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ABSTRACT

User-input validators play an essential role in guarding a web appli-
cation against application-level attacks. Hence, the security of the
web application can be compromised by defective validators. To
detect defects in validators, testing is one of the most commonly
used methodologies. Testing can be performed by manually writ-
ing test inputs and oracles, but this manual process is often labor-
intensive and ineffective. On the other hand, automated test gener-
ators cannot generate test oracles in the absence of specifications,
which are often not available in practice. To address this issue in
testing validators, we propose a novel approach, called MiTV, that
applies Multiple-implementation Testing for Validators, i.e., com-
paring the behavior of a validator under test with other validators of
the same type. These other validators of the same type can be col-
lected from either open or proprietary source code repositories. To
show the effectiveness of MiTV, we applied MiTV on 53 different
validators (of 6 common types) for web applications. Our results
show that MiTV detected real defects in 70% of the validators.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Testing

tools

General Terms

Security, Reliability

1. INTRODUCTION
User-input validators are the first barricade that protects a web

application from application-level attacks such as buffer overflow,
code-injection attack, hidden-field manipulation, and cross-site
scripting [5]. When an attacker launches such attacks by sending
malicious inputs to a web application, these malicious inputs are
identified and filtered by the user-input validators. If the user-input
validators are defective, then the validators may not filter these ma-
licious inputs. As a result, the underlying web application may be
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vulnerable to attacks. As shown in a recent survey1, validators are
often defective: among the top 10 vulnerabilities of web applica-
tions, 6 vulnerabilities are induced by defective validators.

To improve the quality of validators, a common approach is to
use manual testing. In manual testing, developers write test in-
puts and expected test outputs as oracles to check actual test out-
puts. However, these manually-written test inputs are usually not
sufficient in exposing defects because the developers might not be
able to construct specific strings that can detect defects in these
validators. To improve the defect-detection capability of manually-
written test inputs, various existing automated approaches [8, 3]
can automatically generate test inputs. However, these approaches
require specifications to generate test oracles for checking actual
test outputs. Writing specifications manually for a validator is often
as error prone as implementing the validator. For example, some
email validators use regular expressions (RegEx) to validate user
inputs. Writing specifications for such validators is equivalent to
writing these RegExs. Moreover, inputs for some validators such
as credit-card validators cannot be solely represented as RegExs
because there can be some semantic constraints (such as checksum
on the digits of a credit card) involved in representing these inputs.

To automatically generate test inputs and oracles without requir-
ing specifications, we identify and leverage three main specific
characteristics of input validators. First, different from other pro-
grams, most user-input validators take strings as inputs and return a
boolean value to indicate whether an input string passes the check-
ing of a user-input validator2. Second, the functionalities of a par-
ticular type of user-input validators are similar (such as validation
of credit card numbers). Third, multiple implementations of a val-
idator type3 are commonly available on the Internet.

Based on these characteristics of user-input validators, we pro-
pose a novel approach, called MiTV, which applies multiple-
implementation testing4(MIT) to test a validator. In particular,
MiTV compares the behavior of the validator under test with other
validators of the same type to provide effective tool support for
generating test inputs and test oracles.

MiTV addresses two main technical challenges in applying MIT
to validators:
Detecting Behavioral Differences. Existing test-generation tech-
niques [8, 3] generate test inputs for each validator separately.
However, generation of test inputs separately for each validator is
insufficient to detect behavioral differences between different val-
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In the rest of this paper, we use “a validator accepts an input” to denote “an input

string passes the checking of a validator”.
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We use the notion of validator type to refer to the type of input validation that a

validator implements.
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MIT is an instance of differential testing [9] that is applied on two or more imple-
mentations of a software system.



