths. The
whole process terminates when all the feasible program paths



TABLE II
A GIVEN DATABASE STATE

customer table mortgage table
SSN zipcode name gender age income SSN year balance
001 27695 Alice female 35 50000 001 15 20000
002 28223 Bob male 40 150000 002 15 30000

have been explored or the number of explored paths has
reached the predefined upper bound.

DSE has also been used in testing database applications [6],
[11]. Emmi et al. [6] developed an approach for automatic test
generation based on DSE. Their approach uses a constraint
solver to solve collected symbolic constraints to generate both
program input values and corresponding database records.
The approach involves running the program simultaneously
on concrete program inputs as well as on symbolic inputs and
a symbolic database. In the first run, the approach uses random
concrete program input values, collects path constraints over
the symbolic program inputs along the execution path, and
generates database records such that the program execution
with the concrete SQL queries can cover the current path. To
explore a new path, it flips a branch condition and generates
new program input values and corresponding database records.
However, their approach cannot generate effective program
inputs based on the content of an existing database state. The
reason is that some program inputs (e.g., zip in our illustrative
example) appear only in the embedded SQL queries and there
is no path constraint over them.

Our approach differs from Emmi et al.’s approach [6] in
that we leverage DSE as a supporting technique to gener-
ate effective program input values by executing constructed
auxiliary queries against the existing database state. As a
result, high code coverage of the application can be achieved
without generating new database states. When DSE is applied
on a database application, DSE often fails to cover specific
branches due to an insufficient returned result set because
returned record values from the database often involve in
deciding later branches to take. We use Pex [12], a DSE
tool for .NET, to illustrate how our approach assists DSE to
determine program input values such that the executed query
can return sufficient records to cover various code portions.
During the program execution, DSE maintains the symbolic
expressions for all variables. When the execution along one
path terminates, DSE tools such as Pex have collected all
the preceding path constraints to form the path condition.
Pex also provides a set of APIs that help access intermediate
information of its DSE process. For illustration purposes, we
assume that we have an existing database state shown in
Table II for our preceding example shown in Figure 1.

To run the program for the first time against the existing
database state, Pex uses default values for program inputs
type and zip. In this example, because type and zip are
both integers. Pex simply chooses “type=0, zip=0” as default
values. The condition in Line 04 is then satisfied and the
query statement with the content in Line 11 is dynamically

constructed. In Line 12 where the query is executed, we can
dynamically get the concrete query string as

Q1: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=15 AND C.zipcode=1 AND C.SSN=M.SSN

Through static analysis, we can also get Q1’s corresponding
abstract form as

Q1abs: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=: years AND C.zipcode=: fzip

AND C.SSN=M.SSN

The execution of Q1 on Table II yields zero
record. Thus, the while loop body in Lines 14-
20 is not entered and the exploration of the current
path is finished. We use the Pex API method
PexSymbolicValue.GetPathConditionString() after
Line 14 to get the path condition along this path:

P1:(type == 0) && (results.Read() != true)

To explore a new path, Pex flips a part of the current path
condition from “type == 0” to “type != 0” and generates
new program inputs as “type=1, zip=0”. The condition in
Line 04 is then not satisfied and the SQL statement in Line
11 is dynamically determined as

Q2: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=30 AND C.zipcode=1 AND C.SSN=M.SSN

Note that here we have the same abstract form for Q2 as
for Q1. However, the execution of Q2 still returns zero record,
and hence the execution cannot enter the while loop body
either. The path condition for this path is

P2:(type == 1) && (results.Read() != true)

We can see that at this point no matter how Pex flips
the current collected path condition, it fails to explore any
new paths. Since Pex has no knowledge about the zipcode

distribution in the database state, using the arbitrarily chosen
program input values often incurs zero returned record when
the query is executed against the existing database state. As a
result, none of paths involving the while loop body could be
explored.

In testing database applications, previous test-generation
approaches (e.g., Emmi et al. [6]) then invoke constraint
solvers to generate new records and instantiate a new test
database state, rather than using the given existing database
state, required in our focused problem.

In contrast, by looking into the existing database state
as shown in Table II, we can see that if we use an input
like “type=0, zip=27694”, the execution of the query in
Line 11 will yield one record {C.SSN = 001, C.income =

50000, M.balance = 20000}, which further makes Line
14 condition true and Line 18 condition false. Therefore,
using the existing database state, we are still able to explore
this new path:



P3:(type == 0) && (results.Read() == true)

&&(diff <= 100000)

Furthermore, if we use “type=0, zip=28222”, the
execution of the query in Line 11 will yield another record
{C.SSN = 002, C.income = 150000, M.balance =

30000}, which will make both Line 14 condition and Line
18 condition true. Therefore, we can explore this new path:

P4:(type == 0) && (results.Read() == true)

&&(diff > 100000)

In Section III, we present our approach that can assist Pex
to determine appropriate program input values such that high
code coverage can be achieved using the existing database
state.

