
Automated Detection of API Refactorings in Libraries

Kunal Taneja1 Danny Dig2 Tao Xie1

1 Department of Computer Science, North Carolina State University
2 Department of Computer Science, University of Illinois
1
ktaneja,txie@ncsu.edu, 2

dig@cs.uiuc.edu

ABSTRACT

Software developers often do not build software from scratch but
reuse software libraries. In theory, the APIs of a library should be
stable, but in practice they do change and thus require changes in
software that reuses the library. Our previous study of five reusable
components shows that more than 80% of these API changes are
caused by refactorings. If these refactorings could be automatically
detected, they could be used to automatically upgrade applications.

In this paper, we present a technique and its supporting tool,
RefacLib, to automatically detect refactorings in libraries. Refac
Lib uses syntactic analysis in the first phase to quickly detect
refactoring candidates across two versions of a library. In the sec-
ond phase, RefacLib uses various heuristics to refine the results.
We used RefacLib to detect refactorings in five open source li-
braries and frameworks. The experiments show that RefacLib can
process realistic code bases and detects refactorings with practical
accuracy.

Categories and Subject Descriptors: D.2.13 [Software Engineer-
ing]: Reusable Software—Reusable libraries;

General Terms: Management, Design.

Keywords: Refactoring, Code reuse, Libraries, Software main-
tainance

1. INTRODUCTION
Refactoring is a disciplined technique for improving the inter-

nal structure of a program while preserving its observable behav-
ior. The problem with refactorings is that they can change an Ap-
plication Programming Interface (API) and require software that
uses the old API to be updated to use the new API. Convention-
ally, such updating is done manually, which is error-prone, tedious,
and disruptive to the development process. Thus, such updating
makes maintaining software expensive. This problem is exacer-
bated when refactorings change the APIs of reusable software com-
ponents (e.g., libraries and frameworks): our previous study [5] of
five popular components shows that refactorings cause more than
80% of API changes that were not backwards-compatible.

In this paper, we present a novel technique to automatically in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

fer refactorings that happened between two versions of a library.
One of the key challenges is the size of real-life libraries (hundreds
of KLOC). For example, for log4j, a medium-size library, if a tool
looks at all pairs of methods across two versions, it would need to
analyze 3.7 million pairs of methods. To reduce the search space,
previous approaches [1, 3, 6, 11, 12] assume that older program en-
tities in one version are removed and replaced with refactored en-
tities in the subsequent version. Thus, all these approaches start by
analyzing only pairs of program elements that disappear from the
old version and program elements that appear in the newer version.
While this assumption is true for software that is built and used
in-house and does not need to be backwards-compatible, reusable
software libraries follow a long deprecate-replace-remove cycle.
RefactoringCrawler, our previous tool [4], addresses these

shortcomings. However, experiments on real components revealed
new shortcomings. To achieve high accuracy levels (over 85%)
and scalability (hundreds of KLOC), RefactoringCrawler com-
bines a fast syntactic analysis with a precise semantic analysis. The
syntactic analysis quickly identifies a set of program elements sus-
pected of refactoring. For these elements, the semantic analysis
builds reference graphs. In case of methods, these reference graphs
contain all calls to the methods under analysis. If two methods are
called from the same places across the two versions, have similar
method bodies, and yet have different names, RefactoringCra
wler infers that the methods are a rename of each other. How-
ever, it is not always possible to discriminate methods based on the
similarity of their method calls due to the fundamental difference
between the nature of frameworks (targeted by RefactoringCra

wler) and libraries. The API methods that a framework provides
are called from within the framework. In contrast, libraries offer
API methods that are called only from outside by the application
that reuses them. Moreover, some APIs might not be referenced in-
ternally even for frameworks. RefactoringCrawler cannot deal
with cases of lack of API references.

