MODA: Automated Test Generation for Database
Applications via Mock Objects

Kunal Taneja’,

Yi Zhang?, Tao Xie!

1Department of Computer Science, North Carolina State University, Raleigh, NC, 27695, USA
2Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA
1 {ktaneja, txie } @ncsu.edu, 2Yi.Zhang2 @fda.hhs.gov

ABSTRACT

Software testing has been commonly used in assuring the quality
of database applications. It is often prohibitively expensive to man-
ually write quality tests for complex database applications. Auto-
mated test generation techniques, such as Dynamic Symbolic Exe-
cution (DSE), have been proposed to reduce human efforts in test-
ing database applications. However, such techniques have two ma-
jor limitations: (1) they assume that the database that the applica-
tion under test interacts with is accessible, which may not always
be true; and (2) they usually cannot create necessary database states
as a part of the generated tests.

To address the preceding limitations, we propose an approach
that applies DSE to generate tests for a database application. In-
stead of using the actual database that the application interacts with,
our approach produces and uses a mock database in test generation.
A mock database mimics the behavior of an actual database by per-
forming identical database operations on itself. We conducted two
empirical evaluations on both a medical device and an open source
software system to demonstrate that our approach can generate,
without producing false warnings, tests with higher code coverage
than conventional DSE-based techniques.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Languages, Experimentation

Keywords
Test Generation, Database Application, Mock Object

1. INTRODUCTION

Database applications, i.e., programs interacting with database
back-ends, play an increasingly important role in mission-critical
systems that require reliable data storage and correct data access.
Since a failure of mission-critical systems can cause disastrous con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’10, September 20-24, 2010, Antwerp, Belgium.

Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

sequences, it becomes critical to guarantee the deployment of cor-
rect and sound database applications in these systems.

Software (unit) testing has been widely used by developers to
assess the quality of database applications. Given that manual test
generation can be labor-intensive, developers usually rely upon au-
tomatic techniques [5, 7] to create quality tests, i.e., tests that ex-
ercise comprehensive behaviors of the program under test. Unfor-
tunately, such automatic techniques face two significant challenges
when applied to database applications.

First, automatic test generation usually requires executing
database applications to collect necessary information. Executing
a database application, however, may alter the data stored in its
database back-end, which may not always be desirable for data pri-
vacy and preservation reasons. Using a local test database, instead
of the original one, may address this issue. However, it is not al-
ways an easy task to set up such a local database and clone config-
urations of the original database onto it.

Second, no matter what database (original or test) is used, a test
generation tool has to bridge the semantic gap between database
applications and their database back-ends. That is, to comprehen-
sively cover a database application, tests produced for it should not
only provide inputs to the application itself, but also prepare neces-
sary states in its database back-end.

Mocking techniques [6], and their generalized variant called Pa-
rameterized Mock Objects (PMO) [10], can be used to alleviate the
first challenge. Such techniques replace an actual database with
a mock object, called mock database, which responds to actual
database queries with either default values (as in mocking tech-
niques) or values customized to explore program paths in the appli-
cation under test (as in PMO).

However, using mock databases is not a silver bullet. A mock
database usually does not reflect the genuine behavior of the actual
database that it simulates. Instead, it simply responds to a database
query with customized values, even if the query is not satisfiable or
the values are unrealistic. Moreover, a mock database is incapable
of simulating how an actual database changes its states during sys-
tem execution. Consequently, running tests with a mock database
may result in unexpected results or false warnings being generated
(i.e., tests fail in test execution but should not in reality; see Section
3 for an example).

In this paper, we address the preceding challenges and present
an automatic test generation approach for database applications.
Given a database application and the schema defining its database
back-end, our approach produces a parameterized mock database
that complies with the schema and, at the same time, captures the
behavior of the database back-end. In particular, such a mock
database replicates the effect of operations over an actual database
by performing the same operations on itself, so that the state of the

Transformer » Eede
| -

Code

Database Mock Object flock
Schema Framework Obiects
§ @

Source J Code TransformedJ

Test Transformed
Transformer » ges=ts
/‘;

ArammamaLALALAALARALALALAALARALALARRARARA LA LR LR AR AR RS

Figure 1: Architectural Overview of MODA

actual database is faithfully mirrored and only feasible values are
returned for database queries.