Figure 1: Overview of MiTV

public boolean isValid1(String value){

String ZIP_REG = "[0-9]{5}";

String PLUS4_OPTIONAL = "([ -]{0,1}[0-9]{4}?";

Pattern mask= Pattern.compile(ZIP_REG+PLUS4_OPTIONAL);

Matcher matcher = mask.matcher(value);

if(!matcher.matches()) return false;

else return true; }

Figure 2: Zip-code validator under test.

idators [10]. To address the preceding challenge, we design test
drivers that guide a test generator to generate tests that reveal dif-
ferent behaviors for each pair of validators of the same type.
Different Validator Requirements. In traditional MIT [6], all the
implementations of a software system have the same requirements.
Having the same requirements enables developers to detect defec-
tive implementations based on whether an implementation behaves
differently from (a majority of) the other implementations. How-
ever, in practice, requirements for different validators of the same
type can be slightly different. To address the preceding challenge,
we propose an input-transformation technique for MIT of software
systems that have different requirements. Our technique transforms
the input strings accepted (and rejected) by a validator v1 of a val-
idator type to a string in format required by validator v2 of the same
type as v1. The transformation facilitates the comparison of behav-
iors of the validators v1 and v2.

2. APPROACH
In this section, we present details of MiTV and illustrate the

approach using an example. Figure 2 shows a zip-code validator
and Figure 3 shows three other zip-code validators, all of which
are adapted from real validators collected from the Internet. Sup-
pose that isValid1 is the validator under test. isValid1 uses
a RegEx to validate whether an input string consists of either five
or nine digits. If the string consists of nine digits, there may ex-
ist a separator between the first five digits and the last four digits.
We want to define that the value of the zip code should be greater
than 00501. However, the validator isValid1 is defective since it
does not include this restriction on the input values, while the other
three validators check for such restriction. Without requiring man-
ually provided test oracles, MiTV detects this defect by comparing
isValid1 and the other three validators (isValid2,isValid3,
and isValid4 shown in Figure 3). Figure 1 gives an overview of
MiTV, which uses three main techniques to effectively detect de-
fective validators.

TEST DRIVER SYNTHESIS. First, MiTV includes the driver-
synthesis technique to synthesize drivers for all possible pairs of
the validators isValid1, isValid2, isValid3, and isValid4.
Figure 4 shows an example test driver. The compare method is a
test driver for the isValid1 and isValid2 validators. Each of the
six test drivers (similar to compare but invoking different validator
pairs) invokes two zip-code validators in three conditionals to check
their behaviors for the same test inputs on both the validators.

GENERATION OF TEST INPUTS. Second, MiTV uses a test
generator to automatically generate test inputs for each test driver.

public boolean isValid2(String zipcode){

boolean isValidZip = zipcode.length() == 5;

try{

int zip = Integer.parseInt(zipcode);

isValidZip=isValidZip && ((zip>=501)&&(zip<=99999));

}catch (NumberFormatException e){

isValidZip=false;

}return isValidZip;}

public boolean isValid3(String value){

String s = value;

Pattern[] PATTERNS = new Pattern[] {

Pattern.compile("^[0-9][0-9][0-9][0-9][0-9]$"),

Pattern.compile("^[0-9][0-9][0-9][0-9][0-9]-

[0-9][0-9][0-9][0-9]$"),Pattern.compile("^[0-9]

[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]$")};

if(value.Contains(’-’)) s=value.Split(new char[]’-’)[0];

for(int i=0; i<PATTERNS.length; i++){

Matcher m = PATTERNS[i].matcher(value);

if (!m.matches()) return false;}

if(int.Parse(s) < 501) return false;

return true;}

public boolean isValid4(String s){

String zipTemplate="[0-9]{5}[ -][0-9]{4}";

Matcher m = Pattern.compile(zipTemplate).matcher(s);

if (!m.matches()) return false;

String[] sArr=s.Contains(’-’) ? s.Split(new char[] ’-’):

s.Split(new char[] ’ ’ );

if(int.Parse(sArr[0]) < 501) return false;

return true;}

Figure 3: Zip-code validators used to test isValid1.

public String compare(String s){

String case = "outside V1 and V2";

if(v1.isValid1(s) && !v2.isValid2(s))

case = "in V1 but outside V2";

if(!v1.isValid1(s) && v2.isValid2(s))

case = "in V2 but outside V1";

if(v1.isValid1(s) && v2.isValid2(s)) case="in V1 & V2";}

Figure 4: An example of test driver.