To overcome the lack of internal references in the case of li-
braries, we developed a new suite of analyses and a new tool, Refa
cLib. RefacLib inherits all the good properties of Refactorin
gCrawler while it improves on RefactoringCrawler’s weak-
nesses. RefacLib uses the same fast and innovative syntactic anal-
ysis based on Shingles-encoding [2], a technique used in Infor-
mation Retrieval to detect similarity in large bodies of text. The
syntactic analysis produces pairs of program elements (across the
two versions) that have similar bodies (e.g., methods with similar
bodies). These pairs are fed into a suite of heuristic-based anal-
yses that do not depend on references, and thus are able to ana-
lyze libraries. We evaluated RefacLib on three frameworks and
two libraries. While the accuracy detection is comparable with that
of RefactoringCrawler in the case of frameworks, RefacLib

finds many more refactorings in the case of libraries. Based on the
empirical findings, in future work, we plan to pair the two tools so
that the weaknesses of one are made irrelevant by the strengths of
the other.

This paper makes the following main contributions:

• Design. We have designed a set of heuristic-based analy-
ses to detect refactorings despite the noise introduced by the
backwards-compatible evolution of software libraries.

• Implementation. We have implemented an efficient tool,
RefacLib, to detect refactorings with practical accuracy in
realistic software components.

• Evaluation. We have used RefacLib to find several refac-
torings in five real-world components. We compared Refac

Lib with the previous state-of-the-art tool to detect refactor-
ings and found out that our tool is comparable in most cases
and better in others.

2. APPROACH
Our approach consists of three phases. The syntactic analysis

phase takes as input two versions of the component, v1 and v2, and
produces pairs of syntactically-matching entities. The classifica-

tion phase classifies these pairs as candidates for various kinds of
refactorings based on some syntactic checks. We currently support
seven refactorings: ChangeMethodSignature (CMS), RenameCl
ass, PushDownMethod (PDM), RenameP ackage (RP), RenameM
ethod (RM), PullUpMethod (PUM), and MoveMethod (MM) (these
were among the most frequently performed refactorings found in a
previous study [5]). Finally, in the heuristic-based analysis phase,
the algorithm computes a composite score for each pair based on
various heuristics. We define a set of heuristics for each type of
refactoring. For each candidate pair, the algorithm assigns a com-
posite score that is a weighted sum of scores for all heuristics de-
fined for that refactoring type. RefacLib reports as refactorings
only the pairs with a score above a threshold.

2.1 Overview
Our syntactic analysis phase reuses the one developed in our

previous tool RefactoringCrawler [4]. The syntactic analy-
sis phase returns a set of pairs of entities that are similar textually.
These pairs of similar entities are classified by the classification

phase as candidates of one of the seven refactoring types that we
support. The classification is done using some syntactic checks [4].

These pairs of similar entities are suspected candidates of refac-
torings, but may contain many pairs that are not actual refactor-
ings and need to be filtered out. This filtering process is where
RefacLib differs dramatically from our previous tool, Refactor
ingCrawler. For candidates of each refactoring type, our new
heuristic-based analysis (our previous approach [4] used semantic
analysis instead) selects pairs that are real refactorings. In partic-
ular, the analysis gathers facts from the source code and Javadoc
comments, and computes similarity measures to assign an overall
score that reflects the likelihood of a candidate to be a refactor-
ing. The facts and similarity measures vary for different types of
refactorings. Section 2.2 describes in detail the various types of
heuristics that we developed.

The process of classification and heuristic-based analysis iterates
visiting the set of all pairs, and taking into account already detected
refactorings. The process continues until a fixed point is reached.
This process ensures that RefacLib detects pairs of entities that
underwent multiple refactorings.

Another key ingredient to detect coupled refactorings (cases when
multiple refactorings happened to related entities) is a predefined

order in which RefacLib searches for different types of refactor-
ings. RefacLib first searches for renamings in packages, then
in classes, and finally in methods (a top-down approach). When
searching for moved elements, RefacLib uses a bottom-up ap-
proach: it first searches for moved methods, then moved classes,
etc. The intuition is that some types of refactorings can be detected
without knowledge about other types of refactorings.

2.2 Heuristic-Based Analysis
The heuristic-based analysis applies different heuristics for dif-

ferent refactoring types. The list of heuristics that we developed for
each type of refactorings is shown in Columns 2 and 6 of Table 1.
RefacLib ranks the candidate pairs based on various heuristics.
The overall score of a pair is a weighted sum of all the scores as-
signed to each heuristic used for the pair.

