Text Mining in Supporting Software Systems Risk Assurance

LiGuo Huang', Daniel Port?, Liang Wang', Tao Xie®, Tim Menzies*
' Southern Methodist University, Dallas, TX; 2 Jet Propulsion Laboratory, California Institute of Technology, CA;
*North Carolina State University, Raleigh, NC; * West Virginia University, Morgantown, WV; USA

{lghuang, liangw}@smu.edu, Dan.Port@jpl.nasa.gov, xie@csc.ncsu.edu, tim@menzies.us

ABSTRACT

Insufficient risk analysis often leads to software system design
defects and system failures. Assurance of software risk documents
aims to increase the confidence that identified risks are complete,
specific, and correct. Yet assurance methods rely heavily on
manual analysis that requires significant knowledge of historical
projects and subjective, perhaps biased judgment from domain
experts. To address the issue, we have developed RARGen, a text
mining-based approach based on well-established methods aiming
to automatically create and maintain risk repositories to identify
usable risk association rules (RARs) from a corpus of risk
analysis documents. RARs are risks that have frequently occurred
in historical projects. We evaluate RARGen on 20 publicly
available e-service projects. Our evaluation results show that
RARGen can effectively reason about RARs, increase confidence
and cost-effectiveness of risk assurance, and support difficult-to-
perform activities such as assuring complete-risk identification.

Categories and Subject Descriptors
D.2.9 [Management]: Software quality assurance (SQA).

Keywords
Risk assurance; risk reduction; text mining; mining software
repositories; association rule; latent semantic analysis.

1. INTRODUCTION

Motivation. Leveson [2] remarks that, in modern complex
systems, unsafe operations often result from insufficient risk
analysis. A risk is defined as a combination of the likelihood of an
accident and the severity of the potential consequences. More
generally, Boehm [1] defines software risk as a potential for the
development or product to have an unsatisfactory outcome to
project stakeholders. Unsatisfactory software project and system
outcomes (e.g., problems and failures) due to insufficient risk
analysis have been extensively reported and documented in the
literature [1, 2, 8, 9]. As a result, there is an increasing interest in
independent review of risk assessment (also called risk assurance)
for systems with a high criticality and risk.

Contributions. In this paper, we present the Risk Association
Rule Generation (RARGen) approach and associated tool to
tackle the challenges of supporting software systems risk
assurance. The following 4 key objectives define the value that we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ASE’10, September 20-24, 2010, Antwerp, Belgium.

Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00..

hope to generate from RARGen, and also set as our evaluation
criteria in Section 5.

Objective 1. Automate the continuous collection of historical
project risks and their mitigations into a repository that
enables economical generation and maintenance of risk assurance
tools such as top-10 risk lists, chronic risk detection, risk patterns,
and risk-area taxonomies and identification checklists.

Objective 2. Improve confidence in review of risk documents,
especially with inexperienced project personnel (i.e., offer
unbiased and comprehensive identification, reduce variability of
results, identify potential gaps and omissions, reduce
redundancies, etc.).

Objective 3. Increase the cost-effectiveness of risk assurance
(i.e., reduce cost and effort, increase utility of results, etc.)

Objective 4. Support the refinement of risk mitigations by
offering comprehensive historically significant mitigation options.

Our research in this paper is guided by the following questions:
RQI s it possible to reason about Risk Association Rules (RARs)
from unstructured Software/System Engineering (SE) artifacts?
RQ2 Can we increase human confidence and improve the cost-
effectiveness in review risk documents via text mining?

RQ3 Can the mined RARs support risk assurance activities such
as identifying incomplete risk identification or reduction actions?

We investigate these questions by applying RARGen within
various organizations such as the Jet Propulsion Laboratory (JPL)
and the University of Southern California’s Center for Systems
and Software Engineering (USC-CSSE). Section 4 presents a
feasibility evaluation using 20 publicly accessible USC-CSSE
real-client e-service projects. In this evaluation, we found ample
support that RARGen is able to meet Objectives 1-4.

2. BACKGROUND: Risk Assurance

Insufficient system risk analysis includes errors such as failure to
identify a significant risk (omission), incorrect risk specification,
redundant risks, vague or poorly specified risks, and risks without
mitigation options. Such errors may have led to the demise of
NASA's Mars Climate Orbiter (MCO) launched in December
1998. It was discovered that the developers of the Ground
navigation software used English Units while the flight software
developers using the required Metric Units. The discrepancy in
units biased trajectory calculations in route and set MCO too
close to Mars during its insertion into orbit where MCO went
silent and was presumed lost. The specific problem of
incompatible units between system components that led to the
MCO mishap was a well-known and documented risk on previous
projects, but the development teams still failed to identify it.

