
Improving Structural Testing of Object-Oriented

Programs via Integrating Evolutionary Testing and

Symbolic Execution

Kobi Inkumsah

Department of Computer Science

North Carolina State University

kkinkums@ncsu.edu

Tao Xie

Department of Computer Science

North Carolina State University

xie@csc.ncsu.edu

Abstract—Achieving high structural coverage such as branch
coverage in object-oriented programs is an important and yet
challenging goal due to two main challenges. First, some branches
involve complex program logics and generating tests to cover
them requires deep knowledge of the program structure and
semantics. Second, covering some branches requires special
method sequences to lead the receiver object or non-primitive ar-
guments to specific desirable states. Previous work has developed
the symbolic execution technique and the evolutionary testing
technique to address these two challenges, respectively. However,
neither technique was designed to address both challenges at
the same time. To address the respective weaknesses of these
two previous techniques, we propose a novel framework called
Evacon that integrates evolutionary testing (used to search for
desirable method sequences) and symbolic execution (used to
generate desirable method arguments). We have implemented
our framework and applied it to test 13 classes previously used
in evaluating white-box test generation tools. The experimental
results show that the tests generated using our framework
can achieve higher branch coverage than the ones generated
by evolutionary testing, symbolic execution, or random testing
within the same amount of time.

I. INTRODUCTION

Software unit test coverage and adequacy measurements [1]

provide a good basis for assessing software unit quality. In unit

testing, achieving high structural coverage of the program unit

under test such as a class helps increase confidence in the

quality of the unit. Although various unit-test generation tools

have been developed to help increase structural coverage such

as branch coverage over manual testing, many branches in the

program under test are difficult to cover due to two main chal-

lenges. First, some branches involve complex program logics

and generating tests to cover them requires deep knowledge

of the program structure and semantics. Second, in programs

especially object-oriented programs, covering some branches

requires special method sequences to lead the receiver object

or non-primitive arguments to specific desirable states, and

generating such method sequences is often challenging be-

cause of the huge search space of method sequences: we need

not only the right method sequence skeleton1 but also the right

1A method sequence skeleton is a method sequence whose methods’
primitive arguments are unspecified.

method arguments in the method sequence skeleton.

To address the first main challenge (especially to generate

special primitive-type arguments to cover branches that are

difficult to cover), recently symbolic execution tools such as

JPF [2] and CUTE/jCUTE [3] explore paths in the program

under test symbolically and collect symbolic constraints at all

branching points of an explored path. The collected constraints

are solved if feasible, and a solution is used to generate a test

that forces the execution of the program under test along the

path. This process is repeated until all feasible paths have been

explored or the number of explored feasible paths has reached

the user-specified bound. However, these symbolic execution

tools do not provide effective support for generating method

sequences that produce desirable receiver-object states or non-

primitive-argument states.

To address the second main challenge, some bounded-

exhaustive testing tools such as JPF [2], Rostra [4], and Sym-

stra [5] generate exhaustive method sequences up to a small

bound (with some pruning based on state equivalence [2],

[4] or subsumption [2], [5]). However, sometimes covering

some branches requires long method sequences whose length

is beyond the low bound that can be handled by these tools.

Some evolutionary testing tools such as eToc [6] represent

initial randomly generated method sequences as a population

of individuals and evolve this population by mutating its

individuals until a desirable set of method sequences is found.

However, because these evolutionary testing tools do not use

program structure or semantic knowledge to directly guide

test generation, they cannot provide effective support for

generating desirable primitive method arguments even if the

right method sequence skeleton is generated.

In this paper, we propose a novel framework called Evacon

that integrates evolutionary testing [6] and symbolic execu-

tion [3] to address the respective weaknesses of these two

techniques and to produce tests that achieve higher branch

coverage than the tests generated by each technique alone.

In particular, we establish a bridge from evolutionary testing

to symbolic execution by generalizing concrete tests gener-

ated by evolutionary testing to symbolic tests as test drivers

to symbolic execution. Therefore, symbolic execution can

help improve the method arguments in method sequences

initially generated by evolutionary testing. We also establish

a bridge from symbolic execution to evolutionary testing by

encoding concrete tests generated by symbolic execution as

chromosomes; these chromosomes are population individuals

for evolutionary testing to evolve.

This paper2 makes the following main contributions:

• a novel integration of two existing techniques to address a

significant problem in structural testing of object-oriented

programs;

• a comprehensive empirical comparison of our integration

with state-of-the-art representative testing tools for vari-

ous test-generation techniques including search-based test

generation using genetic algorithms, symbolic execution,

and random testing;

• a detailed comparison of the strengths and weaknesses of

different testing tools in terms of achieving high structural

coverage. In particular, we have introduced the branch

ranking metric to help gain insights on which tools can

be good at covering those difficult-to-cover branches and

which tools can be used in combination to achieve better

coverage.

We have implemented our proposed framework and

applied it to test 13 classes previously used in evaluating

white-box test generation tools. The empirical results show

that our framework can achieve higher branch coverage than

evolutionary testing, symbolic execution, or random testing.

The rest of the paper is organized as follows. Section II

explains our framework through an illustrative example. Sec-

tion III describes our framework. Section IV discusses evalu-

ation results. Section V presents threats to validity. Section VI

discusses issues of our framework and evaluation. Section VII

presents related work. Finally, Section VIII concludes.

II. EXAMPLE

We next illustrate how our framework is used in testing

object-oriented programs through a BankAccount example

as shown in Figure 1. This bank account example, which

implements a bank account service, has been adapted for

illustration purposes from the BankAccount class used in our

evaluation. The BankAccount class declares several public

methods. Among them, the deposit method allows money

to be deposited in the account. The withdraw method allows

money to be withdrawn from the account. The withdraw

method begins by checking whether the withdrawal amount

is more than the available balance. If so, an error message is

printed and the method exits. The method also checks if the

number of previous withdrawals (numberOfWithdrawals)

is at least 10. If so, another error message is printed and the

method exits; otherwise, the withdrawal amount is dispensed,

and both balance and numberOfWithdrawals are updated.