The test generator used by MiTV should work in such a way that
the test generator tries to generate test inputs to cover as many
branches as possible in the code under test. Therefore, if the test
generator can generate a test input that covers a particular branch
in a test driver, there exists a test input that satisfies the condition
of this branch, and the value of case (in Figure 4) is assigned with
a string indicating the condition of this branch. In our implemen-
tation, we use Pex [3] as our test generator. Pex is an automatic
test-generation tool (developed at Microsoft Research) for .NET
programs and generates test inputs (based on path exploration) that
achieve high structural coverage such as branch coverage.

CLASSIFICATION. Third, MiTV automatically classifies a test
input as valid (invalid) if the test input is accepted (not accepted) by
a majority (e.g., more than 50%) of the validators under considera-
tion including both the validator under test and other collected val-
idators. Note that before classifying the inputs as valid or invalid,
we use transformation functions to transform the inputs in the for-
mat required by one validator to inputs in the format required by
another validator. For input transformation, we first match a gener-
ated input, say si, with a validator, say vsi

, such that si is accepted
by vsi

. Our intuition is that if the input si is accepted by vsi
, si

is likely to be in the format of vsi
, i.e., if 111-11-1111 is accepted

by vsi
, we consider the input 111-11-1111 to be in the format of

vsi
. Now, for any other validator v that rejects si, si is transformed

to the format required by v using an input-transformation function.
In the zip-code example, an input 12345 generated for isValid2
is transformed into 12345-0000 for the other validators, which re-
quire the inputs to contain 9-digit zip code with a separator. Hence,
the input 12345 is classified as valid since the transformed input
is accepted by all the validators. On the other hand, we deter-
mine that a generated test input “00076|0000” is invalid, because



“00076|0000” is accepted by only isValid1 (the other three val-
idators do not accept this input since the value is less than 00501,
violating the restriction on the input).

We then detect the validator under test as defective if it accepts
an invalid input or rejects a valid input. Thus, in our example, we
detect that isValid1 is a defective validator.

3. EVALUATIONS
To evaluate the effectiveness of MiTV, we applied MiTV on 53

validators of 6 different types. Specifically, through our evalua-
tions, we address the following research questions:

• RQ1: How effectively does MiTV classify the generated test
inputs as valid or invalid?

• RQ2: How effectively do the classified test inputs detect de-
fective validators?

• RQ3: How high is the defect-detection capability of
test inputs generated by MiTV compared to existing test-
generation approaches?

3.1 Subjects
We apply MiTV on 53 validators of 6 different validator types

including validation of credit card number, email address, phone
number, SSN, URL, and zip code. We collected different valida-
tors of the same type from Krugle [2] and Google Code Search [1]
by giving validator types (e.g., email validator) as keywords. As
we use Pex [3] for input generation, our current implementation
can be used for testing validators written in .NET languages such
as C#. Some validator implementations that we collected (using
code search engines) were implemented in Java. We translated
these Java validators into C# using Microsoft Visual Studio. The
collected validators are implemented in 160 C# files with 19,929
lines of code (including comments and blank lines) in total. These
validators are from a variety of sources. Due to space limit, we do
not list here the sources of all of our subject validators, which can
be found at our project website [4].

3.2 Setup and Metrics
In our evaluations, we treat each collected validator as the val-

idator under test (VUT) one at a time. In particular, we apply the
first two techniques of our approach (i.e., synthesis of test drivers
and generation of test inputs) on all the validators at the same time,
since they are independent of which validator we treat as the VUT.
After finishing the first two techniques, we apply the third tech-
nique, i.e., classification of test inputs (using results of the second
technique), on each collected validator to detect defects in the val-
idator by treating the validator as the VUT.

Manual Input Classification. To measure the accuracy of test-
input classification, we manually analyze all the generated test in-
puts to verify the results of classification produced by MiTV. To
ensure that our manual classification is not biased, we use certain
guidelines to determine whether a generated test input is valid or
invalid. We make these guidelines by referring to various sources
that provide information on the format of a valid input for a val-
idator type. For example, we refer to the RFC 52115 document to
make guidelines to determine whether a generated email test input
is valid or invalid. The complete set of guidelines that we used are
available on our project website [4].