MCO is one of many examples of insufficient risk analysis. Given
the rapidly increasing costs and consequences of software errors,
understandably there is increasing interest in ensuring that

sufficient risk analysis is performed. Organizations such as JPL
and the USC-CSSE have started employing risk assurance
practices. Risk assurance is the use of quality assessment
techniques such as verification and validation (V&V) to ensure
that sufficient risk analysis has been performed, i.e., the risk
analysis has been correct, complete, clear, and actionable as
much as possible.

A primary activity of risk assurance is the review of risk
documentation. This activity involves reading through documents
by assurance personnel who “manually” scan for risk analysis
erTors.

Risk Assurance Challenges. The authors have a great deal of
experience in risk assurance research and practice, ranging from
educating undergraduate/graduate computer science and business
students in software risk management at various institutions, to
working with assurance professionals from NASA's IV&V
facility and JPL's Software Quality Assurance and Software
Quality Improvement groups. From this experience, we have
observed a number of challenges in performing risk assurance:

o Risk assurance is costly relative to the results that it generates;
it is often considered a ‘“non-critical path” activity and
frequently the first target for budget cuts or schedule slips.

¢ Auditors not involved in the development need significant time
to become familiar enough with the details of the project
(requirements, design, etc.) to creditably understand and assess
risk documents.

e There is low confidence in the completeness of auditor’s results
due to the unknown-unknown's and blindness/bias problems. It
is difficult for auditors to recognize or suggest appropriate risk
mitigation details for a given project.

e Risk descriptions are generally written in natural language,
which can be redundant, ambiguous, and inconsistent across
documents, document versions, and different documenters.

e Risks are often stated with such generality or vagueness as to
render detecting their explicit connections to design choices
and options impossible.

Many organizations, including USC-CSSE and JPL have been
collecting historical project risk data into risk repositories in part
as a response to the preceding risk assurance issues, and also in
part to provide a resource for improving risk analysis in general
(e.g., a lessons-learned database). The use of a risk repository also
has its challenges. Generally, we have observed that project
personnel rarely make direct use of repositories. It is difficult and
time consuming to dig out information that is relevant to a
particular project. Even given relevant data, it is easy to get
overwhelmed with the mass of details.

3. RARGEN APPROACH

RARGen uses text mining to automate the collection of risks and
their associated mitigations in risk analysis documents from
historical projects into a repository. This repository is useful for
supporting risk assurance activities such as generation of risk lists
and system-risk completeness analysis (meeting our Objectives 1
and 4 and in part, 2). One of the major goals of RARGen is to
require little human effort or input from domain experts while still
providing useful results. If achieved, this goal is one way of
meeting our Objective 3 on cost-effectiveness, and again to some
extent of Objective 2.

i Pattern Similarity
R's.k Analyzer and Reduced Risk
Repository Cluster Respository
Risk _ T~
Repository Risk Terms | | Closed Frequent Closed Frequent
Constructor Files Itemsets Itemset Miner

Risk
Association :> Risk Association
Risk analysis document corpus Rule Learner Rules

b

0o

Figure 1. Overview of Risk Association Rules Generation
(RARGen) Approach

Figure 1 shows an overview of our RARGen approach. There are
four major components (shaded boxes in Figure 1): (1) risk
repository constructor, (2) pattern similarity analyzer and
cluster, (3) closed frequent itemset miner, and (4) risk
association rule learner. Note that RARGen mandates the use of
collected risk analysis documents as inputs; general project
documentation, even documents intermixed with risk descriptions,
cannot be used. RARGen currently neither attempts to extract
risks from natural language, nor does it try to abstract and
associate general project or design context or information. It is
assumed that contents in a risk analysis document include risks,
risk reduction actions, or risk assessment information.

Risk Repository Constructor. After collecting and preparing
these risk analysis documents, we removed punctuation,
stopwords and performed stemming [3] to preprocess the risk-
analysis documents. RARGen accepts risk analysis documents in
two templates: (1) a top-level risk reduction plan in a table or
Excel file, and (2) a detailed risk reduction plan usually
documented in HTML or MS Word files. RARGen detects and
disambiguates Risk Association Patterns (RAPs) from the
preprocessed corpus of risk analysis in preparation to construct
(or add to) the risk repository.