Figure 2 shows a sample test generated by an evolutionary

testing tool for BankAccount. The test invokes the withdraw

2An earlier version of this work is described in a short paper presented at
ASE 2007 [7].

public class BankAccount {
private double balance;

private int numberOfWithdrawals;

public void deposit(double amount) {
if (amount > 0.00)

balance = balance + amount;

}
public void withdraw(double amount) {
if (amount > balance) {
printError();

return;

}
if (numberOfWithdrawals >= 10) {
printError();

return;

}
dispense(amount);

balance = balance - amount;

numberOfWithdrawals++;

}
}

Fig. 1. A bank account example

public void testGenByEtoc() {
BankAccount acc = new BankAccount();

acc.deposit(1.00);

acc.withdraw(20.00);

}

Fig. 2. A test generated by an evolutionary testing tool

public void testGenByEtocAugmentedByjCUTE() {
BankAccount acc = new BankAccount();

acc.deposit(10.00);

acc.withdraw(1.00);

}

Fig. 3. A test generated by integrating evolutionary testing and symbolic
execution

public void testGenByjCUTEAugmentedByeToc() {
BankAccount acc = new BankAccount();

acc.deposit(10.00);

acc.withdraw(1.00);

...//repeated acc.withdraw(1.00) 9 times

acc.withdraw(1.00);

}

Fig. 4. A test generated by integrating symbolic execution and evolutionary
testing

method with an argument value (20.00) that is greater than

the argument value (1.00) of the earlier deposit method.

This test cannot cover the false branch of the first conditional

within the method body of withdraw. Note that additional

method invocations of withdraw forming a longer method

sequence cannot succeed in exercising the false branch of

the first conditional unless a withdraw method argument is

less than the argument value of the earlier deposit method.

However, an evolutionary testing tool such as eToc [6] relies

on random testing for generating primitive argument values

for withdraw, and it is not effective in generating desirable

argument values.

To address the weakness of evolutionary testing in gener-

ating desirable primitive argument values, we integrate evo-

lutionary testing and symbolic execution. In particular, we

Fig. 5. Framework overview

generalize the concrete primitive values (1.00 and 20.00 in

Figure 2) in the sequence to be symbolic. Then given the

sequence with symbolic values, a symbolic execution tool can

generate concrete primitive values to cover feasible paths in

the methods. One of the generated tests is shown in Figure 3.

This test includes a desirable method argument value (1.00)

of withdraw for covering its first conditional’s false branch

and the value is less than the argument value (10.00) of the

earlier deposit method.

Given the sequence with symbolic values derived from

Figure 2, a symbolic execution tool still can never generate

method arguments to cover the true branch of the second if

statement of withdraw; its coverage requires at least 11 suc-

cessful withdrawals denoted by 11 invocations of withdraw.

An existing symbolic execution tool such as jCUTE [3] does

not provide mechanisms in searching for desirable method

sequences. To address the weakness of symbolic execution in

generating desirable method sequences, we integrate symbolic

execution and evolutionary testing by evolving the method

sequences generated by symbolic execution to a desirable one

as shown in Figure 4 for covering the true branch of the second

if statement of withdraw.

III. FRAMEWORK

Our framework integrates evolutionary testing and symbolic

execution to generate tests that can achieve high code cover-

age. Figure 5 shows the overview of our framework, including

four components: evolutionary testing, symbolic execution, ar-

gument transformation (for bridging from evolutionary testing

to symbolic execution), and chromosome construction (for

bridging from symbolic execution to evolutionary testing).

A. Evolutionary Testing

Evolutionary testing techniques [6], [8]–[10] implement

genetic algorithms mimicking natural evolution. In particular,

Tonella [6] proposed an evolutionary testing technique to test

object-oriented programs such as Java classes. According to

the proposed evolutionary testing scheme, method sequences

represent actions that can be encoded as chromosomes of

individuals in a population. A population represents a potential

solution to a testing goal, and this solution can be optimized

through genetic re-combination and mutation. Furthermore,

optimizing potential solutions requires the use of a formula

of fitness to filter out less suitable individuals with regards

to the testing goal while preserving more suitable ones. Re-

combining and mutating the more suitable individuals then

become the basis for generating a new population, which is

hoped to be at least as fit as the predecessors [9].

For the program under test, each chromosome encodes

object creation, a sequence of method calls to prepare the

receiver object, and finally a call to the method under test.

Below is an example of a method sequence and the resulting

chromosome, which encodes the method sequence.

BankAccount acc = new BankAccount()
acc.deposit(1.00)
acc.withdraw(20.00)

$b0=BankAccount():$b0.deposit(double):
$b0.withdraw(double)@1.00,20.00

The receiver object of the sequence is identified using a

unique alphanumeric string prefixed by the $ symbol such as

$b0. A chromosome has two parts separated by the @ symbol

such as $b0.withdraw@40.00. The first part encodes the

actions of the method sequence using method argument types

rather than the method arguments themselves, while the second

part supplies the actual method arguments.

We have developed an algorithm shown in Figure 6 for

test generation based on branch coverage. Our algorithm is

inspired by and adapted from the approach of Tonella [6].

The algorithm performs four main steps. The first step is

Population Initialization (Lines 2 to 5), followed by Fitness

Calculation and Chromosome Selection (Line 14), and finally

Re-combination and Mutation (Line 15). Evolution begins

with instrumenting the program under test (Line 1) to deter-

mine the branch points within the program under test. The

branch points are initialized as targets to be covered.

Population Initialization. To integrate evolutionary testing

into our framework, we have added Lines 2 through 5 to

Tonella’s original algorithm [6]. This modification allows a

non-random population of chromosomes (method sequences)

obtained through chromosome construction (discussed in Sec-

tion III-D) to be supplied for evolutionary testing. In particular,

if the useRandom variable is initialized to False, a non-

random population of chromosomes (Line 5) is used as a

starting point for evolutionary testing instead of a random

population. A target is selected (Line 8) and the genetic

algorithm searches the population of method sequences for a

method sequence that covers the selected target. Specifically,

each method sequence in the population is executed (Line 10)

to see if it covers the target. If a test is found to cover the

target, it is saved, the algorithm exits the inner loop (Line 12),

a new target is selected, and the remaining method sequences

are executed on the new target. This process continues until

all targets are covered or the evolution of tests is terminated

because the maximum time for testing is reached.

