
DiffGen: Automated Regression Unit-Test

Generation

Kunal Taneja

Department of Computer Science

North Carolina State University

Email:ktaneja@ncsu.edu

Tao Xie

Department of Computer Science

North Carolina State University

Email:xie@csc.ncsu.edu

Abstract— Software programs continue to evolve throughout
their lifetime. Maintenance of such evolving programs, including
regression testing, is one of the most expensive activities in
software development. We present an approach and its im-
plementation called DiffGen for automated regression unit-test
generation and checking for Java programs. Given two versions
of a Java class, our approach instruments the code by adding
new branches such that if these branches can be covered by a
test generation tool, behavioral differences between the two class
versions are exposed. DiffGen then uses a coverage-based test
generation tool to generate test inputs for covering the added
branches to expose behavioral differences. We have evaluated
DiffGen on finding behavioral differences between 21 classes and
their versions. Experimental results show that our approach can
effectively expose many behavioral differences that cannot be
exposed by state-of-the-art techniques.

I. INTRODUCTION

Software programs continue to evolve throughout their

lifetime. Maintaining such evolving programs is one of the

most expensive activities in the process of software develop-

ment. Maintaining these evolving programs involves making

different kinds of changes to them. While making changes

to a software program, developers need to make sure that

the changes being made are intended and do not introduce

any unwanted side effect. Regression testing of software

gives developers such confidence. A major part of software

maintenance cost is in fact spent on regression testing.

Developers need to have regression tests that can expose

behavioral differences between the original version and the

modified version of a software program. In some situations

(such as in legacy systems), when developers do not have

an existing test suite, it is expensive for developers to write

regression tests from the scratch. Even if the developers have

an existing test suite, the test suite may not be sufficient

in regression testing. In particular, the tests in the existing

test suite may not be able to detect a fault that a developer

introduced while modifying the program because the tests may

not exercise the situations in which the two versions may

behave differently. Therefore, to detect unintended changes,

the developers (or testers) often need to augment the existing

test suite with new tests.

Recently, Evans and Savoia [5] addressed the problem of de-

tecting behavioral differences by generating tests (using JUnit

Factory [8]) that achieve high structural coverage separately

for an old and new versions of the program under test. They

detected behavioral differences by cross-running the test suites

on the two versions of the program under test. High structural

coverage of the two program versions might ensure that the

modified part of the program is executed. However, only the

execution of the modified part is not sufficient to expose

behavioral differences as shown by Voas [13]. The modified

program has to be executed under specific circumstances to

expose behavioral differences in program states, and these

differences need to be propagated to the point where they can

be observed. Hence, even if we have a test suite that has full

structural coverage of the two program versions under test,

we cannot guarantee that the execution of the tests in the test

suite can expose the behavioral differences between the two

versions.

In this paper, we propose an approach called DiffGen

that takes two versions of a Java class, and then generates

regression tests that check if the observable behaviors of the

two classes differ. Each test that fails on execution exposes a

modified behavior. To ensure that the modified part of the

program is executed, and to increase chances of detecting

behavioral differences, we instrument the given program ver-

sions by adding new branches in the source code such that

the coverage of these branches ensures that the behavioral

differences are exposed. Therefore, if a test generation tool

is able to generate tests to cover these branches, behavioral

differences can be exposed.

This paper makes the following main contributions:

Approach. We propose an approach for generating regression

tests that help in detecting behavioral differences between two

versions of a given Java class by checking observable outputs

and receiver object states.

Evaluation. We evaluate our approach on detecting behav-

ioral differences between 21 classes (taken from a variety of

sources) and their versions. The experimental results show that

our approach can effectively expose behavioral differences that

cannot be detected by previous state-of-the-art techniques [5]

based on achieving structural coverage on either version sep-

arately.