Test Generation Using Pex. To address RQ3, we compare the
effectiveness of test inputs generated using MiTV and Pex [3] (as a
representative of existing test-generation approaches). We generate
a test suite using Pex for each validator and insert oracles in the

5
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Table 1: Generated inputs that are accepted by at least one validator.

Type N Inputs Cov T (m)
#Tot #I #V InC

Credit 11 164 127 37 5% 95% 97
Email 12 275 262 13 2% 88% 107
Phone 7 123 118 5 6% 88% 28
SSN 8 45 31 14 2% 92% 35
URL 6 45 42 3 9% 86% 27
Zip 9 73 63 10 6% 91% 29

Total 53 715 643 72 4% 90% 323

generated test suite by manual analysis of the test inputs. We refer
to the preceding approach of using Pex and manual oracles as the
“Pex approach” in the rest of this paper.

Input Transformers. For validators (of the same validator type)
with different requirements on the input strings, we implemented
the input transformation functions. We inferred the requirements of
a validator by manually inspecting the generated inputs that were
accepted and rejected by the validator. In particular, we wrote in-
put transformers for phone-number, SSN, and zip-code validators.
The requirements of validators of the other validator types were the
same. It took around 4 hours for the first author to write and test
these transformer functions. These transformer functions consist of
around 400 C# lines of code.

Metrics. To compare MiTV with other approaches, we use two
standard metrics from the Information Retrieval field: Precision
and Recall.

3.3 RQ1: Input Classification
In this section, we address the research question RQ1 of whether

MiTV is effective in classifying generated test inputs as valid or in-
valid. Table 1 shows the number of test inputs (generated by MiTV)
that were accepted by at least one validator. Column Type shows
the validator types. Column N shows the number of validators that
we collected. Column #Tot shows the total number of inputs gen-
erated by MiTV. Columns #I and #V show the number of inputs
that MiTV classified as invalid and valid, respectively. We manu-
ally inspected all the test inputs generated by MiTV (as described in
Section 3.2) and identified the number of inputs that are incorrectly
classified as valid or invalid. Column InC shows the percentage
of inputs that are incorrectly classified. Column Cov shows the
average branch coverage achieved by the generated test inputs for
each validator type. The last column, Column T (m), shows the
time taken by Pex (in minutes) to generate these inputs. In total,
MiTV generated 715 different test inputs that were accepted by at
least one validator. These inputs achieved average branch coverage
of 90%. Out of these inputs, MiTV classified 643 as invalid and
72 as valid. MiTV correctly classified 96% of the 715 inputs as
valid or invalid. We observed that most of the incorrectly classified
inputs are invalid according to their specifications. For example, a
zip code containing all zeros is invalid (since the lowest zipcode is
005016).

3.4 RQ2: Defect Detection
In this section, we address the research question RQ2 of whether

the classified test inputs effectively detect defective validators. Ini-
tially, we use the manually classified invalid test inputs to detect
defective validators. If a validator accepts a manually classified
invalid test input, the validator is classified as defective validator.
We use these defective validators as golden defective validators to
detect the false positives and false negatives of the defective valida-
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Table 2: Classification of Validators.
Type vNum vDef vFP vFN P R

Credit 11 8 1 0 88% 100%
Email 12 10 1 0 90% 100%
Phone 7 4 0 2 100% 67%
SSN 8 6 0 1 100% 88%
URL 6 4 0 0 100% 100%
Zip 9 7 0 1 100% 88%

Total 53 39 2 4 95% 90%

tors automatically detected by MiTV. Table 2 shows the defective
validators detected by MiTV. Column Type shows the validator
types. Column vNum shows the number of validators. Column
vDef shows the number of defective validators that are detected
by MiTV. Columns vFP and vFN respectively show the number
of false positives and false negatives produced by MiTV. Columns
P and R respectively show the precision and recall of MiTV in
detecting defective validators. To measure the effectiveness of our
driver synthesis technique and our input transformation technique,
we measured the effectiveness of our approach with and without
each of the two techniques. Our results showed that MiTV detected
11 more defective validators with the driver synthesis technique
than without the technique. On the other hand, using our input-
transformation technique, there was a reduction in the number of
false positives (one each for the Zip code and the SSN validators)
in finding defective validators. In total, MiTV (with both the driver
synthesis and input transformation techniques) was able to detect
39 of the 53 validators as defective with only 2 false positives and
4 false negatives (as shown in Table 2). That is, MiTV achieved
a high precision of 95% and a high recall of 90% in detecting de-
fective validators. The complete list of defective validators can be
found on our project website [4].