III. APPROACH

Our approach assists Pex to determine appropriate program
inputs so that high code coverage can be achieved in database
application testing. As illustrated in our example, not-covered
branches or paths are usually caused by the empty returned
result set (e.g., for path P1) or insufficient returned records that
cannot satisfy later executed conditions (e.g., for path P3).

The major idea of our approach is to construct an auxiliary
query based on the intermediate information (i.e., the executed
query’s concrete string and its abstract form, symbolic ex-
pressions of program variables, and path conditions) collected
by DSE. There are two major challenges here. First, program
input values are often combined into the executed query after a
chain of computations. In our illustrative example, we simply
set fzip = zip+1 in Line 3 to represent this scenario. We
can see that fzip is contained in the WHERE clause of the
executed query and zip is one program input. Second, record
values in the returned query result set are often directly or
indirectly (via a chain of computations) involved in the path
condition. In our illustrative example, the program variable
diff in the branch condition diff>100000 (Line 18) is
calculated from the retrieved values of attributes income and
balance. To satisfy the condition (e.g., diff>100000 in Line
18), we need to make sure that the program input values
determined by our auxiliary query are appropriate so that
the query’s return records are sufficient for satisfying later
executed branch conditions.

A. Auxiliary Query Construction

Algorithm 1 illustrates how to construct an auxiliary query.
The algorithm accepts as inputs a simple SQL query in its
both concrete and abstract forms, program input values, and
the current path condition.

Formally, suppose that a program takes a set of parameters I
= {I1, I2, ..., Ik} as program inputs. During path exploration,
DSE flips a branch condition pcs (e.g., one executed after the
query execution) from the false branch to the true branch to
cover a target path. Such flipping derives a new constraint
or path condition for the target path as PC = pc1 ∧ pc2 ∧
... ∧ pcs. DSE feeds this constraint to the constraint solver
to generate a new test input, whose later execution, however,

does not cover the true branch of pcs as planned, likely due to
database interactions along the path. In the path exploration,
DSE also keeps records of all program variables and their
concrete and symbolic expressions in the program along this
path when DSE reaches pcs. From the records, we determine
program variables V = {V1, V2, ..., Vt} that are data-dependent
on program inputs I . DSE also collects the concrete string of
an executed query along the current path. In our approach, we
assume the SQL query takes the form:

SELECT C1, C2, ..., Ch

FROM from-list

WHERE A1 AND A2 ... AND An

In the SELECT clause, there is a list of h strings where
each may correspond to a column name or with arithmetic or
string expressions over column names and constants following
the SQL syntax. In the FROM clause, there is a from-list that
consists of a list of tables. We assume that the WHERE clause
contains n predicates, A = {A1, A2, ..., An}, connected by
n − 1 “AND”s. Each predicate Ai is of the form expression
op expression, where op is a comparison operator (=, <>, >,
>=, <, <=) or a membership operator (IN, NOT IN) and
expression is a column name, a constant or an (arithmetic or
string) expression. Note that here we assume that the WHERE
clause contains only conjunctions using the logical connective
“AND”. We discuss how to process complex SQL queries
in Section III-C. Some predicate expressions in the WHERE
clause of Q may involve comparisons with program vari-
ables. From the corresponding abstract query Qabs, we check
whether each predicate Ai contains any program variables
from V .

We take the path P3 (Line 04 true, Line 14 true, and
Line 18 false) in our preceding example shown in Figure 1
to illustrate the idea. The program input set is I = {type,
zip} and the path condition PC is

P3:(type == 0) && (results.Read() == true)

&&(diff <= 100000)

The program variable set V is {type,zip,fzip}. When
flipping the condition diff<=100000, Pex fails to gener-
ate satisfiable test inputs for the flipped condition diff >

100000. The abstract form is shown as

Qabs: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=: years AND

C.zipcode=: fzip AND C.SSN=M.SSN

We can see that the predicate set A in the WHERE clause
is formed as {M.year=:years, C.zipcode=:fzip,

C.SSN=M.SSN}. Predicates M.year=:years and
C.zipcode=:fzip contain program variables years

and fzip, respectively. Furthermore, the program variable
fzip is contained in V . In other words, the predicate
C.zipcode=:fzip involves comparisons with program
inputs.