Fitness Calculation. When a selected target cannot be cov-

ered by existing method sequences, the fitness of each method

sequence is calculated (Line 14). The fitness of a method

sequence measures the ratio of the control and call dependence

edges traversed during the execution of the method sequence

over the control and call dependence edges leading to the

target. Therefore, method sequences with high ratios closer to

one come closer to covering the target while method sequences

generateTests(programUnderTest:Class, useRandom:False)

1. branchTargets <- instrumentor(programUnderTest)

2. if useRandom then

3. population <- generateRandomPopulation(size)

4. otherwise

5. population <- getCustomPopulation(size)

6. while hasMoreToBeCovered(branchTargets)

7. and time() < maxTime

8. t <- getATarget(branchTargets)

9. while t is not covered

10. executeTestCases(population)

11. update(branchTargets)

12. if t is covered then break

13. otherwise

14. subPopulation <- getFitnessOf(t, population)

15. population <- recombineAndMutate(subPopulation)

16. end while

17. end while

Fig. 6. Genetic algorithm for test generation using branch coverage as the
testing goal (adapted from Tonella [6])

with low ratios closer to zero move farther away from covering

the target.

Re-combination and Mutation. Method sequences with

high fitness values are selected for re-combination and muta-

tion (Line 15) to produce offspring, which is the new popula-

tion of method sequences. We have adapted Tonella’s approach

for carrying out re-combination and mutation of chromosomes.

Re-combination is done on pairs of chromosomes. To re-

combine a pair of chromosomes, we divide each chromosome

into two parts using a randomly selected midpoint. Parts of the

first and second chromosomes are swapped and re-combined to

form new chromosomes. The example below shows how two

chromosomes are re-combined (the source code representation

of each chromosome is shown below the chromosome).

Parent chromosomes

1. $b0=BankAccount():$b0.deposit(double):|

$b0.deposit(double)@50.00,25.12

Test code:

b0=BankAccount();

b0.deposit(50.00);

b0.deposit(25.12);

2. $b0=BankAccount():$b0.withdraw(double):|

$b0.deposit(double)@3.50,100.00

Test code:

b0=BankAccount();

b0.withdraw(3.50);

b0.deposit(100.00);

Offspring chromosomes

1. $b0=BankAccount():$b0.deposit(double):

$b0.deposit(double)@50.00,100.00

Test code:

b0=BankAccount();

b0.deposit(50.00)

b0.deposit(100.00)

2. $b0=BankAccount():$b0.withdraw(double):

$b0.deposit(double)@3.50,25.12

Test code:

b0=BankAccount();

b0.withdraw(3.50);

b0.deposit(25.12);

First, the parent chromosomes are divided using the mid-

point denoted by the | symbol. A new offspring chromo-

some is formed by combining one part of the first parent

chromosome (the part to the left of the midpoint) with one

part of the second parent chromosome (the part to the right

of the midpoint). Similarly, another offspring chromosome is

derived by combining the the left part of the second parent

and the right part of the first parent. After re-combination,

mutation operators insert or delete methods or method argu-

ments within the new chromosomes. The mutation operators

also insert missing constructors for new objects added through

re-combination. After evolution, a set of method sequences are

selected. Within our framework, evolutionary testing serves to

construct suitable method sequences whose method arguments

are to be improved through symbolic execution which we

describe next.

B. Symbolic Execution

For Java programs, Sen and Agha [3] developed jCUTE, a

symbolic execution tool for combining concrete and symbolic

execution. We have adapted into our framework symbolic

execution implemented by jCUTE. The symbolic execution

technique implemented by jCUTE carries out two steps exe-

cuted inside a loop. The steps involve concrete execution and

constraint collection, followed by constraint solving and new

input generation.

Concrete Execution and Constraint Collection. For the

withdraw method in Figure 1, jCUTE randomly generates a

concrete input for the variable amount (e.g., 3.00), while

assigning to amount a symbolic variable (e.g., a0). If we

assume that balance is less than amount (e.g., balance is

2.00), when withdraw is invoked using amount of 3.00,

the execution takes the true branch of the first if statement.

During this execution, jCUTE collects the path constraint (a0

> 2.00) from the predicate of the first branch of withdraw.

Furthermore, because amount is greater than balance, an

error is printed and the method exits. However, since not

all feasible paths have been explored, jCUTE does constraint

solving and new input generation as described next.

Constraint Solving and New Input Generation. jCUTE

proceeds with symbolic execution on the withdraw method

by negating the last constraint collected to obtain a new

constraint (a0 ≤ 2.00). The new constraint is then solved

to obtain a concrete input for a0 such that a0 ≤ 2.00. The

withdraw method is invoked again with an argument value

(e.g., 1.00) and the false branch of the first if statement is

taken. jCUTE collects another constraint from the predicate

of the second if statement of withdraw, which, when con-

juncted with the previous constraint, yields (a0 ≤ 2.00 &&

numberOfWithdrawals ≥ 10). Since the second invocation

of the withdraw method by jCUTE is the only successful one

so far, numberOfWithdrawals = 1 and the false branch

of the second if statement is taken. The method exits after

invoking the dispense method, updating the balance, and

increasing the private field numberOfWithdrawals by one.

To force the next execution path along the true branch of

the second if statement, jCUTE attempts to solve the last

constraint that it collected (numberOfWithdrawals ≥ 10).

However, jCUTE cannot cover the true branch of the second

if statement of the withdraw method due to two factors.

First, a longer sequence of method invocations involving

the withdraw method (10 more successful invocations) is

required, causing the private field numberOfWithdrawals

to reach 10. Although jCUTE can be configured to generate

longer method sequences, its symbolic execution technique

can explore method sequences up to only a small bound.