Having a mock database produced, our approach uses Dynamic
Symbolic Execution (DSE) [5, 7] to generate inputs for testing the
target database application. DSE runs the application, using the
mock database, with both random and symbolic inputs. The execu-
tion of the application with symbolic inputs, as well as the subse-
quent solving of path constraints collected during symbolic execu-
tion, helps to explore program paths in the application that are not
covered by random inputs.

We have implemented a prototype tool, called MODA (Mock
Object Based Test Generation for Database Applications), for our
approach. In its current implementation, MODA incorporates
Pex [9], a tool from Microsoft Research, as its DSE engine. To
make Pex work with a mock database, our tool equips it with two
capabilities: (1) a code transformation feature that redirects the ap-
plication under test to interact with the mock database; and (2) a
feature to inject records into the mock database, so that preparing
database states as a part of tests becomes possible.

We have conducted two empirical evaluations to assess the ef-
fectiveness of MODA: one on a real-world medical device and the
other on an open source software system. Results of the evaluations
demonstrate that our approach can achieve higher code coverage,
with no false warnings, than conventional DSE-based techniques.

2. APPROACH

Given a database application and the schema of its database
back-end, MODA coordinates four of its components, namely
Mock Object Framework, Code Transformer, Test Generator, and
Test Transformer, to produce a test suite that systematically exer-
cises the target application.

Figure 1 presents an architectural view of MODA, where the
Mock Object Framework component establishes a mock database
that simulates the database back-end and the Code Transformer
component pre-processes the target application such that all of its
database interactions are replaced by interactions with the mock
database. The Test Generator component of MODA serves as
the engine for generating tests for any user-selected method in
the target application, while the Test Transformer component post-
processes the generated tests to make them runnable with the target
application.

2.1 Mock Object Framework

From a database application’s point of view, its database back-
end accomplishes the following functions: organizes and maintains
data in a specified structure; provides interfaces through which
the application can interact with it; and responds to queries issued
from the application by performing appropriate operations over the
stored data. A mock database intending to faithfully mimic an ac-
tual database should be able to replicate all these functions. This
requirement motivates the design of the Mock Object Framework
component in our approach.

Mocking Database. The component first parses the input
schema' in order to obtain the information about how the origi-
nal database is structured. The input schema typically prescribes
the set of tables 7" defined in the original database, every column
C; of each table t; € T, and constraints over C;. Based on the
parsed information, the component creates and initializes tables in
a mock database DS, so that DS shares the same data structure as
the original database.

Mocking Database Interfaces. Database applications typically
interact with database back-ends through standardized interfaces.
To make an application under test talk to a mock database, it is es-
sential to equip the mock database with the same set of interfaces
as a standard database offers. As currently implemented, the Mock
Object Framework component creates a mocking counterpart for
each API class and method defined in the MySQL library [8], espe-
cially query execution APIs that forward SQL queries to a database
for execution. Given a query execution API, MODA produces its
mocking version to do two things: intercept the type and parame-
ter information of the query forwarded by the API, and execute the
corresponding mock operations on the mock database (see below
on mocking database operations) with the same parameters. For
other APIs in the MySQL library, such as those that facilitate the
establishment of database connections or the creation of SQL com-
mands, MODA either trivially mocks them as empty methods or
replicates their functionalities according to their specifications.

Mocking Database Operations. = When mocking actual
databases, conventional mocking or PMO techniques suffer from
the fact that they can neither interpret SQL queries nor simulate
how a database changes its states over program execution. As a re-
sult, these techniques may produce infeasible tests that are typically
difficult for developers to filter out.

MODA addresses the preceding issue by performing the same
operations over the mock database as the application under test in-
structs its database back-end to do, so that the effects of such oper-
ations over the original database are faithfully reflected in the mock
database. Typically, a database application requests its database to
manipulate the stored data by issuing four types of queries, namely
SELECT, INSERT, UPDATE, and DELETE. For each
type of query, the Mock Object Framework component includes a
mocking algorithm to simulate its effects.