Algorithm 1 shows our procedure to construct the auxiliary
query Q̃ based on the executed query (Q’s concrete string and



Algorithm 1 Auxiliary Query Construction
Input: a canonical query Q, Q’s abstract form Qabs,

program input set I = {I1, I2, ..., Ik},
path condition PC = pc1 ∧ pc2 ∧ ... ∧ pcs

Output: an auxiliary query Q̃

1: Find variables V = {V1, V2, ..., Vt} data-dependent on I;
2: Decompose Qabs with a SQL parser for each clause;
3: Construct a predicate set A = {A1, A2, ..., An} from Q’s

WHERE clause;
4: Construct an empty predicate set Ã, an empty attribute set CV ,

and an empty query Q̃;
5: for each predicate Ai ∈ A do
6: if Ai does not contain program variables then
7: Leave Ai unmodified and check the next predicate;
8: else
9: if Ai does not contain program variables from V then

10: Substitute Ai’s program variables with their correspond-
ing concrete values in Q;

11: else
12: Substitute the variables from V with the expression

expressed by I;
13: Substitute the variables not from V with their corre-

sponding concrete values in Q;
14: Copy Ai to Ã;
15: Add Ai’s associated database attributes to CV ;
16: end if
17: end if
18: end for
19: Append CV to Q̃’s SELECT clause;
20: Copy Q’s FROM clause to Q̃’s FROM clause;
21: Append A− Ã to Q̃’s WHERE clause;
22: Find variables U = {U1, U2, ..., Uu} coming directly from Q’s

result set;
23: Find U ’s corresponding database attributes CU = {CU1, CU2,

..., CUw};
24: for each branch condition pci ∈ PC after Q’s execution do
25: if pci contains variables data-dependent on U then
26: Substitute the variables in pci with the expression expressed

by the variables from U ;
27: Substitute the variables from U in pci with U ’s correspond-

ing database attributes in CU ;
28: Add the branch condition in pci to P̃C;
29: end if
30: end for
31: Flip the last branch condition in P̃C;
32: Append all the branch conditions in P̃C to Q̃’s WHERE clause;
33: return Q̃;

its abstract form Qabs) and the intermediate information col-
lected by DSE. Lines 5-21 present how to construct the clauses
(SELECT, FROM, and WHERE) of the auxiliary query Q̃. We
decompose Qabs using a SQL parser1 and get its n predicates
A = {A1, A2, ..., An} from the WHERE clause. We construct
an empty predicate set Ã. For each predicate Ai ∈ A, we check
whether Ai contains program variables. If not, we leave Ai

unchanged and check the next predicate. If yes, we then check
whether any contained program variable comes from the set
V . If no program variables in the predicate are from V , we
substitute them with their corresponding concrete values in
Q. In our example, the predicate M.year=:years belongs to

1http://zql.sourceforge.net/

this category. We retrieve the concrete value of years from
Q and the predicate expression is changed as M.year=15.
If some program variables contained in the predicate come
from V , we substitute them with their symbolic expressions
(expressed by the program inputs in I), substitute all the other
program variables that are not from V with their corresponding
concrete values in Q and copy the predicate Ai to Ã. The
predicate C.zipcode=:fzip in our example belongs to this
category. We replace fzip with zip+1 and the new predicate
becomes C.zipcode=:zip+1. We also add Ai’s associated
database attributes into a temporary attribute set CV . Those
attributes will be included in the SELECT clause of the
auxiliary query Q̃. For the predicate C.zipcode=:fzip, the
attribute C.zipcode is added to Ã and is also added in the
SELECT clause of the auxiliary query Q̃.

After processing all the predicates in A, we get an attribute
set CV = {CV 1, CV 2, ..., CV j} and a predicate set Ã =
{Ã1, Ã2, ..., Ãl}. Note that here all the predicates in Ã
are still connected by the logical connective “AND”. The
attributes from CV form the attribute list of the Q̃’s SELECT
clause. All the predicates in A - Ã connected by “AND”
form the predicates in the Q̃’s WHERE clause. Note that
the from-list of the Q̃’s FROM clause is the same as that
of Q. In our example, Ã is C.zipcode=:zip+1, A − Ã is
M.year=15 AND C.SSN=M.SSN, and the attribute set CV is
C.zipcode. The constructed auxiliary query Q̃ has the form:

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN

When executing the preceding auxiliary query against the
existing database state, we get two zipcode values, 27695
and 28223. The corresponding program input zip can take ei-
ther 27694 or 28222 because of the constraint {C.zipcode=:
zip+1} in our example. A test input with the program input
either “type=0, zip=27694” or “type=0, zip=28222” can
guarantee that the program execution enters the while loop
body in Lines 14-20. However, there is no guarantee that the
returned record values satisfy later executed branch conditions.
For example, if we choose “type=0, zip=27694” as the pro-
gram input, the execution can enter the while loop body but
still fails to satisfy the branch condition (i.e., diff>100000)
in Line 18. Hence it is imperative to incorporate constraints
from later branch conditions into the constructed auxiliary
query.