II. RELATED WORK

Our previous Orstra approach [14] automatically augments

an automatically generated test suite with extra assertions for

guarding against regression faults. Orstra first runs the given



1 class BSTOld implements set{
2 Node node;

3 int size;

4 public BSTOld() {.....}
5 public boolean insert(MyInput m){.....}
6 public void remove(MyInput m){.....}
7 public void contains(MyInput m){.....}
8 .....

9 }

Fig. 1. The BSTOld class as in an old version.

test suite and collects the return values and receiver-object

states after the execution of the methods under test. Based on

the collected information, Orstra synthesizes and inserts new

assertions in the test suite for asserting against the collected

method-return values and receiver object states. However, this

approach observes the behavior of the original version to insert

assertions in the test suite generated for only the original

version. Therefore, the test suite might not include test inputs

for which the behavior of a modified version differs from the

original version.

Evans and Savoia [5] recently proposed an automated dif-

ferential testing approach in which they generate test suites for

the two given versions of a software system (say V1 and V2)

using JUnit Factory. Let the generated test suites for the two

versions V1 and V2 be T1 and T2, respectively. Their approach

then ran test suite T1 on V2, and test suite T2 on V1. They

found 20-30% more behavioral differences, as compared to the

traditional regression testing approach, i.e., executing test suite

T1 on Version V2. In our experiments using JUnit Factory

for test generation, we compared our approach to the one used

by Evans and Savoia [5] and showed the effectiveness of our

approach.

III. APPROACH

DiffGen takes as input two given versions of a Java class,

and generates regression tests, which on execution expose

behavioral differences between the two versions. Figure 1

shows an old version of the class BST, while in a new version

the method insert is modified and the other methods remain

unmodified. We use this example to explain our approach in

detail. We next describe the components of our approach.

A. Change Detector

For all the corresponding method pairs in the two versions

of the class under test, the Change Detector checks for textual

similarity between the two versions. The Change Detector

selects the corresponding method pairs by matching their

names and signatures. If the two methods in a method pair

are textually the same, they cannot be semantically different

and thus are considered to have the same behaviors. The

Change Detector filters out all the pairs with textually the

same methods, and selects all the methods that are different

textually. For the BST class (Figure 1), Change Detector

selects the method insert, which has been modified.

B. Instrumenter

The Instrumenter component instruments the source code

of the two versions of the class under test, and synthesizes

a test driver for the Test Generator component to generate

tests. The Instrumenter component first changes the modifier

1 public class BSTJUFDriver{
2 public void compareInsert(BSTOld oldBST,

MyInput input){
3 BST bstNew = new BST();

4 bstNew = copyObject(oldBST);

5 boolean b1 = bstOld.insert(input);

6 boolean b2 = bstNew.insert(input);

7 if(b1 != b2)

8 Assert(false);

9 if(bstOld.size != bstNew.size)

10 Assert(false);

11 if(!bstOld.root.equals(bstNew.root))

12 Assert(false);

13 }
14 }

Fig. 2. Test Driver synthesized for JUnit Factory

of all the fields transitively reachable from objects of the

two given classes to public. This mechanism enables us to

compare the object states after a sequence of method invo-

cations on the objects of the two versions of the class under

test directly by comparing the object fields. We synthesize

driver for JUnit Factory [8] to generate tests. In general,

the test driver synthesized for JUnit Factory can be used

for other test generation tools. The JUnit Factory test

driver synthesized by the Instrumenter component for the

BST example (Figure 1) is shown in Figure 2. The driver

class contains one method for every changed method of the

class under test. These methods are a kind of parameterized

unit tests [12]. Each method has an object of the original

version of class under test as an argument. The rest of the

arguments of the method are the same as the arguments of

the changed method in the class under test. For example, in

Figure 2, the method compareInsert compares the behaviors

of the two versions of the method insert. An argument of

compareInsert is an object (bstOld) of BSTOld. Inside

the body of compareInsert, we make a new object of BST

(Line 3) and deep copy the fields of bstOld to the fields of

bstNew (Line 4). With the same argument (the other argument

of compareInsert), we then invoke the changed method on

the objects of the two versions of the class under test (Lines

5 and 6). We next compare the return values and the resulting

object states of bstNew and bstOld with new branches (Lines

8, 10, and 12) .