We next describe the various heuristics that we developed in
ranking the candidate pairs. We use a subset of these heuristics
to detect refactorings of a particular type. For each entity pair
< e1, e2 > passed by the syntactic analysis phase, we use the fol-
lowing heuristics.
Name Similarity (NS). We use the NS heuristic when the simple
names of entities e1 and e2 are different. Software developers re-
name entities to better convey their purpose or to correct a spelling
mistake. In some cases, the name of a method is changed to one
of its synonyms that better reflects its purpose.

As a common convention in Java, names representing methods
start with a verb followed by some parts of speech (noun, verb, etc.)
and written as starting with a lower case such as getActionMappi
ngName. The names of classes are nouns starting with upper case
such as UserMenuAction. These naming conventions are recom-
mended by Sun [7]. To determine the name similarity of e1 and
e2, we consider only their simple names (suffix). We decompose
the names of the two entities into subparts, and match the subparts.
For example, if e1 and e2 are performUpdates and executeNewUp-

dates, respectively, they are decomposed into the sets of subparts
{perform, Updates} (s1) and {execute,New, Updates} (s2), re-
spectively. Each of the subparts in s1 is matched with all the sub-
parts in s2. If a subpart in s1 does not match with any of the sub-
parts in s2, RefacLib automatically retrieves all the synonyms of
the subpart using the Wordnet library for Java [8], and match them
to the subparts in s2. If none of the synonyms matches with the
subparts in s2, RefacLib compares the two subparts syntactically
and gives the pair a score based on their syntactic similarity. The
final score for this heuristic depends on the fraction of matching
parts of the smaller of the two sets of subparts, and the differences
between the sizes of the two sets.
Deprecated Entities (DE). Source code entities in an evolving
software component follow the deprecated-replace-delete life cy-
cle. Initially when an entity is refactored, it is marked deprecated.
In a later version of the software component, the entity is replaced
by the new refactored entity; however, the obsolete entity still ex-
ists but is deprecated. Given a pair of entities, < e1, e2 >, if entity
e1 exists in Version v2 but is deprecated, it is likely that the entity
is refactored. On the other hand, if entity e2 is deprecated in any
of v1 or v2, the refactoring pair containing v1 and v2 cannot be a
refactoring, since e2 is an obsolete entity. If the entity e1 exists in
Version v2 as well but is not deprecated, it is unlikely that the pair
< e1, e2 > is a refactoring. RefacLib assigns a score to a candi-
date pair based on the above observations.
Deprecated Containing Class (DC). We use the DC heuristic when
entities e1 and e2 are methods. If the class containing e1 is depre-
cated either in v1 or v2, it is likely that the class will either be
moved/deleted or the methods inside the class will be moved to

some other class. Similarly if the class containing e2 is deprecated
in Version v2, the method e1 is unlikely to be a refactored version
of e1 unless the classes of e1 and e2 are the same. RefacLib assign
a score to the pair < e1, e2 > based on the above observations.
Method Size (MS). RefacLib uses the MS heuristic while ana-
lyzing pairs containing methods. If the methods in the pairs are too
small in size, it is likely that their bodies will be similar and they
will pass the syntactic analysis phase. For example, the bodies of
getter and setter methods may be quite similar (in many cases ex-
actly the same). So there can be many such method pairs that pass
the syntactic analysis phase, but are not real refactorings. However,
such methods may have different Javadoc comments. RefacLib

computes the shingles of their Javadoc comment body and assigns
a score that reflects the similarity of shingles.
Signature Change Pattern (SCP). We use the SCP heuristic while
detecting ChangeMethodSignature refactorings. Kim et al. [9]
found that the three most common patterns of changing signatures
are (in decreasing popularity): addition of one parameter, changing
the type of a parameter to a more complex type, and deletion of a
parameter. RefacLib ranks the candidates by a signature-pattern
score based on the above observations. If e1 and e2 have a very
different signature, it is highly unlikely that the pair < e1, e2 > is
a refactoring; as a result, RefacLib assigns it a low score.
Deprecated type of a Method Parameter (DMP). We use the
DMP heuristic while detecting the ChangeMethodSignature refac-
toring. If the type of a parameter in method e1 is deprecated in ei-
ther Version v1 or v2, the parameter is likely to be replaced by its
refactored version.
Class Size Reduction (CSR). We use the CSR heuristic for detect-
ing MoveMethod, PullUpMethod, and PushDownMethod refac-
torings. The most common intent of these refactorings is to reduce
the responsibilities of a large class. RefacLib considers the size
of the class (C1) containing e1 in Versions v1 and v2 (If Class C1