Program variables in branch condition pci ∈ PC after
executing the query may be data-dependent on returned record
values. In our example, the value of program variable diff

in branch condition “diff > 100000” is derived from the
values of the two variables income, balance that correspond
to the values of attributes C.income, M.balance of returned
records. Lines 22-32 in Algorithm 1 show how to incorporate
later branch conditions in constructing the WHERE clause of
the auxiliary query.

Formally, we get the set of program variables U = {U1,
U2, ..., Uw} that directly retrieve the values from the query’s



Algorithm 2 Program Input Generation
Input: an auxiliary query Q̃, program inputs I

intermediate results CV and Ã from Algorithm 1
Output: program input values R for I

1: Execute Q̃ against the given database, get resulting values RV

for the attributes in CV ;
2: Substitute the attributes CV for predicates in Ã with the values

in RV , resulting in new predicates in Ã;
3: Feed the new predicates in Ã to a constraint solver and get final

values R for I;
4: return Output final program input values R;

returned result set, and treat them as symbolic inputs. For each
program variable Ui, we also keep its corresponding database
attribute CUi. Note that here CUi must come from the columns
in the SELECT clause. We save them in the set CU = {CU1,
CU2, ..., CUw}. For each branch condition pci ∈ PC, we
check whether any program variables in pci are data-dependent
on variables in U . If yes, we substitute such variables in pci

with their symbolic expressions with respect to the symbolic
input variables from U and replace each Ui in pci with its
corresponding database attribute CUi. The modified pci is then
appended to the Q̃’s WHERE clause. In our example, the mod-
ified branch condition C.income-1.5*M.balance>100000

is appended to the WHERE clause, and the new auxiliary
query is

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN AND

C.income - 1.5 * M.balance > 100000

When executing the preceding auxiliary query against the
existing database state, we get the zipcode value as “28223”.
Having the constraint C.zipcode=:zip+1, input “type=0,
zip=28222” can guarantee that the program execution enters
the true branch in Line 18.
Program Input Generation. Note that executing the auxiliary
query Q̃ against the database returns a set of values RV for
attributes in CV . Each attribute in CV can be traced back
to some program variable in V = {V1, V2, ..., Vt}. Recall
that V contains program variables that are data-dependent on
program inputs I . Our final goal is to derive the values for
program inputs I . Recall in Algorithm 1, we already collected
in the predicate set Ã the symbolic expressions of CV with
respect to program inputs I . After substituting the attributes
CV with their corresponding concrete values in RV resulted
from executing Q̃ against the given database, we have new
predicates in Ã for program inputs I . We then feed these
new predicates in Ã to a constraint solver to derive the
values for program inputs I . We give our pseudo procedure in
Algorithm 2.

In our illustrative example, after executing our auxiliary
query on Table II, we get a returned value “28223” for the
attribute C.zipcode. In Ã, we have C.zipcode=:zip+1. Af-
ter substituting C.zipcode in C.zipcode=:zip+1 with the
value “28223”, we have 28223=:zip+1. The value “28222”

for the program input zip can then be derived by invoking a
constraint solver.

In our prototype, we use the constraint solver Z32 integrated
in Pex. Z3 is a high-performance theorem prover being devel-
oped at Microsoft Research. The constraint solver Z3 sup-
ports linear real and integer arithmetic, fixed-size bit-vectors,
extensional arrays, uninterpreted functions, and quantifiers. In
practice, the result R could be a set of values. For example,
the execution of the auxiliary query returns a set of satisfying
zip code values. If multiple program input values are needed,
we can repeat the same constraint solving process to produce
each returned value in R.

B. Dealing with Aggregate Calculation

Up to now, we have investigated how to generate program
inputs through auxiliary query construction. Our algorithm
exploits the relationships among program inputs, program
variables, executed queries, and path conditions in source code.
Database applications often deal with more than one returned
record. In many database applications, multiple records are
iterated from the query’s returned result set. Program variables
that retrieve values from the returned result set further take
part in aggregate calculations. The aggregate values then are
used in the path condition. In this section, we discuss how
to capture the desirable aggregate constraints on the result
set returned for one or more specific queries issued from
a database application. These constraints play a key role
in testing database applications but previous work [3], [5]
on generating database states has often not taken them into
account.

Consider the following code after the query’s returned result
set has been iterated in our preceding example shown in
Figure 1:

...

14: while (results.Read()){
15: int income = int.Parse(results["income"]);

16: int balance = int.Parse(results["balance"]);

17: int diff = income - 1.5 * balance;

18: if (diff > 100000){
19: count++;

20: totalBalance = totalBalance + balance;}}
20a: if (totalBalance > 500000)

20b: do other calculation...