Second, jCUTE treats a non-primitive symbolic input as a

memory graph and collects constraints on the memory graph

during symbolic execution. After collecting path conditions

including the constraints on the memory graph, jCUTE invokes

a default constructor for the non-primitive argument and then

directly assigns values to appropriate public fields of the

argument in order to satisfy the constraints. If a field involved

in the constraints is not public and its value is not the

default value assigned by the non-primitive argument’s default

constructor, the constraints cannot be satisfied and jCUTE

cannot generate a test to follow the corresponding path.

Symbolic execution using jCUTE requires a symbolic test

driver, which is generated within our framework for the

program under test through the use of argument transformation

described in the next section. Within our framework, symbolic

execution serves to construct suitable method argument values

whose method sequences are to be improved through evolu-

tionary testing. Consequently, the final produced tests charac-

terize method arguments obtained through symbolic execution

and method sequences obtained through evolutionary testing.

C. Argument Transformation

The argument-transformation component transforms prim-

itive method arguments of method sequences (produced by

evolutionary testing) into symbolic arguments [11]. This trans-

formation allows jCUTE’s symbolic execution technique to do

concrete and symbolic execution on the primitive arguments.

Our argument transformation process involves parsing method

sequences generated by evolutionary testing to identify method

invocations. For each method invocation requiring a method

argument, we replace instances of concrete method arguments

with equivalent symbolic arguments used to drive symbolic

execution. In general, argument transformation can be used to

transform any JUnit [12] method sequence into a symbolic test

driver compatible with jCUTE’s symbolic execution technique.

After symbolic execution, we derive the final test suite

by aggregating the tests generated by symbolic execution

and method sequences generated by evolutionary testing. In

doing so, we preserve the level of coverage achieved by the

method sequences obtained from evolutionary testing while

augmenting this coverage by generating additional argument

values that can achieve new coverage. Below is the resulting

symbolic test after argument transformation is applied on the

test in Figure 2. A double value is transformed to a symbolic

double input represented as cute.Cute.input.Double(),

an API method provided by jCUTE.

public void testGenByEvTest() {
BankAccount acc = new BankAccount();
acc.deposit(cute.Cute.input.Double());
acc.withdraw(cute.Cute.input.Double());

}

The argument transformation component is used when test

generation starts with evolutionary testing followed by sym-

bolic execution. Given the preceding symbolic test, symbolic

execution can help generate desirable method arguments for

achieving new branch coverage; one test generated with sym-

bolic execution is shown in Figure 3.

D. Chromosome Construction

The chromosome-construction component constructs chro-

mosomes out of method sequences generated using symbolic

execution. By using chromosome construction, method se-

quences from symbolic execution are made available to evolu-

tionary testing through chromosome encoding. Chromosome

construction involves two steps.

First, we extract the method sequences from symbolic tests

with a dynamic analysis mechanism. Our mechanism involves

compiling the symbolic test using ajc [13], an AspectJ [14]

compiler. We then execute the ajc-compiled test using JUnit

to dynamically collect exercised method sequences. The ajc

compiler is capable of weaving AspectJ pointcuts into Java

bytecode; an AspectJ pointcut specifies conditions that should

be satisfied during program execution and corresponding

actions to be performed when the conditions are met. In

particular, our AspectJ pointcuts instruct to output all method

sequences invoked by the tests.

In the second step, the entire method sequence is trans-

formed to a chromosome. Each method call is encoded and

all the encoded method calls are joined together. Below is the

encoding for the test in Figure 3.

$b0,BankAccount,[]:
$b0,BankAccount,deposit,[double]:10.00
$b0,BankAccount,withdraw,[double]:1.00

Each encoding has four parts except for constructor invo-

cations, which have three parts. The first part, which serves

as a variable identifier for the receiver object, is a unique

alphanumeric value prefixed by the $ symbol. The identifier

is assigned by the chromosome constructor. The second part

is the name of the class to which the method being invoked

belongs (this part is omitted for constructor calls). The third

part is the name of the method being invoked. Finally, the

fourth part lists the method arguments’ data types and corre-

sponding values. Below is the chromosome produced for the

test in Figure 3 derived after encoding method calls and joining

them together.

$b0=BankAccount():$b0.deposit(double):
$b0.withdraw(double)@10.00,1.00

To produce the above chromosome, the chromosome con-

structor maintains the association between the chromosome

identifier and its associated method calls, as well as the asso-

ciated method argument types and method argument values

in their correct order. The final outcome of chromosome

TABLE I
EXPERIMENTAL SUBJECTS

Class #public methods #branches LOC

BankAccount 6 6 60

BinarySearchTree 16 67 260

BinomialHeap 10 94 215

BitSet 25 130 638

DisjSet 6 44 140

FibonacciHeap 9 92 207

HashMap 10 89 374

LinkedList 29 105 738

ShoppingCart 6 13 117

Stack 5 16 160

StringTokenizer 5 47 222

TreeMap 47 252 1626

TreeSet 13 20 301

construction is a list of non-random chromosomes to be

used in evolutionary testing. The chromosome-construction

component is used when test generation starts with symbolic

execution followed by evolutionary testing.

Evolutionary testing tries to find suitable combinations of

method sequences, starting from the method sequences and

method arguments generated by symbolic execution. For ex-

ample, given the preceding chromosome, evolutionary testing

can help generate desirable method sequences for achieving

new branch coverage, such as the test in Figure 4.

IV. EVALUATION

We have implemented the Evacon framework in a tool for

testing Java programs. In our evaluation, we investigate the

following research questions:

• Is our proposed framework effective in generating tests

that achieve higher branch coverage than existing rep-

resentative test generation tools? This research question

helps to demonstrate the utility of our proposed frame-

work.

• What is the length of method sequences that achieve new

branch coverage? This research question helps demon-

strate that for certain types of branches, longer method

sequences are indeed required for covering them.

• Are there test generation tools that provide unique cov-

erage of some branches that cannot be covered by other

tools? This research question helps to show which tools

are required for achieving optimal branch coverage.

We compared Evacon’s test effectiveness (in terms of branch

coverage) with four publicly available test generation tools,

representative of existing major test generation techniques.