As an example, consider mocking the /NSERT query. For-
mally, MODA translates an INSERT query into the format of
M;(T,C,V), where T defines the table that the query targets, C'
is a subset of columns in 7', V={v1, va, ..., vn } are the list of val-
ues defined in the VALUE clause of the query, and [C| = |V].
The component mocks an INSERT operation in a straightfor-
ward manner: the table with the name 7" is first fetched from DS
a new record p is then created with values v1,v2,...,v, € V for
columns c1, ¢, ..., ¢, € C; and finally p is added into 7.

'In this paper, we consider only a subset of the standard relational
database schemas [13].

2.2 Code Transformer

Given a target database application P, the Code Transformer
component redirects it to interact with the mock database created
by the Mock Object Framework. Specifically, the component trans-
forms P into P, such that: (1) if P refers to an API class A, then
this reference is replaced in P; by the reference to its correspond-
ing mock class M 4; and (2) if P invokes a database API method
O, then this invocation is replaced in P; with an invocation of the
mock method Mo that the Mock Object Framework component
creates for O.

As aresult, whenever P issues an SQL query by calling a certain
database API, P; calls the corresponding mock API and makes the
same query to the mock database.

2.3 Test Generator

MODA currently incorporates Pex to generate tests for the trans-
formed database application P;. Pex performs both concrete and
symbolic execution on P; simultaneously, where concrete execu-
tion is used to obtain an instance program path p in P; and symbolic
execution over p collects path constraints along p. By altering the
collected constraints, Pex is able to acquire a condition that repre-
sents a new path p’ deviated from p. Generating tests that cover p’
is then accomplished by solving the acquired condition. Pex iter-
ates this process until all paths within P; have been explored or a
predefined threshold of cost is reached.

Based upon Pex, the Test Generator component generates tests,
each of which is a combination of program inputs and an initial
state of the mock database, to cover program paths in the database
application. Specifically, the component first turns records” in the
mock database and their attributes into symbolic values. These
symbolic values, together with the symbolic values representing
program inputs, are then passed to Pex for collecting and solving
path constraints. Solutions to all path constraints collected by Pex
constitute the final test suite for the database application. In order
to synthesize initial states of the mock database, the Test Gener-
ator component also takes the responsibility of inserting records
generated by Pex into the mock database.

2.4 Test Transformer

It is sometimes desirable to execute the generated tests on the
target database application in its original format (i.e., before code
transformation). For example, when third-party reviewers gener-
ate tests exposing defects in a database application, these tests may
be shipped back to the developers of the application for fixing de-
fects. In such circumstances, the developers may expect the tests to
be executable on the application in its original format. To handle
this situation, MODA includes the 7est Transformer component to
transform the generated tests, making them executable directly on
the target database application.

Consider that each test generated by MODA essentially inserts
a set of records into the mock database to synthesize an initial
database state. For each generated test, the T'est Transformer
replaces each insertion in it with the execution of a corresponding
INSERT query on the original database. Formally, the compo-
nent substitutes each insertion M7 (T, C, V') of the test with an ex-
ecution of "INSERT INTO T(ci1,c2,...cn) VALUES V" in
the original database, where C' = {c1, ¢z, ...cn }.

“The number of records in each table is also turned into a symbolic
value.

3. EMPIRICAL EVALUATIONS

We conducted two empirical evaluations to evaluate the useful-
ness and effectiveness of MODA in both regulatory and ordinary
contexts. In our first evaluation, the test subject was a point-of-
care assistant system, which communicated patient health data and
treatment plans with a remote database. Because of confidential-
ity, we conceal the identity of this system, but simply refer to it as
the device. The evaluation focused on the GUI component of the
device, as the component contained intensive interaction with the
remote database. Within the GUI component, 62 SQL queries were
found, among which 54 were SELECT queries. However, only
39 of such queries were testable. The remaining 15 SELECT
queries either contained illegal characters or were affected by ille-
gal queries. Hence, the evaluation was conducted on the 39 testable
queries, which spread over 12 classes that consist of 2,994 lines of
code (LOCs).

The subject of the second evaluation was an open source library
Odyssegf, out of which two classes, DAL and BizContext, were
selected for test generation. Class DAL was found to have 33 meth-
ods involving SQL queries, while 20 methods in class BizContext
contained no SQL queries but invoked one or more query-involving
methods in DAL. The evaluation focused on generating tests for
these 53 methods, which in total include 1227 LOCs.