Pattern Similarity Analyzer and Cluster. RARGen leverages
the Latent Semantic Analysis (LSA) [5, 6] and the K-means
clustering algorithm [4] to construct a reduced risk repository by
merging redundant RAPs with the similar semantic meaning
among RAPs from the risk repository constructed earlier.

Closed Frequent Itemset Miner. RARGen applies the frequent
itemset mining algorithm [7] to mine closed frequent itemsets
from the reduced risk repository. From the closed frequent
itemsets, the Risk Association Rule Learner of RARGen
(described next) mines Risk Association Rules (RARs) as desired
rule sets. An RAR is an RAP that occurs over a given frequency.

Risk Association Rule Learner. RARGen takes the Risk Terms
Files (RTF) containing all distinct words depicting risks and
closed frequent itemsets, and then returns RARs. Based on the
RTF, RARGen categorizes the mined closed frequent itemsets
into three types: (1) those containing only risk terms, (2) those
containing both risk terms and other words, and (3) those
containing no risk terms. RARGen mines RARs from only Types
1 and 2 but not from Type 3 because itemsets from Type 3
contain no information about specific risks and have no value for
risk reduction.

4. EVALUATION

We next discuss the RARGen evaluation in meeting the value-
generating Objectives 1-4 as stated in Section 1. The evaluation is

conducted on 20 e-services projects from USC-CSSE, which are
publicly accessible at
http://greenbay.usc.edu/csci577/fall2007/site/projects/index.html.
While these one-year-long projects were undertaken by graduate
software engineering course students, all are “real” in the sense
that there were real clients, who wanted real systems, developed
with real processes, encountering and managing real risks. Many
of the students were full-time working software professionals with
substantial development experience.

Objective 1: Automated collection of RAPs into a useful
repository

RARGen recovered more than 150 human-readable RARs with
approximately 3000 occurrences from over 180K words mined
from 20 projects without prior knowledge or processing from
domain experts. It took less than 6 hours from a single novice
student to prepare the risk analysis documents, execute the
RARGen tool, and cross-validate the results with manually
generated RARs. In contrast, it took over a week for an expert
risk researcher (the 1% author) to manually browse the 20 risk
analysis documents, dig out 135 RARs (not even prioritized), and
cross-validate them.

Hence it is practical to use RARGen for automating generation of
a risk repository. The quality of the repository is discussed
subsequently with Objective 2. Here we address another critical
part of our Objective 1 — is the repository “useful?” The
repository could be used to generate risk assurance aids such as
easily maintained domain/organization-specific top-10 risk lists
that are directly applicable to a given project rather than being
high-level inspirational. Additionally, examination of the 20 e-
Service projects’ risk analysis documents revealed that they tend
to be a mix of high-level and detailed risks.

Objective 2: Improve confidence in risk review

There are two aspects to be evaluated for Objective 2. First, how
high confidence can we have in the mined RARs? Second, how
high confidence can we have in applying the mined RARs and the
RARGen approach for risk assurance activities?

We investigate the first aspect with two questions: “what is the
quality of the mined RARs?” and “do the mined RARs represent
real rules in practice?” Because the selection of the threshold in
closed frequent itemset mining directly influences the quality of
mined RARs, we have evaluated the quality of mined RARs
based on seven different thresholds. We use Recall and Precision
as two metrics, which are typically used in information retrieval:

R R .
(DRECALL =W (I)PRECISION :M
man mined

where R, is the set of manually identified RARs from risk

analysis documents of historical projects (for this evaluation). As
indicated earlier, 135 RARs were manually identified from the 20
e-Service projects by an expert risk researcher. These RARs are
used as our golden benchmark and we assume that our expert out-
performs typical risk analysts in general. R . . is the set of RARs

mine

mined by RARGen. Reined Ry (True Positive) indicates how
many “real” rules were mined from the projects. Our approach
achieves a Precision of 67%-97% and Recall of 71%-85% under
seven different thresholds.