We selected eToc [6], which is an evolutionary testing tool

for object-oriented programs as a representative of search-

based test generation techniques using genetic algorithms.

We selected jCUTE [3], which tests Java classes using the

dynamic symbolic execution technique [15] as a representative

of test generation tools that use symbolic execution. We also

selected AgitarLabs’s JUnit Factory [16] as a representative of

industrial test generation tools. The JUnit Factory tool is an

experimental test-generation service provided by AgitarLabs

online at the JUnit Factory website [16]. Finally, we selected

Randoop [17] as a representative of test generation tools in

random testing. Randoop randomly generates tests for Java

classes using execution feedback. Another well-known tool

in symbolic execution is JPF [2]. We do not use JPF in our

evaluation because it currently lacks support for test code

generation. The tools used in our evaluation generate test code

in the JUnit [12] format, which makes it possible to use a third-

party code coverage tool to measure branch coverage in our

tool comparison.

We conducted the experiments on a Pentium PC with

a 1.86GHz processor and 1Gb memory. We have adapted

Hansel [18] to record branch coverage for generated tests.

Table I shows the 13 classes used in the experiments. The

13 classes are experimental subjects that have been previ-

ously used in evaluating white-box test generation tools [2],

[4]–[6]. The BankAccount program, which implements a

bank account service, is similar to our running example.

The ShoppingCart program is an implementation of an

online shopping cart service. The classes BitSet, HashMap,

LinkedList, Stack, StringTokenizer, TreeMap, and

TreeSet have been taken from the Java Standard library.

The remaining classes are popular data structures. The classes

range in size between 60 lines of code (LOC) and 1626 LOC.

The number of public methods vary between 6 and 47. The

number of branches within the classes vary between 6 and

252.

On the experimental subjects, we applied two types of Eva-

con integrations: bridging eToc to jCUTE with the argument

transformation component (denoted as Evacon-A) and bridging

jCUTE to eToc with the chromosome construction component

(denoted as Evacon-B).

To provide a fair comparison across the six tools, we

measure the branch coverage achieved by the tests generated

by each of these six tools within the same period of running

time, denoted as common runtime, except for JUnit Factory.

It was not possible to impose a time limit on testing done by

JUnit Factory. To use the online service requires uploading

the program under test to a test server, which tests the

program and makes the results available for download. The

test server, which carries out testing of the program under test,

cannot be stopped when the time limit for testing is reached.

For the remaining tools, we use Evacon-A’s runtime as the

common runtime, being eToc’s default runtime (60 seconds)

plus jCUTE’s runtime during Evacon-A’s integration process.

We configure the other five tools (except for JUnit Factory)

with the same runtime as below. For Evacon-B, we first

construct a symbolic test driver for jCUTE to try bounded

exhaustive method sequences up to the length of half the

number of public methods. We then run eToc up to the

common runtime. For eToc alone, we run it up to the common

runtime. For jCUTE alone, we incrementally increase the

bound of the bounded exhaustive method sequences till a

bound that can cause the runtime to exceed the common

runtime, and stop jCUTE when reaching the common runtime.

For JUnit Factory, we upload each program under test to the

JUnit Factory online test server and wait for the results to be

TABLE II
BRANCH COVERAGE ACHIEVED BY THE SIX TOOLS ON THE EXPERIMENTAL SUBJECTS

Class Time Evacon-A Evacon-B eToc jCUTE JUnit Fact Randoop All tools
(secs) branch cov(%) branch cov(%) branch branch branch branch branch

(eToc⇒jCUTE) (jCUTE⇒eToc) cov(%) cov(%) cov(%) cov(%) cov(%)

BankAccount 28 100.0 100.0 100.0 100.0 100.0 100.0 100.0
BinarySearchTree 238 94.0 95.5 92.5 88.6 88.1 98.5 100.0

BinomialHeap 228 94.7 92.6 90.4 89.9 88.3 95.7 98.9

BitSet 559 96.2 90.8 89.2 46.1 92.3 96.9 100.0
Disjset 346 95.5 93.8 90.9 55.8 86.4 90.9 100.0

FibonacciHeap 229 97.8 96.7 95.7 84.3 73.9 81.5 100.0

HashMap 374 95.5 91.0 80.9 58.8 80.9 60.7 100.0
LinkedList 687 81.0 77.1 79.0 64.0 67.6 1.0 100.0

ShoppingCart 145 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Stack 28 100.0 93.8 93.8 95.8 93.8 100.0 100.0

StringTokenizer 291 100.0 97.9 89.4 80.4 100.0 91.5 100.0
TreeMap 276 59.9 57.9 48.8 53.4 23.4 15.5 74.6
TreeSet 135 95.0 85.0 65.0 86.1 25.0 80.0 95.0

Average 274 93.05 90.16 85.82 77.17 78.44 77.86 97.58

available for download. For Randoop, we run the command

line utility in regression mode using the timelimit option,

which we set to the common runtime.

A. Branch Coverage

Table II shows the first experimental results. Column 2

shows the common runtime measured in seconds. Columns 3-8

show the branch coverage achieved by the six tools: Evacon-

A, Evacon-B, eToc, jCUTE, JUnit Factory, and Randoop,

respectively. Column 9 shows the branch coverage achieved

by aggregating all the tests generated using the six tools for

each class.

We highlight in bold font and underline the table entries

where the highest branch coverage is achieved among the six

tools. We also highlight (in bold font) entries in the last column

where the highest branch coverage for each program achieved

by the six tools individually is less than the aggregated branch

coverage by all tools. We observe that Evacon-A achieves the

highest branch coverage in 10 of the 13 classes but for 3

of the 13 classes (BinarySearchTree, BinomialHeap, and

BitSet), Randoop achieves the highest branch coverage. We

suspect that this result is due to Randoop’s ability to use exe-

cution feedback to avoid generating exception-throwing tests.

We observed that while the other tools generated tests that

caused the program under test to throw exceptions, preventing

branch coverage of some key parts of the program under test,

Randoop generated tests that tried to avoid these previously

encountered exceptions.

