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ABSTRACT
Modularity is one of the most important properties of a software
design, with significant impact on changeability and evolvability.
However, a formalized and automated approach is lacking to test
and verify software design models against their modularity proper-
ties, in particular, their ability to accommodate potential changes.
In this paper, we propose a novel framework for testing design
modularity. The software artifact under test is a software design.
A test input is a potential change to the design. The test output is a
modularity vector, which precisely captures quantitative capability
extents of the design for accommodating the test input (the poten-
tial change). Both the design and the test input are represented as
formal computable models to enable automatic testing. The mod-
ularity vector integrates the net option value analysis with well-
known design principles. We have implemented the framework
with tool supports and tested aspect-oriented and object-oriented
design patterns in terms of their ability to accommodate sequences
of possible changes. The results showed that previous informal,
implementation-based analysis can be conducted by our framework
automatically and quantitatively at the design level. This frame-
work also opens the opportunities of applying testing techniques,
such as coverage criteria, on software designs.

Categories and Subject Descriptors: D.2.10 [Software Engineer-
ing]: Design

General Terms: Design.

Keywords: Design Testing, Modularity, Changeability

1. INTRODUCTION
Modularity in software designs offers evolvability, which has

been long recognized to have enormous technical, organizational,
and ultimately economic value. Although various approaches have
been developed in previous work to test or verify software design
models against specified properties to ensure design correctness,
we lack a formal framework to ensure the modularity in designs.

To assess design modularity quantitatively and objectively, we
propose a novel framework to test the modularity properties of a
software design and develop tool supports to conduct modularity
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testing. In our framework, the software artifact under test is a
software design. A test input is a potential change to the design.
The test output is a modularity vector, which precisely captures
quantitative capability extents of the design for accommodating the
test input (the potential change). The modularity vector integrates
Baldwin and Clark’s net option value analysis [1] with well-known
design principles, such as maximizing cohesion, minimizing cou-
pling, open to extension, and close to modification [16, 14].

In our framework, both the software under test and the potential
changes are formally modeled as Augmented Constraint Networks
(ACNs) [3, 2]. In an ACN, design dimensions and environmental
conditions are uniformly modeled as variables, possible choices as
values of variables, and relations among decisions as logical con-
straints. The ACN modeling formalizes the key notions of Bald-
win and Clark’s design rule theory [1] and Parnas’s information
hiding criterion [15, 2]. The ACN modeling makes our frame-
work independent of particular modularity techniques and language
paradigms, and enables automatic and quantitative design modular-
ity testing.

Previous research has analyzed software modularity at the level
of source code or in qualitative, intuitive, and heuristic ways. For
example, Hannemann and Kiczales compared the evolvability and
modularity properties of design pattern implementations using the
aspect-oriented [10] (AO) versus object-oriented (OO) paradigm.
They show the actual code implementing these choices as the evi-
dence of their analysis. However, designers frequently face similar
questions before coding. As a feasibility study, we compare the
designs of their AO versus OO observer pattern using our frame-
work against sequences of potential changes (as test inputs). The
results show that our framework automates Hannemann and Kicza-
les’s evolvability and modularity analysis precisely at the design
level, and provides additional insights.

The rest of this paper is organized as follows. Section 2 presents
the details of the framework. Section 3 presents our experience of
applying this framework to compare design alternatives. Section 4
discusses related work, and Section 5 concludes.

2. FRAMEWORK
Our framework receives two types of inputs: a software design

(the software artifact under test) and a potential change (the test
input). In this section we introduce the modeling of the two inputs
as Augmented Constraint Networks (ACNs) [3, 2], the automatic
derivation of modularity properties with and without the change,
and the computation of a modularity vector as the test output.

2.1 Modeling of Design and Test Input
An Augmented Constraint Network (ACN) was proposed in our

previous work [3] as a formal design representation better subject to



automated analysis of the design evolvability and economic-related
properties. The core of an ACN is a finite-domain constraint net-
work [13].

A constraint network consists of a set of design variables (mod-
eling design dimensions or relevant environmental conditions) and
a set of logical constraints (modeling the relations among them).
Each design variable has a domain that comprises a set of values,
each representing a decision or condition. A design decision or en-
vironmental condition is represented by a binding of a value from
a domain to a variable. We use orig (short for original) to generally
represent a currently selected design decision in a given dimension,
and use other as a value to represent unelaborated possibilities.

We model the design under test as an ACN. For example, The
following lines are the variables used to model a widely used Figure
Editor (FE) system using an observer pattern [8, 6]: the notification
policy, update policy, mapping data structure, how the colors of the
subjects should be observed, and the five involved classes.