We also note that risk assurance aims to provide increased
confidence in the completeness and correctness of risk analysis

for a given system through independent review. Because Recall
and Precision are defined relative to manual effort, higher values
in these measures do not translate into higher confidence,
especially with respect to errors of omission. Note that our
objective is not to replace human risk analysis, but to complement
it by providing an unbiased and comprehensive check against
historical documents. Because RARGen was able to perform
automatically at a high level relative to a human, the resulting
RARs serve as a second “independent” review that increases
confidence when cross-checked with manual results. That is, there
is objective information to help guide the manual assurance by
partitioning the effort into investigation sets. RARs found both by
RARGen and manual efforts are “true positives” whereas those
found by only RARGen would be considered as “false positives”
(or possible manual omissions), and those found by only manual
efforts would be considered as “false negatives”. If an RAR is
thought not to exist in manual risk analysis and it does not appear
in the RARGen set, then this RAR is some indication of a “true
negative” and risk assessment tends not to focus on non-risks.

Objective 3: Increase cost-effectiveness of risk assurance
What is less obvious is RARGen’s effectiveness when applied to
new projects. Earlier we evaluated RARGen’s recall and precision
relative to a repository manually generated by our expert.
However, it is possible that RARGen would perform poorly when
supporting risk assurance activities such as identifying incomplete
risk identification or reduction actions. Here again we assess
effectiveness relative to our expert as this design represents the
best known practice when dealing with unknowable values (e.g.,
we cannot determine the “true” number of RARs present in the
projects used in the evaluation).

To evaluate the effectiveness in using a generated risk repository,
we conducted a study that compares mined RARs with RAPs on a
“new” project (i.e., a project whose risks are not in the
repository). For the new project, we use RARGen to identify
RAPs, which are then compared to RARs in the repository to
detect risk analysis errors (e.g., omitted risks, incomplete
specifications). The detected errors are finally compared with the
risk analysis errors identified by our expert to determine which
errors were actually relevant. Because the majority of the 20
projects are COTS-based, to reduce complexity, we focus our
study on only COTS Interoperability risks.

We performed 20 separate evaluations via Leave One Out Cross
Validation (LOOCV) [10]. We left 1 out of 20 projects as the
“new” project and used the risk analysis documents from the
remaining 19 projects as the input for RARGen. Table 1 shows
LOOCV comparisons for 6 projects with true design defects
resulting from the missing/incorrect RARs detected by RARGen.
The column “# Detected from RARGen” shows the total number
of risk specifications (risk description and corresponding
mitigations from the left-out projects’ risk analysis documents)
that do not conform to, or are omitted with respect to RARs
mined from the remaining 19 projects’ risk analysis documents.
Risks in the left-out project that cannot be matched with an RAR
in the repository are ignored. Because we have not specified any
rules for determining “related” risks, RARs in the repository that
cannot be matched with an RAP in the left-out project are
considered an “omission” although strictly speaking some RARs
may be omitted because they are not relevant to the left-out
project. The column labeled “# of FP” is the number of false
positives as determined by our expert. These are detected errors

from RARGen that are incorrect or, more frequently, omitted
RARs irrelevant to the left-out project.

Table 1. Effectiveness in detecting risk analysis errors

Project | # Detected by RARGen # of FP_| # Design Defects
3 5 4 1
8 17 16 5
9 7 5 2
14 11 8 3
19 10 8 2
20 8 6 2

The column labeled “# of Design Defects” shows the number of
true COTS interoperability design defects in the system traced to
risk analysis errors by our expert. This metric is used mainly to
indicate the utility of risk assurance. If a “true” risk error is
identified, then it is conjectured that the number of design defects
is correlated with the number of errors. In most of our cases, this
number of true design defects is equal to (#detected by RARGen -
#FP) and indeed our small sample seems consistent with the
conjecture except that in Project 8, one risk error leads to five
design defects.

Objective 4: Support refinement of risk mitigations

To evaluate our final objective, we investigate whether RARGen
is able to provide meaningful support for a common risk
insufficiency problem — risks with inadequately or incompletely
specified reduction actions. For this objective, we focus on a
single project, the “Conference Room Reservation System”
Project 14. It is a database and web-based application. Table 2
shows the two manually specified RAPs defining reduction
actions related to the interoperability risk between SQL Server and
Web Application Server.

RARGen mined RARs 5.1-5.4 in Table 3 from the other 19 e-
service projects. RARs 5.1 and 5.2 address the interoperability
risk between the MS SQL and Coldfusion. If the support-based
ranking had been used, the interoperability analysis between the
1IS Server and Coldfusion specified by RAR 5.3 (whose support was
less than the predefined threshold 18), would have not been mined
as a rule. However, its subset {Coldfusion, IIS Server} (whose
support is greater than 18) is a frequent closed itemset. Thanks to
the closed frequent itemset mining, RARGen mined {Coldfusion,
IIS Server} as a closed itemset.