exists in Version v2). When the size of the class C1 is reduced
from v1 to v2, it is more likely that e1 is moved to e2 in Version v2.
Similarly if size of the class containing e2 increases from Version
v1 to v2 it is more likely that the candidate is a real refactoring.
Additionally, if the size of class C1 is too small, it is unlikely that
a method will be moved from it. The PullUpMethod refactoring
can also be used to remove duplicated code from a software sys-
tem. For example, a method can be pulled up from various classes
to a common super class. RefacLib uses this fact to check if the
method e1 is also removed (or deprecated) from some other classes
that are a subclass of C2 containing e2.

For each refactoring type, we use a subset of the preceding heuris-
tics. Columns 2 and 6 in Table 1 show the set of heuristics that we
use for each refactoring type. The heuristic-based analysis com-
putes, for each refactoring candidate pair, a score based on all the
heuristics applicable for that refactoring. RefacLib assigns the
pair a composite score that is a weighted sum of all the scores of
individual heuristics. RefacLib assigns different weights for dif-
ferent refactorings since there can be some heuristics that are more
important than others. The weights that we use for each heuristic
are shown in Column 3 and 7 of Table 1. Once we have the scores
of all candidates, RefacLib reports the pairs with a score above a
threshold as detected refactorings.

3. EVALUATION
This section evaluates the accuracy of RefacLib in comparison

with that of RefactoringCrawler [4]. For comparison we use
the same three frameworks on which RefactoringCrawler was
evaluated; we add two new case studies of libraries, and evaluate
both tools on all five case studies. We next describe the objectives,

Refac Heuristics Wts Refac Heuristics Wts

CMS(m1 , m2) DE 0.2 RM(m1 , m2) NS 0.3

DC 0.2 DE 0.3

SCP 0.35 MS 0.1

DMP 0.25 DC 0.3

RC(C1 , C2) NS 0.5 PUM(m1 , m2) DE 0.3

DE 0.5 DC 0.3

MS 0.1

CSR 0.3

PDM(m1 , m2) DE 0.3 MM(m1 , m2) DE 0.3

DC 0.3 DC 0.3

MS 0.1 MS 0.1

CSR 0.3 CSR 0.3

RP(p1 , p2) NS 1.0

Table 1: Heuristics used for different refactorings along with

their weights.

subjects, and the process of evaluation, and finally present and dis-
cuss the results.
Objectives. We investigate the following questions:

• Is our tool more accurate than existing tools for detecting
refactorings in libraries?

• Is our tool comparable for detecting refactorings in frame-
works?

• Does our tool scale to real-world software components?

To answer the first two questions, we compare the accuracy of
RefacLibwith that of RefactoringCrawler using precision and
recall. To answer the third question, we sample our subjects from
real-world software components. The size of the subjects varies
from 30K to 352K lines of code.

Our initial goal was to evaluate the accuracy of RefacLib in
comparison with that of previously developed tools [1, 3, 6, 11, 12].
However, none of these is available for public download. Moreover,
some of them work for different programming languages, while
those evaluated for Java did not make public the exact refactor-
ings being found. Thus, we could compare only RefacLib and
RefactoringCrawler.
Experimental Setup. We evaluated the accuracy of RefacLib on
five real-world, open-source software components (two libraries,
Log4j and Lucene, and three frameworks, (EclipseUI, Struts, and
JHotDraw). For measuring the accuracy of refactoring detection,
one needs to find out the false positives and false negatives. False
positives are easily found by inspecting the source code of the pro-
gram elements returned by RefacLib. However, to find out the
false negatives (refactorings that RefacLib did not find), one needs
to know a-priori the refactorings that happened in those compo-
nents. The process of manually finding the real refactorings is la-
borious and requires weeks of careful, manual inspection. Fortu-
nately, we reuse the fruits of our labor from a previous study [5],
which combined analysis of release documents, manual code in-
spection, and interviews with the component developers. There-
fore, we had a solid base of manually found refactorings to com-
pare against the ones found by RefacLib.
Measurements. We measure the accuracy of RefacLib using two
standard metrics from the Information Retrieval field: Recall and
Precision. It is hard to achieve 100% precision and recall. For
practical purposes, the recall value is more important than the pre-
cision, since the false positives (if not too many) can be removed
by manual inspection. However, it is almost impossible to find
out the false negatives by inspecting thousands of methods inside
the whole software component. In addition, we use another metric
called F-Measure (first introduced by Rijsbergen [10]). F-Measure