Evaluation Settings. In both evaluations, MODA and Pex were
applied to the evaluation subjects, under the assumption that the re-
lated databases were initially empty. When applying Pex in both
evaluations, we replaced the query execution statements with in-
vocations to stub methods that returned empty result sets to simu-
late an empty database. We also equipped the code under test with
necessary factory methods, so that Pex could generate values for
objects with non-primitive types.

In addition, we also applied the PMO approach to the evalua-
tion subjects, and measured the number of false warnings produced
in comparison with MODA. To implement the PMO approach, we
bypassed the execution of each encountered SQL query, and in-
structed Pex to inject a symbolic value to represent the result of
executing this query. We manually inspected each test generated
by MODA and the PMO approach to determine whether the test
represented a false warning.

Evaluation Results. Table 1 summarizes the results of our eval-
uations, where columns LOC and C list the sizes of test subjects
and the number of classes tested in these subjects, respectively. As
illustrated in column C'yy, tests that MODA generated in both eval-
uations achieved approximately 90% branch coverage (91.9% in
the first evaluation and 89.7% in the second). In contrast, Pex pro-
duced tests that covered only 64.4% and 77.2% of branches of the
two subjects, respectively (as shown in column C'p).

The evaluations also showed that MODA improved Pex’s capa-
bility to detect defects in SQL queries, because MODA calculated
the runtime content of SQL queries during test generation. In the
first evaluation, MODA reported 3 defects related to SQL queries,
none of which was found by Pex or PMO approach. These defects
are as follows: (1) illegal characters were found in a query, (2) a
query used an incorrect name to refer to a column in the database,
and (3) the WHERE condition of a SELECT query might poten-
tially assemble empty conjunctions.

The PMO approach achieved the same branch coverage as
MODA in both the evaluations. In the first evaluation, the PMO
approach produced no false warnings since there were no interac-
tions among database queries. However, in the second evaluation,
running the tests generated by the PMO approach resulted in false

3http://odyssey.codeplex.com/

Table 1: Results of Two Empirical Evaluations

[Subject [LOC[C[M][Cu | Cp | Cu-Cp |
Medical Device | 2994 | 12 | 46 | 91.9% | 64.4% | 27.5%
Odyssey 1227 | 2 | 53 (89.7% | 77.2% | 12.5%

void SaveCategory (Category category) {

if (category.Id == 0) Dal.CreateCategory (category);
Dal.UpdateCategory (category) ;

}

public void UpdateCategory (Category category) {

int n = Execute ("update Category ...", category.Name,
category.Order, category.Id);
if (n != 1) throw new DBEntityNotUpdatedException();

Figure 2: An example segment of Odyssey code

warnings for 8 methods of class BizContext, as compared to no
false warnings when running tests generated by MODA.

Figure 2 shows a snippet of code that the PMO approach
produced a false warning for. The method SaveCategory in
Figure 2 invokes method CreateCategory if the input object
category has its Id member equal to 0. The mere functionality
of CreateCategory is to insert into the Category table a blank
record, which is then updated by the UpdateCategory method.
An exception will be thrown out if either the insertion or update
operation fails.

The PMO approach did generate a test with category.Id =0
for the code shown in Figure 2. Running this test, however, resulted
in a false warning: a record was first inserted into table Category,
as evidenced by the fact that CreateCategory did not throw an
exception. However, since the PMO approach could not memorize
what records were maintained in table Category after the inser-
tion, method UpdateCategory threw an exception, indicating that
no record was found in the table.

Threats to Validity. A threat to validity includes faults in our
prototype, such as the potentially incorrect or incomplete transla-
tion from constraints underlying SQL queries into constraints that
Pex can handle. One way of reducing this threat is to avoid this
translation. In fact, this translation is no longer necessary if our
approach uses a constraint solver that can universally solve con-
straints from both imperative programs and database queries.

Another threat to validity is the degree to which the test sub-
jects represent true practices, considering that these subjects used
only relatively simple SQL queries to realize database interaction.
Moreover, since we had no access to the actual databases in both
evaluations, we could not compare MODA with other test genera-
tion techniques that required executing actual databases. The effec-
tiveness of MODA needs to be further evaluated in circumstances
where the actual databases are available and the target applications
interact with their databases in a more complex manner.