Table 2. Manually specified RAPs for SQL Server and Web
Application Server interoperability risk in Project 14

4.1

Backend Interface (SQL Server) €-> Web Interface
(Web Application Server);

4.2

SQL Interface (SQL Server) €<-> Backend Interface
(Web Application Server);

Table 3. Sample RARs mined from 19 e-service projects

{Interoperability(SQL Server, Coldfusion)} =
5.1 { Backend Interface (SQL Server) €-> Web Interface (Coldfusion)};

{Interoperability(SQL Server, Coldfusion)}=>

52 { SQL Interface (SQL Server) €—> Backend Interface (Coldfusion)};
{Interoperability(Coldfusion, IIS Server)}=>

5.3 {Backend Interface (Coldfusion) €-> Web Interface (IIS Server)};

5.4 | {Interoperability(Web application Server)}=>» {Coldfusion, IIS Server};

{Interoperability(MS SQL, Apache, Windows Server 2003)} =

S5 | { Safari, JVM};

Through this example, we see that mined RARs can provide a
useful reference on how similar risks get reduced in previous
projects and can be used to verify the completeness and

correctness of a current risk analysis for a new project within the
same domain.

5. CONCLUSIONS

With our evaluation results, we address the questions that we
proposed to guide this research as below. Object 1 evaluation
shows that it is practical to use RARGen for automating
generation of a useful risk repository with low maintenance costs
from pre-processed unstructured SE artifacts taking into account
the manual pre-processing efforts. In Objectives 2&3 evaluation,
we have evaluated the quality and utility of RARGen on 20
publicly available e-service projects. Our results indicate that
RARGen can mine RARs with high Recall and Precision. We
have also shown that RARGen is cost-effective in supporting risk
assurance activities, helping address the significant problems of
incompleteness and error-proneness in manual risk analysis. The
evaluation results also demonstrate low effort relative to the
effectiveness of results compared to non-automated risk
assurance. Even with as-well Recall and Precision relative to
human-based risk analysis, by applying RARGen in tandem with
traditional human-based risk assurance, we can largely reduce
effort and improve confidence in assurance. Objective 3
evaluation also shows the total number of risk specifications
(identified from the left-out projects’ risk analysis documents)
that do not conform to, or are omitted with respect to RARs
mined from the remaining 19 projects based on LOOCV
comparisons. A study in Objective 4 evaluation presents a
specific example of RARGen identification of missing risk and
reduction actions. It also shows how specific risk reduction
actions are suggested using mined RARs.

6. REFERENCES

[11 B. W. Boehm, “Software Risk Management: Principles and
Practice”. IEEE Software, 8(1): 32-41.

[2] N. Leveson, Safeware System Safety and Computers,
Addison-Wesley, 1995.

[3] Stemming: http://www.tartarus.org/martin/PorterStemmer/

[4] J. B. MacQueen: "Some Methods for classification and
Analysis of Multivariate Observations,” Proceedings of 5th
Berkeley Symposium on Mathematical Statistics and
Probability, UC Berkley Press, 1:281-297, 1967.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. “Indexing by latent semantic
analysis” Journal of the American Society of Information
Science, 41(6):391-407, 1990.

[6] T. Landauer, P. Foltz, and D. Laham, Introduction to Latent
Semantic Analysis, Discourse Processes, 25:259-284, 1998.

[7] G. Grahne, J. Zhu, “Efficiently using prefix-trees in mining
frequent itemsets”, In Proc. 1st IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, 2003.

[8] R. Lutz, C. Mikulski. “Operational anomalies as a cause of
safety-critical requirements evolution”, Journal of Systems
and Software, 65(2):155-161, 2003.

[9] D. Carney, E. Morris, and P. Place, “Identifying Commercial
Off-the-Shelf (COTS) Product Risks: The COTS Usage Risk
Evaluation”, TECHNICAL REPORT. CMU/SEI- 2003-TR-
023. September 2003.

[10] Ron. Kohavi, "A study of cross-validation and bootstrap for
accuracy estimation and model selection”, Proc. of the 14th
International Joint Conference on Artificial Intelligence 2
(12): 1137-1143, 1995.