C. Test Generator

The Test Generator component uses JUnit Factory [8] for

test generation. JUnit Factory is a commercial automated

characterization test generator based on Agitar [1].

The input to the Test Generator component is the instru-

mented code and the test driver generated by the Instrumenter

component. JUnit Factory is used to generate tests for

the test driver. JUnit Factory tries to achieve maximum

structural coverage and thus tries to generate inputs so that

branches at Lines 8 , 10, and 12 of Figure 2 can be covered.

If such inputs are generated, behavioral differences between

the two classes are exposed.

D. Test Execution

Making public the fields of both versions of the class

under test is helpful for comparing object states directly, and

hence it is helpful in regression test generation. However, the

execution of the generated regression tests requires the fields



of the class under test to be public, and hence the tests

cannot be executed on the original source code. To execute

the regression tests on the original source code, we use our

previously developed Diffut framework [15] to execute the

generated test suite on the original code of the class versions

under test.

IV. EXPERIMENTS

This section presents our experiments conducted to address

the following research question:

• Can the regression test suite generated by DiffGen

effectively detect regression faults that cannot be detected

by previous state-of-the-art techniques [5]?

If the answer is yes, then DiffGen can be used to com-

plement state-of-the-art techniques to improve regression-fault

detection capability.

A. Experimental Subjects

Table I lists eight Java classes that we use in the first

experiment. UBStack is the illustrative example taken from the

experimental subjects used by Stotts et al. [11]. IntStack was

used by Henkel and Diwan [6] in illustrating their approach

of discovering algebraic specifications. ShoppingCart is an

example for JUnit [3]. BankAccount is an example distributed

with Jtest [10]. The remaining four classes are data structures

previously used to evaluate Korat [2]. The first four columns

show the class name, the number of methods, the number of

public methods, and the number of non-comment, non-blank

lines of code for each subject, respectively. The last column

shows the coverage achieved by tests generated by JUnit

Factory for the original version.

B. Experimental Setup

Although our ultimate research question is to investigate

whether DiffGen can detect regression faults not detected by

previous state-of-the-art techniques, our subject classes were

not equipped with such faults; therefore, we used MuJava [9],

a Java mutation testing tool, to seed faults in these classes.

MuJava modifies a single line of code in an original version

in order to produce a faulty version. For each mutant and

the original class version, we generate tests using JUnit

Factory [8].

To evaluate the fault-detection capability of our DiffGen

approach, we compare the fault-detection capability of the

test suite generated by DiffGen with the fault-detection

capability of test suites generated by the approach of Evans

and Savoia [5]. Their approach generates tests separately for

the two versions of class under test with JUnit Factory.

Then their approach runs the generated tests for the original

version on a mutant version, and runs the generated tests for

the mutant version on the original version of the class under

test to expose behavioral differences. For simplicity, we refer

to their approach as SeparateGen. We then use DiffGen

to find behavioral differences between the original version of

class under test and the mutants that were left unkilled by

SeparateGen.

C. Measures

We measure the total number of mutants generated for each

subject, the number of unkilled mutants by SeparateGen

(denoted by u), the number of mutants killed by DiffGen

among the ones not killed by SeparateGen (denoted by k).

We also measure the number of mutants that had the same

behavior as the original version (denoted by s) among the

mutants that were not killed by DiffGen or SeparateGen.

We next measure Improvement Factor (IF1) of DiffGen over

SeparateGen. IF1 = k

u
. We measure another improvement

factor (IF2) of DiffGen over SeparateGen by excluding the

mutants with same behavior as the original version of class.