1: spec_notify_policy:{push,pull};
2: spec_update_policy:{simple,complex};
3: mapping_ds:{other,hashtable};
4: spec_state_color:{orig,other};
5: adt_observer:{orig,other};
6: adt_subject:{orig,other};
7: point:{orig,other};
8: line:{orig,other};
9: screen:{orig,other};

We model the dependencies among decisions as logical con-
straints. The following line indicates that the current design of the
line class is based on the assumption that a hash table is used as
the data structure (mapping_ds), the subject (adt_subject) in-
terface is as originally agreed, and the push model is used as the
notification policy (spec_notify_policy).

line = orig => adt_subject = orig &&
mapping_ds = hashtable && spec_notify_policy = push;

We also model test inputs (possible changes to the design) as
variables and constraints. For example, adding a new observer, e.g.,
new_observer_1, to the FE design can be modeled as below:
new_observer_1:{orig, other};
new_observer_1 = orig => adt_observer = orig &&
spec_update_policy = simple;

An ACN also includes a pair-wise relation to model the domi-
nance relations among design decisions, and a clustering relation
on variables to model the fact that a design can be modularized
in different ways. Our framework automatically merges a change
with the design under test into one new ACN to represent the new
design, computes the modularity properties of the original and new
design, and generates a modularity vector as output.

2.2 Computation of Design Properties
From an ACN, we can derive a non-deterministic automaton,

which we call a design automaton (DA), to explicitly represent the
change dynamics within a design space [3, 2]. A DA captures all
the possible ways in which any change to any decision in any state
of a design can be compensated for by minimal perturbation, that
is, changes to minimal subsets of other decisions [3, 2]. From a DA,
we can also derive a pair-wise dependence relation (PWDR). We
define two design variables to be pair-wise dependent if, for some
design state, there is some change to the first variable for which
the second must change in at least one of the minimal compensat-
ing state changes. Given an ACN, its derived DA and PWDR, our
framework computes a number of modularity properties:

1. Complexity. The number of involved design dimensions,
which is equal to the number of variables of the ACN.

2. Dependency Density. The coupling level of a design, re-
flected by the density of the PWDR pairs:

density =
#PWDR

#V ariables2 (1)

3. Net Options Value. Another property that our framework
computes is the design’s Net Options Value (NOV) proposed by
Baldwin and Clark [1]. The idea is that modularity provides a port-
folio of options. Splitting a design into N modules increases its
base value S0 by a fraction obtained by summing the net option val-
ues (NOV i) of the resulting options. NOV is the expected payoff
of exercising a search and substitute option optimally, accounting
for both the benefits and cost of exercising options:

V = S0 + NOV 1 + NOV i + ... + NOV m

NOV i = maxki{σin
1/2
i Q(ki) − Ci(ni)ki − Zi}

For module i, σin
1/2
i Q(ki) is the expected benefit to be gained

by accepting the best positive-valued candidate generated by ki in-
dependent experiments. Ci(ni)ki is the cost to run ki experiments
as a function Ci of the module complexity ni. Zi = Σjseesicnj

is the cost of changing the modules that depend on module i. The
max picks the experiment that maximizes the gain for module i.
Details of the NOV model can be found in the literature [1, 17,
12]. The two most important parameters for the NOV analysis are
technical potential, σ, and complexity, n.

Technical potential is the expected variance on the rate of return
on an investment in producing a variant of a module implemen-
tation. Intuitively, a module that is not likely to change has low
technical potential. Our framework allows the users to configure
this parameter according to their own estimation. We measure the
complexity of a module as the proportion of the size of the module
(the number of variables) to the size of the whole ACN. For the cost
of visibility, our framework automatically computes the dependents
of each module, so that the users can input the costs accordingly.

2.3 Modularity Vectors
Given the design under test D and a possible change c to the de-

sign, our framework automatically merges them into one new ACN
D′ to represent the new design derived from applying c on D. Our
testing framework produces the test output based on comparing the
properties of these two ACNs: D and D′, as a modularity vector:

∆(D′ − D) = 〈∆size, ∆density, modifications, ∆nov〉
The modularity vector consists of the following dimensions: (1)
∆size models changes in the size (complexity) of the design space.
Using modularization techniques incorrectly could cause class ex-
plosion, another direction of design evolution that the designer should
pay attention to [6]. (2) ∆density models the changes in cou-
pling density, assessing design coupling structure variation. (3)
modifications models the number of existing design decisions
that have to be revisited because of newly introduced design di-
mensions, such as a new feature. This number reflects another
principle of design evolution: close to modification and open to
extension [14]. Ideally, a design should accommodate new fea-
tures through extension, and avoid changing an existing part that
has been debugged and proved to be correct. Our framework com-
putes the modification dimension by comparing the pair-wise de-
pendence relation of D and D′. (4) ∆nov models the changes in
the options value of the design.