combines recall and precision into a single efficiency measure. In
particular, F-Measure is a harmonic mean of recall and precision.

Results. Table 2 shows the results obtained by RefactoringC

rawler(denoted as RC) and RefacLib(denoted as RL) while de-
tecting refactorings of the five chosen components. We observe
that, for both library subjects, RefacLib performs generally bet-
ter than RefactoringCrawler in terms of recall. For the frame-
works, the recall of RefacLib is comparable to the recall of Refac

RM RC RP MM PUM PDM CMS Precision Recall F-Measure

Log4j 1.2.1 - 1.3alpha6
RC 0,0,5 0,0,13 0,0,0 14,0,0 1,0,8 0,0,0 30,0,3 100% 60.81% 75.63%
RL 5,1,0 11,0,2 0,0,0 3,0,11 7,0,2 0,0,0 33,0,0 98.33% 79.73% 87.79%

Lucene 1.4.2 - 1.9
RC 0,0,11 0,0,1 0,0,0 2,0,33 0,0,0 0,0,0 32,0,10 100% 38.2% 55.28%
RL 10,0,1 0,0,1 0,0,0 33,0,2 0,0,0 0,0,0 33,7,9 91.57% 85.39% 88.37%

EclipseUI 2.1.3 - 3.0
RC 2,1,0 0,0,0 0,0,0 8,2,4 11,0,0 0,0,0 6,0,0 90% 86% 87.95%
RL 2,10,0 0,0,0 0,0,0 7,0,5 7,7,4 0,0,0 6,0,0 56.41% 73.33% 63.77%

Struts 1.2.1 - 1.2.4
RC 20,0,1 1,0,1 0,0,0 20,0,7 1,0,0 0,0,0 24,0,1 100% 86% 92.47%
RL 20,1,1 1,0,1 0,0,0 25,4,2 1,1,0 0,0,0 23,0,2 92.1% 93.33% 92.71%

JHotDraw 5.2 - 5.3
RC 5,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 19,0,0 100% 100% 100%
RL 5,1,0 0,0,0 0,0,0 0,1,0 0,0,0 0,0,0 19,0,0 92.31% 100% 96%

Table 2: Triplets of (GoodResults, FalsePositives, FalseNegatives) found by RefacLib (RL) and RefactoringCrawler (RC).

b Recall
a Precision

 20%

 60%

 80%

 0%
CMSPUMMMRCRM

P
re

ci
si

o
n

 100%

 40%

Figure 1: Recall and Precision value for RefacLib for detecting

individual refactorings, for the five subjects we chose

toringCrawler. In terms of the precision value, RefactoringCr
awler performs better for all the five subjects, but the precision of
RefacLib is above 90% for four of the five components. Figure
1 shows the precision and recall of RefacLib for five refactoring
types. We do not list the PushDownMethod and RenamePackage

refactorings in the figure as no refactoring instance of these two
types were detected in the five subjects. From the figure, we ob-
serve that the recall for RenameMethod and ChangeMethodSigna
ture refactorings is above 90%, while the recall for the other three
refactorings is between 70-80%. The precision of RefacLib is
above 90% for RenameClass, MoveMethod and ChangeMethodSi
gnature.