IF2 = k

u−s
. The values of IF1 and IF2 indicate the extra fault-

detection capability of DiffGen over SeparateGen.

D. Results

Table II shows the results from the experiment that we

conducted. Column 1 shows the name of the subject. Column

2 shows the total number of mutants. Columns 3 shows the

number of unkilled mutants by SeparateGen. Columns 4

shows the number of mutants killed by DiffGen, among the

mutants that were not killed by SeparateGen. Column 5

shows the number of mutants with the same behavior as the

original class version. Columns 6 and 7 show the Improvement

Factors IF1 and IF2 of DiffGen, respectively. From Table II,

we observe that DiffGen has an Improvement Factor IF2

varying from 40% to 100% for all the subjects with the

exception of DisjSet, which has an improvement factor of

23.4%.

In summary, the evaluation answered the question the we

presented in the beginning of Section IV. DiffGen can detect

a substantial percentage of faults that were not detected by

SeparateGen, which is the representative of previous state-

of-the-art techniques in test generation. In particular, DiffGen

was able to detect from around 23% to 100% of faults that

SeparateGen could not detect.

E. Experiments on Larger Subject Programs

We conducted additional experiments on larger subject

programs to validate that our approach is useful for these

subjects. These subjects and their faults are taken from the

Subject Infrastructure Repository (SIR) [4]. We conducted

experiments on three available versions of the JTopas [7]

subject from SIR. Among the three versions, we chose the

classes that had faults available at SIR. There were 13 such

classes and 38 faults in total were available for them. We

tested on versions of these classes prepared by seeding all the

available faults in the SIR repository for these classes one by

one. These subjects were the same ones used by Evans and

Savoia [5].

Our subject classes are shown in Table III. Column 1 of

the table shows the version of JTopas. Column 2 shows the

name of the class. Column 3 shows the lines of code in the

class. Column 4 shows the number of faults available in the

repository for that class. Column 5 shows the faulty versions

that were not detected by the approach used by Evans and



TABLE I
EXPERIMENTAL SUBJECTS

class meths public ncnb Cov

IntStack (IS) 5 5 44 100%

UBStack (UBS) 11 11 106 100%

ShoppingCart (SC) 9 8 70 100%

BankAccount (BA) 7 7 34 100%

BinSearchTree (BST) 13 8 246 100%

BinomialHeap (BH) 22 17 535 87%

DisjSet (DS) 10 7 166 100%

FibonacciHeap (FH) 24 14 468 98%

TABLE II
EXPERIMENTAL RESULTS

class #Mutants #JUF DG Same IF1 IF2
UnKilled Killed Behavior % %

IS 85 21 0 21 0 -

UBS 187 15 6 7 40 75

SC 18 7 3 4 42.8 100

BA 35 6 0 6 0 -

BST 125 13 4 4 30.8 44.4

BH 281 39 8 19 20.5 40

DS 385 97 15 33 15.5 23.4

FH 339 53 5 43 9.4 50

Savoia. Finally the last column shows the number of faulty

versions detected by our approach among the ones not detected

by the approach used by Evans and Savoia.

The results show that our DiffGen approach detects 5 of

the 7 faults that were not detected by the approach used by

Evans and Savoia.

V. DISCUSSION

In this section we discuss some of the limitations of the

current implementation of our tool and how they can be

addressed.

Changes on methods or signatures. The current implemen-

tation of DiffGen cannot deal with refactorings or other

maintenance activities that change the name or signature of

a method (such as Rename-Method and Changed-Method-

Signature Refactorings). The Change Detector component

in the Test Generation phase detects corresponding methods

in the two versions by comparing the method names and

signatures. In particular, DiffGen considers two methods to be

corresponding if their names and signatures match. A refactor-

ing detection tool can be used to find corresponding methods

that were refactored in the new version of the given class.