In contrast, we also observed that for the LinkedList

program, Randoop’s branch coverage was the least among all

the tools. In particular, we observed that although Randoop

generated a large number of tests for LinkedList class, only

a small fraction of the generated tests involved public methods

of the LinkedList class. A large number of the tests involved

setup and helper classes of public methods of LinkedList.

Randoop also tied with Evacon-A in achieving full branch cov-

erage for Stack. Both Evacon-A and JUnit Factory achieved

full branch coverage for the StringTokenizer class. All

tools achieved full branch coverage for the ShoppingCart

and BankAccount classes. The tools eToc, jCUTE, and JUnit

Factory did not perform better in terms of branch coverage

compared with Evacon-A.

Furthermore, we observed that although Evacon-A and

Evacon-B obtained the same level of coverage for the classes

BankAccount and ShoppingCart, Evacon-A performed bet-

ter than Evacon-B in terms of branch coverage for all other

classes except for BinarySearchTree. We suspect that this

result is because evolutionary testing in Evacon-B is not

able to achieve new coverage using the method arguments

obtained from symbolic execution even after evolving the

method sequences. In contrast, in Evacon-A, a new set of

method arguments are derived using symbolic execution.

After aggregating the tests generated by all six tools, we

observed that the branch coverage achieved by the six tools

together surpassed the best branch coverage achieved by Ran-

doop among all tools for three classes (BinarySearchTree,

BinomialHeap, and BitSet) and the best branch cov-

erage achieved by Evacon-A among all tools for five

classes (DisjSet, FibonacciHeap, HashMap, LinkedList,

and TreeMap). However, for five classes (BankAccount,

ShoppingCart, Stack, StringTokenizer, and TreeSet),

Evacon-A achieves the same level of branch coverage as all

the tools combined.

The last row of Table II shows the average branch coverage

achieved by each tool. To calculate the average branch cov-

erage, we sum the branch coverage values for each column

(from Columns 3 to 9) and divide each column by 13 (the

number of programs under test). Evacon-A achieved the high-

est average branch coverage (93.05%) compared with all other

tools followed by Evacon-B, which achieved (90.16%) average

branch coverage, although the average branch coverage of

either Evacon-A or Evacon-B is lower than the aggregated

average branch coverage achieved by all the tools combined.

This result suggests that for some classes, using a single tool

may not be sufficient in achieving optimal coverage and using

multiple tools in combination may be beneficial.

Table III shows the length of the longest method sequences

that achieve new branch coverage for subjects where Evacon-A

TABLE III
THE LENGTH OF THE LONGEST METHOD SEQUENCE GENERATED BY

EVACON-A OR RANDOOP THAT ACHIEVES NEW BRANCH COVERAGE

Class Evacon-A Randoop

BinarySearchTree - 17
BinomialHeap - 18

BitSet - 23
DisjSet 7 -

FibonacciHeap 14 -
HashMap 13 -
LinkedList 16 -

Stack 13 -
StringTokenizer 9 -

TreeMap 23 -
TreeSet 13 -

or Randoop achieves higher branch coverage than the remain-

ing tools. We have used the "-" symbol for the table entries

under Evacon-A in which Randoop achieves higher branch

coverage or table entries under Randoop in which Evacon-

A achieves higher branch coverage. For all the classes under

test except for DisjSet and StringTokenizer, method

sequences of length at least 13 were required to achieve new

branch coverage. In other words, existing tools [2]–[5] with

bounded exhaustive method sequences may need to be able to

handle a relatively large bound in order to achieve new branch

coverage for many of the experimental subjects.

B. Branch Coverage Subsumption

We also observed from our experiments that the branch cov-

erage achieved by some tools subsumed3 the branch coverage

achieved by other tools for some of the programs under test.

Although the branch coverage of no tool subsumed the branch

coverage of all other tools in all the programs under test, the

branch coverage of Evacon-A subsumed the branch coverage

of Evacon-B (in 12 of the 13 programs under test), eToc (in

7 of the 13 programs), jCUTE (in 3 of the 13 programs),

JUnit Factory (in 1 of the 13 programs), and Randoop (in 4 of

the 13 programs). The branch coverage of Randoop subsumed

the branch coverage of Evacon-A (in 1 of the 13 programs).

Randoop was the only tool whose branch coverage subsumed

Evacon-A’s branch coverage. We suspect that this result is due

to the large number of tests (over 1800 tests on the average)

generated by Randoop.

To identify the pairwise combination of the tools that

achieve an optimal coverage of the programs under test, we

investigated the pairwise combinations of the tools that led

to the highest subsumption. We observed that Evacon-A and

JUnit Factory achieved the highest pairwise subsumption. The

branch coverage achieved by both tools together subsumed all

the other tools in 5 of the 13 programs under test. This result

suggests that for 8 of the 13 programs under test, more than a

pairwise combination of the tools may be required to achieve

an optimal coverage.

3Branch coverage A subsumes branch coverage B if all branches covered
in B are also covered in A, but there exist branches covered in A not covered
in B.

TABLE IV
BRANCH COVERAGE ACHIEVED BY DIFFERENT TOOLS USING BRANCH

RANKING

Branch rank Evacon-A Evacon-B eToc jCUTE JUnit Fact Randoop

1 5/13 0/13 2/13 2/13 2/13 2/13
2 5/17 1/17 2/17 7/17 13/17 6/17
3 13/16 7/16 3/16 4/16 13/16 8/16
4 49/49 39/49 27/49 24/49 33/49 24/49
5 129/129 127/129 120/129 86/129 78/129 105/129

C. Branch Ranking

We have also conducted an initial study to gain insights on

which tools can be good at covering difficult-to-cover branches

and which tools can be used in combination to achieve better

coverage. In our study, we rank all the branches within the

13 classes under test based on the number of tools that can

cover them. Table IV shows the branch coverage achieved

by the six tools using our branch ranking metric. Column

1 shows the different ranks. A rank-1 branch is covered by

only one of the six tools while a rank-2 branch is covered by

only two of the six tools. Similarly, rank-3, rank-4, and rank-5

branches are covered by only three, four, and five of the six

tools, respectively. Covering a majority of the top-ranked (e.g.,

rank 1 and 2) branches demonstrates a tool’s effectiveness in

covering branches that cannot be covered by other tools. To be

concise, we have omitted rank-0 branches (branches covered

by none of the six tools) and rank-6 branches (branches

covered by all six tools) from our comparisons in Table IV.