21: return ...;}

Here, the program variable totalBalance is data-
dependent on the variable balance and thus is associ-
ated with the database attribute M.balance. The vari-
able totalBalance is involved in a branch condition
totalBalance > 500000 in Line 20a. Note that the vari-
able totalBalance is aggregated from all returned record
values. For simple aggregate calculations (e.g., sum, count,
average, minimum, and maximum), we are able to incorporate
the constraints from the branch condition in our auxiliary
query formulation. Our idea is to extend the auxiliary query
with the GROUP BY and HAVING clauses. For example,

2http://research.microsoft.com/en-us/um/redmond/projects/z3/



we learn that the variable totalBalance is a summation
of all the values from the attribute M.balance. The vari-
able totalBalance can be transformed into an aggregation
function sum(M.balance). We include C.zipcode in the
GROUP By clause and sum(M.balance) in the HAVING
clause of the extended auxiliary query:

SELECT C.zipcode,sum(M.balance)

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN

AND C.income - 1.5 * M.balance > 100000

GROUP BY C.zipcode

HAVING sum(M.balance) > 500000

Cardinality Constraints. In many database applications, we
often require the number of returned records to meet some
conditions (e.g., for performance testing). For example, after
execution reaches Line 20, we may have another piece of code
appended to Line 20 as

20c: if (count >= 3)

20d: computeSomething();

Here we can use a special DSE technique [8] for dealing
with input-dependent loops. With this technique, we can learn
that the subpath with the conditions in Lines 14 and 18 being
true has to be invoked at least three times in order to cover
the branch condition count >= 3 in Line 20c. Hence we need
to have at least three records iterated into Line 18 so that true
branches of Lines 14, 18, and 20c can be covered. In our
auxiliary query, we can simply add COUNT(*) >= 3 in the
HAVING clause to capture this cardinality constraint.

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN

AND C.income - 1.5 * M.balance > 100000

GROUP BY C.zipcode

HAVING COUNT(*) >= 3

Program logic could be far more complex than the appended
code in Lines 20a-d of our example. We emphasize here that
our approach up to now works for only aggregate calculations
that are supported by the SQL built-in aggregate functions.
When the logic iterating the result set becomes more complex
than SQL’s support, we cannot directly determine the appro-
priate values for program inputs. For example, some zipcode
values returned by our auxiliary query could not be used to
cover the true branch of Lines 20a-b because the returned
records with the input zipcode values may fail to satisfy
the complex aggregate condition in Line 20a. However, our
approach can still provide a super set of valid program input
values. Naively, we could iterate all the candidate program
input values to see whether some of them can cover a specific
branch or path.

C. Dealing with Complex Queries

SQL queries embedded in application program code could
be very complex. For example, they may involve nested sub-
queries with aggregation functions, union, distinct, and group-
by views, etc. The fundamental structure of a SQL query is

Algorithm 3 Program Input Generation for DPNF Query
Input: a DPNF query Qdpnf , program inputs I

Output: program input value set Rdpnf for I

1: for each disjunction Di in Qdpnf ’s WHERE clause do
2: Build an empty query Qi;
3: Append Qdpnf ’s SELECT clause to Qi’s SELECT clause;
4: Append Qdpnf ’s FROM clause to Qi’s FROM clause;
5: Append Di to Qi’s WHERE clause;
6: Apply Algorithm 1 on Qi and get its auxiliary query Q̃i;
7: Apply Algorithm 2 on Q̃i and get output Ri;
8: Rdpnf = Rdpnf ∪ Ri;
9: end for

10: return Output final program input values Rdpnf ;

a query block, which consists of SELECT, FROM, WHERE,
GROUP BY, and HAVING clauses. If a predicate or some
predicates in the WHERE or HAVING clause are of the form
[Ck op Q] where Q is also a query block, the query is a nested
query. A large body of work exists on query transformation
in databases. Various decorrelation techniques (e.g., [4], [9])
have been explored to unnest complex queries into equivalent
single level canonical queries and recent work [1] showed that
almost all types of subqueries can be unnested.

Generally, there are two types of canonical queries: DPNF
with the WHERE clause consisting of a disjunction of con-
junctions as shown below

SELECT C1, C2, ..., Ch

FROM from-list

WHERE (A11 AND ... AND A1n) OR ...

OR (Am1 AND ... AND Amn)

and CPNF with the WHERE clause consisting of a conjunction
of disjunctions (such as (A11 OR... OR A1n) AND ...

AND (Am1 OR... OR Amn)). Note that DPNF and CPNF can
be transformed mutually using DeMorgan’s rules3.

Next we present our algorithm on how to formulate auxiliary
queries and determine program input values given a general
DPNF query. Our previous Algorithm 1 deals with only a
special case of DPNF where the query’s WHERE clause
contains only one A11 AND ... AND A1n. We show the
algorithm details in Algorithm 3. Our idea is to decompose the
DPNF query Qdpnf into m simple queries Qi (i = 1, · · · ,m).
The WHERE clause of each Qi contains only one disjunction
in the canonical form, Ai1 AND ... AND Ain. We apply
Algorithm 1 to generate its corresponding auxiliary query Q̃i

and apply Algorithm 2 to generate program input values Ri.
The union of Ris then contains all appropriate program input
values.