DiffGen can then detect the behavioral differences for the

methods whose names were changed. However, for methods

or constructors whose signatures were changed (methods with

a modified, added, or deleted parameter), developers would

need to write a conversion method to convert the input format

of the methods or constructors in the original version to the

inputs required by the new version.

Changes on fields. The current implementation of DiffGen

compares objects by directly comparing the fields in the

objects of the classes under test. However, if a field is deleted,

added, or modified in the new version of the class under

test, DiffGen cannot correctly compare the receiver object

states. This situation can be addressed by invoking various

observer methods on objects under comparison and comparing

the return values of these observer methods [14].

TABLE III
EXPERIMENTAL RESULTS

Ver class LOC F U D

v1 ExtIOException 78 3 0 -

v1 AbstractTokenizer 1672 3 1 1

v1 Token 159 1 0 -

v1 Tokenizer 287 1 0 -

v1 ExtIndexOutOfBoundsException 67 2 0 -

v2 ExtIOException 89 2 0 -

v2 ThrowableMessageFormatter 137 2 0 -

v2 AbstractTokenizer 2966 4 2 2

v2 Token 447 4 0 -

v3 EnvironmentProvider 240 3 1 0

v3 PluginTokenizer 407 1 0 -

v3 StandardTokenizer 1992 8 2 2

v3 StandardTokenizerProperties 2736 4 1 0

Total 13 classes 38 7 5

VI. CONCLUSION

Software programs are created during development, but

continue to evolve throughout their (often long) lifetime. A

considerable percentage of costs of maintaining such programs

are due to regression testing, which is the activity of retesting

a software program after it is modified. We have developed an

approach and its implementation called DiffGen. DiffGen

takes as input two versions of a Java class and generates a

regression test suite for the two given versions. The behavioral

differences between the two versions are exposed on execut-

ing the generated test suite. Experimental results show that

DiffGen can effectively detect regression faults that cannot

be detected by the state-of-the-art techniques.

ACKNOWLEDGMENTS

This work is supported in part by NSF grant CCF-0725190.

REFERENCES

[1] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to Agitator:
lessons and challenges in building a commercial tool for developer
testing. In Proc. ISSTA, pages 169–180, 2006.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing
based on Java predicates. In Proc. ISSTA, pages 123–133, 2002.

[3] M. Clark. JUnit primer. Draft manuscript, 2000.
[4] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled exper-

imentation with testing techniques: An infrastructure and its potential
impact. Empirical Software Engineering: An International Journal,
10(4):405–435, 2005.

[5] R. B. Evans and A. Savoia. Differential testing: a new approach to
change detection. In Proc. FSE, pages 549–552, 2007.

[6] J. Henkel and A. Diwan. Discovering algebraic specifications from Java
classes. In Proc. ECOOP, pages 431–456, 2003.

[7] JTopas website, 2006. http://jtopas.sourceforge.net/jtopas/.
[8] JUnit Factory website, 2006. http://www.junitfactory.com/.
[9] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: an automated class

mutation system: Research articles. Softw. Test. Verif. Reliab., 15(2):97–
133, 2005.

[10] Parasoft Jtest manuals version 4.5. Online manual, 2003. http://www.
parasoft.com/.

[11] D. Stotts, M. Lindsey, and A. Antley. An informal formal method for
systematic JUnit test case generation. In Proc. XP/Agile Universe, pages
131–143, 2002.

[12] N. Tillmann and W. Schulte. Parameterized unit tests. In Proc.

ESEC/FSE, pages 253–262, 2005.
[13] J. M. Voas. PIE: A dynamic failure-based technique. TSE, 18(8):717–

727, 1992.
[14] T. Xie. Augmenting automatically generated unit-test suites with

regression oracle checking. In Proc. ECOOP, pages 380–403, 2006.
[15] T. Xie, K. Taneja, S. Kale, and D. Marinov. Towards a framework for

differential unit testing of object-oriented programs. In Proc. AST, pages
5–11, 2007.