4. RELATED WORK

The research work closest to ours was proposed by Emmi et
al. [4]. Their work also relies on concrete execution to explore pro-
gram paths and on symbolic execution to collect constraints rep-
resenting unexplored program paths. Compared to Pex, their ap-
proach integrates a constraint solver that universally provides so-
lutions for constraints from both SQL queries and the application
under test, and hence crosses the semantic boundary between the
application and its database back-end. However, for the purpose of
concrete execution, this approach requires the presence of the ac-
tual database back-end, which is not always available as discussed

earlier. In fact, this approach can be used in our approach to replace
Pex, so that its application can be extended to circumstances where
database back-ends are not available.

Techniques such as the one proposed by Willmor and Em-
bury [12] rely on human input to synthesize initial database states
as a part of tests for database applications. It is challenging for one
to specify a set of database states that are comprehensive enough to
exercise the code under test. Our approach, in contrast, requires no
specification effort from developers in terms of generating initial
(mock) database states.

Several techniques [1, 3] use either predefined or random tests
for database applications. Such techniques do not use control- and
data-flow information of data applications, and hence usually gen-
erate abundant unnecessary tests before hitting a new program path.
In contrast, our approach considers both program structures and
SQL queries that a database application has, and guarantees that
each generated test covers a program path not yet covered.

Techniques [2, 11] are also available for generating tests for only
SQL queries, where each query is considered independently. Our
approach, in contrast, takes into account the dependency among
SQL queries, and hence produces no infeasible database states.

S. CONCLUSION

In this paper, we presented an approach that combines mock
databases and DSE to generate quality tests for database applica-
tions. Our approach does not require database back-ends as input,
making it suitable to be used in circumstances where it is diffi-
cult to access database back-ends. Empirical results show that our
approach is capable of generating tests with higher code coverage
than existing DSE-based techniques.

Although MODA is currently implemented on Pex, the key ideas
of MODA are general for testing database applications. Other
test generation techniques can also be used by MODA to replace
Pex, as long as these techniques are extended to manipulate mock
databases.

Acknowledgment. This work is supported in part by NSF grants
CCF-0725190, CCF-0845272, CCF-0915400, CNS-0958235, ARO grant
WO1INF-08-1-0443, and ARO grant W911NF-08-1-0105 managed by
NCSU SOSIL

6. REFERENCES

[1] H. Bati, L. Giakoumakis, S. Herbert, and A. Surna. A Genetic Approach for
Random Testing of Database Systems. In Proc. VLDB, pages 1243-1251, 2007.

[2] C. Binnig, D. Kossmann, and E. Lo. Reverse Query Processing. In Proc. ICDE,
pages 506-515, 2007.

[3] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker. An
AGENDA for Testing Relational Database Applications. STVR, 14:17-44,
2004.

[4] M. Emmi, R. Majumdar, and K. Sen. Dynamic Test Input Generation for

Database Applications. In Proc. ISSTA, pages 151-162, 2007.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random

Testing. Proc. PLDI, pages 213-223, 2005.

[6] T. Mackinnon, S. Freeman, and P. Craig. Endo-Testing: Unit Testing with
Mock Objects. In Extreme Programming Examined, pages 287-301.
Addison-Wesley Longman, 2001.

[71 K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine for

C. In Proc. FSE, pages 263-272, 2005.

http://msdn.microsoft.com/en-us/library/system.data.

sglclient.aspx.

[9] N. Tillmann and W. Schulte. Parameterized Unit Tests. In Proc. ESEC/FSE,

pages 253-262, 2005.

[10] N. Tillmann and W. Schulte. Mock-Object Generation with Behavior. In Proc.
ASE, pages 365-368, 2006.

[11] M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillmann. Symbolic Query
Exploration. In Proc. ICFEM, pages 49-68, 2009.

[12] D. Willmor and S. M. Embury. An Intensional Approach to the Specification of
Test Cases for Database Applications. In Proc. ICSE, pages 102-111, 2006.

[13] C.Zaniolo and M. A. Meklanoff. On The Design of Relational Database
Schemata. ACM Trans. Database Syst., 6:1-47, 1981.

[5

[8