IV. EVALUATION

Our approach can provide assistance to DSE-based test-
generation tools (e.g., Pex [12] for .NET) to improve code
coverage in database application testing. In our evaluation, we
seek to evaluate the benefit and cost of our approach from the
following two perspectives:

3http://en.wikipedia.org/wiki/DeMorgan’slaws



TABLE III
EVALUATION RESULTS ON RISKIT

total covered(blocks) runs time(seconds)
No. method (blocks) Pex Pex+ours increase Pex ours Pex ours
1 getAllZipcode 39 17 37 51.28% 12 3 time out 21.4
2 filterOccupation 41 27 37 24.39% 18 4 time out 34.3
3 filterZipcode 42 28 38 23.81% 76 4 42.3 25.7
4 filterEducation 41 27 37 24.39% 76 4 time out 27.6
5 filterMaritalStatus 41 27 37 24.39% 18 4 48.5 29.4
6 findTopIndustryCode 19 13 14 5.26% 32 4 time out 29.2
7 findTopOccupationCode 19 13 14 5.26% 81 5 time out 23.3
8 updatestability 79 61 75 17.72% 95 6 time out 23.4
9 userinformation 61 40 57 27.87% 37 3 62.4 20.8

10 updatetable 60 42 56 23.33% 42 3 67.8 20.9
11 updatewagetable 52 42 48 11.54% 75 8 time out 27.8
12 filterEstimatedIncome 58 44 54 17.24% 105 8 time out 23.6
13 calculateUnemploymentRate 49 45 45 0.00% 89 7 time out 23.7
14 calculateScore 93 16 87 76.35% 92 10 time out 23.3
15 getValues 107 38 99 57.01% 182 43 time out 42.7
16 getOneZipcode 34 23 32 26.47% 22 6 time out 39.1
17 browseUserProperties 108 85 104 17.60% 83 9 time out 81.1

all methods (total) 943 588 871 25.52% 1135 131 1781.0 517.3

RQ1: What is the percentage increase in code coverage by
the program inputs generated by Pex with our approach’s
assistance compared to the program inputs generated without
our approach’s assistance in testing database applications?
RQ2: What is the cost of our approach’s assistance?

In our evaluation, we first run Pex without our approach’s
assistance to generate test inputs. We record their statistics of
code coverage, including total program blocks, covered blocks,
and coverage percentages. In our evaluation, we also record
the number of runs and execution time. A run represents one
time that one path is explored by Pex using a set of program
input values. Because of the large or infinite number of paths
in the code under test, Pex uses exploration bounds to make
sure that Pex terminates after a reasonable amount of time. For
example, the bound TimeOut denotes the number of seconds
after which the exploration stops. In our evaluation, we use
the default value TimeOut=120s and use “time out” to indicate
timeout cases.

Pex often fails to generate test inputs to satisfy or cover
branch conditions that are data-dependent on the query’s
execution or its returned result set. We then perform our algo-
rithms to construct auxiliary queries based on the intermediate
information collected from Pex’s previous exploration. We
then execute the auxiliary queries against the existing database
and generate new test inputs. We then run the test inputs
previously generated by Pex and the new test inputs generated
by our approach, and then record new statistics.

We conduct an empirical evaluation on two open source
database applications: RiskIt4 and UnixUsage5. RiskIt is
an insurance quote application that makes estimation based
on users’ personal information, such as zipcode and income. It
has an existing database containing 13 tables, 57 attributes, and

4https://riskitinsurance.svn.sourceforge.net
5http://sourceforge.net/projects/se549unixusage

more than 1.2 million records. UnixUsage is an application to
obtain statistics about how users interact with the Unix systems
using different commands. It has a database containing 8
tables, 31 attributes, and more than 0.25 million records.
Both applications were written in Java. To test them in the
Pex environment, we convert the Java source code into C#
code using a tool called Java2CSharpTranslator6. The detailed
evaluation subjects and results can be found on our project
website7.

A. Code coverage

We show the evaluation results in Table III and Table IV.
For each table, the first part (Columns 1-2) shows the index
and method names. The second part (Columns 3-6) shows
the code coverage result. Column 3 “total(blocks)” shows
the total number of blocks in each method. Columns 4-6
“covered(blocks)” show the number of covered blocks by
Pex without our approach’s assistance, the number of covered
blocks by Pex together with our approach’s assistance, and the
percentage increase, respectively.