The entries in each column (from Columns 2 to 7) show

the ratio of the number of branches that have been covered

by each tool over the number of branches in a particular rank.

Out of 975 branches taken from the 13 classes under test,

675 of the branches were covered by all six tools while 76

branches were not covered by any of the six tools. Among

the remaining 224 branches, Evacon-A covered 5 of 13 rank-

1 branches while each of the remaining tools covered 2 of

13 rank-1 branches except for Evacon-B, which did not cover

any rank-1 branches. Evacon-A also covered 5 of 17 rank-

2 branches second to JUnit Factory, which covered 13 of

17 rank-2 branches. Among the top-ranked (rank 1 and 2)

branches, JUnit Factory covered 15 of 30 branches, five more

than Evacon-A, which covered 10 of 30 top-ranked branches.

In general, Evacon-A covered more branches than all the

other tools except for rank-2 branches in which JUnit Factory

covered more. This result suggests that both Evacon-A and

JUnit Factory are effective in covering the branches that are not

covered by the remaining tools. However, more experiments

are needed to gain a better understanding of the benefits of

our branch ranking metric.

Overall, the experimental results demonstrate the benefits of

the Evacon integration techniques over eToc and jCUTE alone

as well as JUnit Factory and Randoop.

V. THREATS TO VALIDITY

The threats to external validity primarily include the degree

to which the subject programs are representative of true

practice. Our subjects are from various sources and they have

non-trivial size for unit testing. Our experiment had integrated

and compared with two third-party tools (eToc and jCUTE),

both are representative test generation tools. Our comparison

also includes JUnit Factory and Randoop, which are also

representative test generation tools. These threats could be

further reduced by experiments on more subjects and third-

party tools. The main threats to internal validity include

instrumentation effects that can bias our results. Faults in our

tool implementation, eToc, or jCUTE might cause such effects.

To reduce these threats, we have manually inspected the source

code of the generated tests for several program subjects.

VI. DISCUSSION

Our initial study with the branch ranking metric shows that

comparing tools based on the details of their covered branches

could offer new insight beyond comparing just the percentages

of branch coverage, which is an existing common way in

comparing the effectiveness of tools. Our branch ranking

metric is especially beneficial when selecting multiple tools

to use in combination among the tools under comparison.

As is shown in our initial study, detailed comparison of the

branches being covered by the tools under comparison would

provide guidance in selecting and using multiple tools together

to achieve optimal branch coverage.

The motivation of the branch ranking metric is also related

to residual coverage [19], which focuses on the coverage of

entities such as branches that have not been covered yet.

We can basically first apply one test generation tool or tool

combination to cover those relatively-easy-to-cover branches

and then select the best tool or tool combination to achieve the

residual branch coverage (covering the not-yet-covered, often

difficult-to-cover branches).

Our branch ranking metric is designed to compare the

relative strength of each tool in a set of tools in terms of

achieving branch coverage. For example, consider that we have

a tool T that is not satisfactory in achieving branch coverage.

If we compare tool T with a set of poorer tools that can help

cover even fewer branches, T would be measured to perform

well in terms of the branch ranking metric since T may be

able to cover many branches (even ones considered to be easy

to cover generally by test generation tools) that cannot be

covered by all the other poorer tools under comparison. From

the relative point of view, indeed T is better than the other

poorer tools under comparison but T is not necessarily good in

terms of achieving branch coverage. In other words, selecting

which tools to compare with has important implication. In our

experiments, we compared Evacon with advanced or state-

of-the-art test generation tools with respect to the branch

ranking metric. In such a setting, the better branch ranking

metric achieved by Evacon over these existing tools would

strongly indicate the effectiveness of Evacon in achieving

branch coverage by itself.

With the branch ranking metric, including a poor tool in

tool comparison would not affect the comparison of tools with

relatively better effectiveness. To show an extreme case, let

us include an extremely poor tool T (covering no branch of

the programs under test) to our tool comparison shown in

Table IV; in the new comparison, we have seven tools. In

the new comparison, the resulting new table would have an

extra column for the new tool T and the “x/y” entries for

this column would have 0 for x, indicating that T can cover

none of the rank-1 to rank-5 branches (in fact, T can cover

no branches). In addition, the new table would have an extra

row on the table bottom for rank-6 branches, which are the

branches that can be covered by six tools out of the seven

tools. This row would list “675/675” for all the six original

tools and “0/675” for tool T . Note that the original entries

in Table IV remain the same, i.e., the comparison among the

six original tools is not affected. In general, for a tool with

relatively poor performance (not to the extreme with 0 branch

coverage), adding it to the tool comparison would primarily

incur relatively slight changes on lower portion of the existing

table entries.

In general, our branch ranking metric can be extended

to other types of structural coverage types beyond branch

coverage or even general types of coverage criteria beyond

structural coverage. In future work, we plan to compare the

effectiveness of test generation tools in achieving other types

of coverage criteria such as data flow coverage [20] and

mutation testing [21].

The two types of integrations in Evacon can form a feedback

loop between evolutionary testing and symbolic execution. The

feedback loop can start from either evolutionary testing or

symbolic execution. Then the iterations can continue until nei-

ther evolutionary testing nor symbolic execution can generate

tests that achieve new branch coverage. In future work, we plan

to empirically investigate the effectiveness of the feedback

loop compared to the two existing integration types in Evacon.

VII. RELATED WORK

There is a large body of work in the area of automatic test

generation for programs but none of the existing techniques

leverage evolutionary testing and symbolic execution to gen-

erate tests that include both suitable method arguments and

suitable method sequences as we have proposed.

Among the existing test generation tools, DART [15],

Randoop [17], and Jartege [22] use randomized processes

to cheaply generate test data from a test domain. Random

testing is not effective in generating tests to cover structural

entities such as branches whose coverage requires special

argument values or method sequences. To compensate for

this limitation, DART uses dynamic analysis of the program

behavior during random testing and generates new test data

to direct program execution along alternative program paths.