3.5 RQ3: Comparison with Existing Test-
Generation Approach

In this section, we address the research question RQ3 of whether
MiTV has a higher defect-detection capability compared to an ex-
isting test-generation approach. To address RQ3, we compare the
effectiveness of our approach in detecting defects in the validators
using MiTV compared to the Pex approach. One of the advantages
of our approach is the automated generation of test oracles. For
the Pex approach, we manually insert test oracles in the generated
test suite. Table 3 shows the number of test inputs generated and
defective validators detected by the two approaches. Column Type
shows the validator type. Columns NM and NP show the number
of defect-detecting test inputs (i.e., invalid test inputs accepted by a
validator) generated by MiTV and the Pex approach, respectively.
Column NM/NP shows the ratio of the number of defect-detecting
test inputs generated by MiTV to the number of defect-detecting
test inputs generated by the Pex approach. Columns DM and DP

show the number of defective validators detected by MiTV and the
Pex approach, respectively. Column RM (and RP ) shows the recall
of MiTV (and the Pex approach) in detecting defective validators.
Note that the values in Columns NM and DM exclude the false
positives generated by MiTV. We observed that MiTV generated
3.8 times more invalid inputs accepted by at least one defective val-
idator. In addition, MiTV detected 48% more defective validators
than the Pex approach with 29% increase in recall.

In summary, our results show that MiTV detected defective val-
idators with high a precision of 95% and a recall of 90%, and was
significantly (48%) more effective in detecting defective validators
when compared to the Pex approach.

Table 3: Comparison of MiTV and the Pex approach.

Type NM NP NM/NP DM DP RM RP

Credit 125 35 11.3 7 4 100% 57%
Email 257 95 36.7 9 4 100% 44%
Phone 115 18 23 4 3 67% 50%
SSN 30 10 5 6 5 86% 71%
URL 38 18 5.4 4 3 100% 75%
Zip 63 11 7.9 7 6 88% 75%

Total 628 187 3.8 37 25 90% 61%

4. RELATED WORK
N-version programming [6] executes different versions of a pro-

gram in parallel in the same application environment with the same
inputs, and then passes the outputs to a voter. The majority outputs
are treated as the correct output. While using N-version program-
ming, we need to generate test inputs to cause and observe different
outputs (if any). Knight et al. [7] generated test inputs randomly for
their programs under test. In contrast, in our approach, we automat-
ically generate test inputs with Pex for our test drivers.

DiffGen [10] detects behavioral differences between two ver-
sions of a class. DiffGen uses a test driver similar to the one used by
MiTV. Different from DiffGen, our test drivers (for pairwise test-
ing of two input validators) enable a test generator to generate test
inputs specifically for each of the following categories: the first val-
idator accepts and the second validator rejects the generated input,
the second validator accepts and the first validator rejects the gen-
erated input, and both the validators accept the generated input. In
contrast, DiffGen’s test drivers enable a test generator to generate
test inputs for which the two methods under test produce different
return values. Hence, the test inputs generated using the test driver
proposed in DiffGen may not produce inputs for each of the pre-
ceding categories. DiffGen’s test drivers would not be as effective
in helping detect defects in validators.

5. CONCLUSION
We proposed an approach, called MiTV, that applies multiple-

implementation testing for testing an input validator by leveraging
different validators of the same type. To generate test inputs that
can detect different behaviors among validators of the same type,
we synthesize test drivers for each pair of validators of the same
type and use a test generator for structural testing to generate test
inputs for the synthesized test drivers. We evaluated MiTV using
53 different validators (of 6 common types) collected from the In-
ternet. Evaluation results show that MiTV detected 70% (37 of 53)
of the validators as defective with high precision and recall of 95%
and 90%, respectively.
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