Within the RiskIt application, 17 methods are found to
contain program inputs related with database attributes. These
17 methods contain 943 code blocks in total. Test inputs
generated by Pex without our approach’s assistance cover
588 blocks while Pex with our approach’s assistance covers
871 blocks. In fact, Pex with our approach’s assistance can
cover all branches except those branches related to exception
handling. For example, the method No. 1 contains 39 blocks in
total. Pex without our approach’s assistance covers 17 blocks
while Pex with our approach’s assistance covers 37 blocks.
The two not-covered blocks belong to the catch statements,
which mainly deal with exceptions at runtime.

6http://sourceforge.net/projects/j2cstranslator/
7http://www.sis.uncc.edu/∼xwu/DBGen



TABLE IV
EVALUATION RESULTS ON UNIXUSAGE

total covered(blocks) runs time(seconds)
No. method (blocks) Pex Pex+ours increase Pex ours Pex ours
1 courseNameExists 7 6 7 14.29% 17 3 32.2 20.0
2 getCourseIDByName 10 6 10 40.00% 14 3 29.9 20.0
3 computeFileToNetworkRatio 25 8 25 68.00% 35 7 time out 24.9

ForCourseAndSessions
4 outputUserName 14 9 14 35.71% 18 4 38.3 20.5
5 deptNameExists 13 9 13 30.77% 18 3 43.3 20.0
6 computeBeforeAfterRatioByDept 24 8 24 66.67% 109 8 77.5 22.0
7 getDepartmentIDByName 11 7 11 36.36% 92 3 time out 20.0
8 computeFileToNetworkRatioForDept 21 20 21 4.76% 33 6 time out 21.5
9 officeNameExists 11 7 11 36.36% 18 3 41.4 20.0

10 getOfficeIdByName 9 5 9 44.44% 18 3 51.3 20.0
11 raceExists 11 7 11 36.36% 18 3 32.1 20.0
12 userIdExists(version1) 11 7 11 36.36% 18 3 40.3 20.0
13 transcriptExist 11 7 11 36.36% 18 3 39.9 20.0
14 getTranscript 6 5 6 16.67% 14 2 33.7 20.0
15 commandExists(version1) 10 6 10 40.00% 14 2 36.0 20.0
16 categoryExists 11 7 11 36.36% 18 3 33.3 20.0
17 getCategoryByCommand 8 5 8 37.50% 17 2 34.1 20.0
18 getCommandsByCategory 10 6 10 40.00% 17 2 38.4 20.0
19 getUnixCommand 6 5 6 16.67% 17 2 40.3 20.0
20 retrieveUsageHistoriesById 21 7 21 66.67% 86 3 58.4 27.2
21 userIdExists(version2) 11 7 11 36.36% 19 3 32.7 20.0
22 commandExists(version2) 11 7 11 36.36% 21 3 36.5 20.0
23 retrieveMaxLineNo 10 7 10 30.00% 53 3 time out 22.3
24 retrieveMaxSequenceNo 10 7 10 30.00% 35 3 time out 20.1
25 getSharedCommandCategory 11 7 11 36.36% 118 3 time out 20.4
26 getUserInfoBy 47 15 47 68.09% 153 4 time out 20.0
27 doesUserIdExist 10 9 10 10.00% 74 2 41.3 20.0
28 getPrinterUsage 34 27 34 20.59% 115 4 67.2 20.6

all methods (total) 394 258 394 34.52% 1197 93 1718.1 579.5

The UnixUsage application contains 28 methods whose
program inputs are related with database attributes, with 394
code blocks in total. Pex without our approach’s assistance
covers 258 blocks while Pex with our approach’s assistance
covers all 394 blocks. The UnixUsage application constructs
a connection with the database in a separate class that none of
these 28 methods belong to. Thus, failing to generate inputs
that can cause runtime database connection exceptions has not
been reflected when testing these 28 methods.

B. Cost

In Tables III and IV, the third part (Columns 7-10) shows
the cost. Columns 7 and 9 “Pex” show the number of runs
and the execution time used by Pex without our approach’s
assistance. We notice that, for both applications, Pex often
terminates with “time out”. The reason is that Pex often fails
to enter the loops of iterating the returned result records.
Columns 8 and 10 “ours” show the additional number of runs
by Pex with assistance of our approach and the extra execution
time (i.e., the time of constructing auxiliary queries, deriving
program input values by executing auxiliary queries against
the existing database, and running new test inputs) incurred
by our approach.

We observe that, for both applications, Pex with assistance

of our approach achieves much higher code coverage with
relatively low additional cost of a few runs and a small amount
of extra execution time. In our evaluation, we set the TimeOut
as 120 seconds. For those “time out” methods, Pex could not
achieve new code coverage even given larger TimeOut values.
Our approach could effectively help cover new branches not
covered by Pex with relatively low cost.