Randoop [17] uses user-specified properties in conjunction

with execution feedback to produce both fault-revealing and

regression tests. Jartege [22] uses specifications to reduce the

number of irrelevant tests produced by its random process. By

leveraging both symbolic execution and evolutionary testing,

our technique both generates test data to exercise different

branches within the program under test and ensures optimal

combination of method sequences.

Other techniques [3], [23], [24] aim at increasing structural

coverage such as branch coverage of the program under test.

Although our work is similar to these techniques in gener-

ating appropriate method arguments, our proposed technique

produces appropriate method sequences, which are lacking

in these structural coverage techniques. Search-based test

generation [6], [10] uses genetic algorithms to find both

method arguments and method sequences for the program

under test. This testing process is usually referred to in the

literature as evolutionary testing. Traditional evolutionary test-

ing techniques suffer from the path problem (a phenomenon in

which a search process is led away from its target) as described

by McMinn et al. [8]. They propose factoring out paths to the

search target and searching for test data for each individual

path using dedicated genetic algorithms all operating in par-

allel. As a result, feasible paths contribute more toward the

search landscape, promoting test data discovery. In contrast,

our technique does not involve multiple genetic algorithms

but still addresses the path problem by means of leveraging

symbolic execution and constraint solving.

VIII. CONCLUSION

To achieve high structural coverage such as branch coverage

of object-oriented programs, we have developed a novel unit-

test generation framework called Evacon for integrating evo-

lutionary testing and symbolic execution. The former searches

for desirable method sequences with a genetic algorithm and

the latter generates desirable method arguments by exploring

alternate paths within the methods under test. In particular,

our Evacon framework provides a bridge from evolutionary

testing to symbolic execution by generalizing concrete tests

(generated by evolutionary testing) to symbolic tests as test

drivers to symbolic execution. Our Evacon framework also

establishes a bridge from symbolic execution to evolutionary

testing by encoding concrete tests generated by symbolic

execution as chromosomes, inputs to evolutionary testing.

We have implemented our framework and applied it to

test 13 classes previously used in evaluating white-box test

generation tools. The experimental results show that the tests

generated using our framework can achieve higher branch

coverage than tests generated by evolutionary testing, symbolic

execution, or random testing within the same amount time.

ACKNOWLEDGMENTS

This work is supported in part by NSF grant CCF-0725190

and a gift from Microsoft Research.

REFERENCES

[1] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366–427,
1997.

[2] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek, “Test input generation
for Java containers using state matching,” in Proc. ACM SIGSOFT

International Symposium on Software Testing and Analysis, 2006, pp.
37–48.

[3] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in Proc. International Conference

on Computer Aided Verification, 2006, pp. 419–423.
[4] T. Xie, D. Marinov, and D. Notkin, “Rostra: A framework for detect-

ing redundant object-oriented unit tests,” in Proc. IEEE International

Conference on Automated Software Engineering, 2004, pp. 196–205.
[5] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: A framework

for generating object-oriented unit tests using symbolic execution,”
in Proc. International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2005, pp. 365–381.
[6] P. Tonella, “Evolutionary testing of classes,” in Proc. ACM SIGSOFT

International Symposium on Software Testing and Analysis, 2004, pp.
119–128.

[7] K. Inkumsah and T. Xie, “Evacon: A framework for integrating evo-
lutionary and concolic testing for object-oriented programs,” in Proc.

IEEE/ACM International Conference on Automated Software Engineer-

ing, 2007, pp. 425–428.
[8] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The species per

path approach to search-based test data generation,” in Proc. Interna-

tional Symposium on Software Testing and Analysis, 2006, pp. 13–24.
[9] R. P. Pargas, M. J. Harrold, and R. Peck, “Test-data generation using

genetic algorithms,” Software Testing, Verification & Reliability, vol. 9,
no. 4, pp. 263–282, 1999.

[10] S. Wappler and F. Lammermann, “Using evolutionary algorithms for the
unit testing of object-oriented software,” in Proc. Conference on Genetic

and Evolutionary Computation, 2005, pp. 1053–1060.
[11] N. Tillmann and W. Schulte, “Unit tests reloaded: Parameterized unit

testing with symbolic execution,” IEEE Software, vol. 23, no. 4, pp.
38–47, 2006.

[12] JUnit, http://www.junit.org/.
[13] AspectJ Compiler, http://www.eclipse.org/aspectj/doc/released/

devguide/ajc-ref.html.
[14] AspectJ, http://www.eclipse.org/aspectj/.
[15] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated

random testing,” in Proc. ACM SIGPLAN 2005 Conference on Pro-

gramming Language Design and Implementation, 2005, pp. 213–223.
[16] Agitar Labs, “JUnit Factory,” http://www.junitfactory.com/.
[17] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random

testing for Java,” in Companion to ACM SIGPLAN Conference on Object

Oriented Programming Systems and Applications Companion, 2007, pp.
815–816.

[18] “Hansel 2.0,” http://hansel.sourceforge.net/.
[19] C. Pavlopoulou and M. Young, “Residual test coverage monitoring,”

in Proc. International Conference on Software Engineering, 1999, pp.
277–284.

[20] M. J. Harrold and G. Rothermel, “Performing data flow testing on
classes,” in Proc. ACM SIGSOFT Symposium on Foundations of Soft-

ware Engineering, 1994, pp. 154–163.
[21] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data

selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, pp. 34–41, April 1978.

[22] C. Oriat, “Jartege: A tool for random generation of unit tests for java
classes,” http://arxiv.org/abs/cs/0412012.

[23] N. Gupta, A. P. Mathur, and M. L. Soffa, “Generating test data for
branch coverage,” in Proc. IEEE International Conference on Automated

Software Engineering, 2000, pp. 219–228.
[24] R. Ferguson and B. Korel, “The chaining approach for software test

data generation,” ACM Transaction Software Engineering Methodology,
vol. 5, no. 1, pp. 63–86, 1996.