In summary, the evaluation answers the questions that we listed
in Section 3. First, RefacLib performs better than RefactoringC
rawler when detecting refactorings in libraries. Second, accu-
racy of RefacLib is comparable to that of Refac toringCrawler
while detecting refactorings for the three framework subjects. Fi-
nally, the subjects that we chose were all real-world open-source
components with up to 352K lines of code, and thus RefacLib is
scalable to real-world software components.

4. RELATED WORK
Demeyer et al. [3] use change metrics to detect refactorings that

serve as markers for the reverse engineer, whereas we combine
heuristics with other syntactic analyses. Their precision rates are
in the range of 20% while they do not report the recall rates. Rys-
selberghe and Demeyer [11] use a clone finding tool (Duploc) to
detect methods that were moved across the classes; our Shingles-
based syntactic analysis is a different clone finding technique.

Godfrey and Zou [6] implemented a tool to detect refactorings
in procedural code. They employ the origin analysis along with a
more expensive analysis on call graphs to detect and classify these
changes. Kim et al. [9] propose an algorithm based on heuristics
to detect rename-method refactorings between two versions of soft-
ware. They use eight similarity factors to detect these refactorings.
Like our approach, they also take the weighted mean of the eight
factors.

Weissgerber and Diehl [12] propose an algorithm to detect refac-
torings by using the information from code repositories and later

use code-clone detection to refine the results. Xing and Stroulia
[13] detect refactorings at the design level from UML diagrams
using the structural changes between the two versions of the dia-
grams.

All previous approaches assume that obsolete entities disappear
in one version and new entities appear in another version. While
this assumption might be true for software built and reused in-
house, open-source libraries follow a deprecate-replace-remove life
cycle: obsolete entities co-exist with their refactored counterparts.
In addition, RefacLibworks even when multiple refactorings change
the same program entities.

5. CONCLUSIONS
Software systems are often built by reusing software libraries,

whose APIs may undergo changes over time; a high percentage
of these API changes are caused by refactorings [5]. When such
changes occur, the software systems also need to be upgraded, re-
quiring substantial maintenance efforts. To reduce the efforts, we
have developed a tool, RefacLib, to automatically detect refac-
torings in library APIs; these detected refactorings can be used to
automatically upgrade the software systems. RefacLib uses syn-
tactic analysis to quickly detect refactoring candidates across two
versions of a library and uses various heuristics to refine the re-
sults. RefacLib improves over RefactoringCrawler, our previ-
ous tool [4], by providing effective support for library APIs whose
internal references are lacking. We used RefacLib to detect refac-
torings in five open source libraries and frameworks. The exper-
iments show that RefacLib can process realistic code bases and
detects refactorings with practical accuracy.

6. REFERENCES
[1] G. Antoniol, M. D. Penta, and E. Merlo. An automatic approach to identify

class evolution discontinuities. In Proc. IWPSE’04, pages 31–40.

[2] A. Broder. On resemblance and containment of documents. in Proc. of

SEQUENCES, 1997.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via change
metrics. In Proc. OOPSLA’00, pages 166–177.

[4] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automatic detection of
refactorings in evolving components. In Proc. ECOOP’06, pages 404–428.

[5] D. Dig and R. Johnson. How do APIs evolve? a story of refactoring. J. Softw.

Maint. Evol., 18(2):83–107, 2006.

[6] M. W. Godfrey and L. Zou. Using origin analysis to detect merging and
splitting of source code entities. TSE, 31(2):166–181, 2005.

[7] Code Conventions for the Java Programming Language.
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html, Apr. 1999.

[8] Java WordNet Library. http://sourceforge.net/projects/jwordnet.

[9] S. Kim, K. Pan, and J. E. James Whitehead. When functions change their
names: Automatic detection of origin relationships. In Proc. WCRE’05, pages
143–152.

[10] C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 1979.

[11] F. V. Rysselberghe and S. Demeyer. Reconstruction of successful software
evolution using clone detection. In Proc. IWPSE’03, pages 126–130.

[12] P. Weissgerber and S. Diehl. Identifying refactorings from source-code
changes. In Proc. ASE’06, pages 231–240.

[13] Z. Xing and E. Stroulia. Refactoring detection based on umldiff change-facts
queries. In Proc. WCRE’06, 0:263–274.