Note that in our current evaluation, we loosely integrate Pex
and our approach: we perform our algorithms only after Pex
finishes its previous exploration (i.e., after applying Pex with-
out our approach’s assistance) since our algorithms rely on the
intermediate information collected during Pex’s exploration.
We expect that after our approach is tightly integrated into
Pex, our approach can effectively reduce the overall cost of
Pex integrated with our approach (which is currently the sum
of the time in Columns 9 and 10). In such tight integration,
our algorithms can be triggered automatically when Pex fails
to generate test inputs to satisfy branch conditions that are
data-dependent on a query’s execution or its returned result
set.

V. RELATED WORK

Database application testing has attracted much attention
recently. The AGENDA project [5] addressed how to generate



test inputs to satisfy basic database integrity constraints and
does not consider parametric queries or constraints on query
results during input generation. One problem with AGENDA
is that it cannot guarantee that executing the test query on
the generated database states can produce the desired query
results. Willmor and Embury [14] developed an approach
that builds a database state for each test case intensionally,
in which the user provides a query that specifies the pre-
and post-conditions for the test case. Binnig et al. [2] also
extended symbolic execution and used symbolic query pro-
cessing to generate some query-aware databases. However,
the test database states generated by their QAGen prototype
system [2] mainly aim to be used in database management
systems (DBMS) testing.

Emmi et al. [6] developed an approach for automatic test
generation for a database application. Their approach is based
on DSE and uses symbolic constraints in conjunction with a
constraint solver to generate both program inputs and database
states. We developed an approach [13] that leverages DSE
to generate database states to achieve advanced structural
coverage criteria. In this paper, we focus on program-input
generation given an existing database state, avoiding the high
overhead of generating new database states during test gener-
ation. Li and Csallner [10] considered a similar scenario, i.e.,
how to exploit existing databases to maximize the coverage
under DSE. However, their approach constructs a new query
by analyzing the current query, the result tuples, the covered
and not-covered paths, and the satisfied and unsatisfied branch
conditions. It can neither capture the close relationship be-
tween program inputs and results of SQL queries, nor generate
program inputs to maximize code coverage.

VI. CONCLUSIONS

In this paper, we have presented an approach that takes
database applications and a given database as input, and
generates appropriate program input values to achieve high
code coverage. In our approach, we employ dynamic sym-
bolic execution to analyze the code under test and formulate
auxiliary queries based on extracted constraints to generate

program input values. Empirical evaluations on two open
source database applications showed that our approach can
assist Pex, a state-of-the-art DSE tool, to generate program
inputs that achieve higher code coverage than the program
inputs generated by Pex without our approach’s assistance. In
our future work, we plan to extend our technique to construct
auxiliary queries directly from embedded complex queries
(e.g., nested queries), rather than from their transformed norm
forms.

Acknowledgment. This work was supported in part by U.S. National
Science Foundation under CCF-0915059 for Kai Pan and Xintao Wu,
and under CCF-0915400 for Tao Xie.

REFERENCES

[1] R. Ahmed, A. Lee, A. Witkowski, D. Das, H. Su, M. Zait, and
T. Cruanes. Cost-based query transformation in Oracle. In VLDB, pages
1026–1036, 2006.

[2] C. Binnig, D. Kossmann, E. Lo, and M.T. Ozsu. QAGen: generating
query-aware test databases. In SIGMOD, pages 341–352, 2007.

[3] D. Chays and J. Shahid. Query-based test generation for database
applications. In DBTest, pages 01–06, 2008.

[4] U. Dayal. Of nests and trees: A unified approach to processing queries
that contain nested subqueries, aggregates, and quantifiers. In VLDB,
pages 197–208, 1987.

[5] Y. Deng, P. Frankl, and D. Chays. Testing database transactions with
agenda. In ICSE, pages 78–87, 2005.

[6] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for
database applications. In ISSTA, pages 151–162, 2007.

[7] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, pages 213–223, 2005.

[8] P. Godefroid and D. Luchaup. Automatic partial loop summarization in
dynamic test generation. In ISSTA, pages 23–33, 2011.

[9] W. Kim. On optimizing an SQL-like nested query. ACM Trans. Database
Syst., 7(3):443–469, 1982.

[10] C. Li and C. Csallner. Dynamic symbolic database application testing.
In DBTest, pages 01–06, 2010.

[11] K. Taneja, Y. Zhang, and T. Xie. MODA: Automated test generation for
database applications via mock objects. In ASE, pages 289–292, 2010.

[12] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.
In TAP, pages 134–153, 2008.

[13] K. Pan, X. Wu, and T. Xie. Database state generation via dynamic
symbolic execution for coverage criteria. In DBTest, pages 01–06, 2011.

[14] D. Willmor and S. M. Embury. An intensional approach to the
specification of test cases for database applications. In ICSE, pages
102–111, 2006.