3. EXPERIMENTAL PROOF OF CONCEPT
Hannemann and Kiczales [8] described several possible changes

to the Figure Editor system, and compared the AO [10] observer



pattern with the OO observer pattern in terms of their ability to ac-
commodate these potential changes. We extend these changes into
sequences of similar changes, and applied our modularity testing
on comparing the OO and AO FE observer patterns at the design
level. After that, we compare our quantitative results with the in-
formal analysis results reported by Hannemann and Kiczales.

Hannemann and Kiczales compared the respective consequences
of requiring screen to be a subject, and observing the positions of
figure elements in addition to their colors. We answer the following
questions in our experiment: (1) what are the differences between
the AO and OO observer patterns in terms of their ability to accom-
modate additional subjects? (2) what are the differences between
the AO and OO observer patterns in terms of their ability to accom-
modate additional states of interest that need to be observed?

Our hypothesis is that our framework should be able to quantita-
tively verify Hannemann and Kiczales’s analysis results at the de-
sign level with a sequence of changes instead of one-step changes,
and that our broader change scenarios provide additional insights
in AO and OO observer patterns in terms of their ability of accom-
modating certain kinds of changes.

Designs Under Test. We consider two designs as the software
artifacts under test: the Figure Editor observer patterns designed
using object-oriented and aspect-oriented paradigms, respectively.
We formalize these two designs as ACNs, each representing the
major design dimensions and their dependency relations. For ex-
ample, in the AO design, an abstract aspect is employed to encapsu-
late such decisions as what data structure is used to store the map-
ping between the observer and the subjects. This abstract aspect
can be extended with other aspects, serving as an interface.

Test Inputs. We use two sequences of changes as test inputs: (1)
adding 1 to n subjects; (2) adding 1 to n new states of interest. Each
sequence of changes includes n changes (each adding one subject
or state at a time) being applied one after another accumulatively
to the design under test. For example, according to Hannemann
and Kiczales’s paper, each new state of interest is handled by a
new protocol inherited from the abstract protocol. We model this
change as:

state_n_con_protocol:{orig,other};
state_n_con_protocol = orig =>
abstract_protocol = orig && line = orig &&
point = orig && screen = orig &&
spec_update_policy = simple;

Testing Results. To decide which design (OO or AO) can pro-
vide better modularity, i.e., can better accommodate envisioned
changes, we compare the modularity vectors produced by our test-
ing framework. From Tables 1 and 2, we first observe that at the
beginning, AO is better than OO: (1) the lower dependency den-
sity indicates fewer couplings; (2) the higher NOV value means
that there are more independent modules free to be substituted with
better versions.

(1) What are the differences between the AO and OO observer
patterns in terms of their ability to accommodate additional sub-
jects? In our experiment, we test five changes, each of which accu-
mulatively adds one subject to the design under test. Table 1 shows
the test input-output pairs for the OO and AO designs. We observe
that when adding new subjects, the coupling level of the OO de-
sign increases while the coupling level of the AO design decreases.
Although the NOV values of both designs increase with new sub-
jects, the NOV value of the AO design increases more than that
of the OO design. We also observe that all the AO designs have
lower density and a higher NOV value than that of OO designs,
and that this trend continues if more subjects are added. By com-
paring modularity vectors, our framework quantitatively shows that

the AO design is better than the OO design in term of the ability of
accommodating more subjects.

(2) What are the differences between the AO and OO observer
patterns in terms of their ability to accommodate additional states
of interest that need to be observed? In our experiment, we test
five changes, each of which accumulatively adds one state to the
design under test. From Table 2, we observe that (1) the AO design
follows the open to extension and close to modification principle:
no existing design dimensions will be affected by these changes.
However, (2) although the original AO design has lower density
than the original OO design, when adding new states of interest, the
coupling level of the OO design decreases dramatically while the
density of the AO design keeps increasing. (3) Although the NOV
values of both designs increase with new states, the NOV value
of the OO design increases more than that of the AO design. We
also observe that if fewer than 2 states are added, the AO design
has lower coupling and a higher NOV value. However, if more
states are to be added, the density of the AO design will increase
dramatically and the NOV values get lower. The reason is that
when a concrete aspect protocol is added for one state observation,
it will depend on the subjects. When more protocols are added, the
subjects will have more and more dependents, and become harder
and harder to change, which causes the NOV values to decrease.

Summary. Hannemann and Kiczales concluded that the AO
design is superior in terms of both changing the role of screen,
making it both a subject and an observer, and observing positions
additionally. Our analysis showed that in terms of these one-step
changes, their conclusion is correct. But if there are more states to
be observed, the AO design is not better in the long run using the
current design of creating a new protocol for each new state.

4. RELATED WORK
Baldwin and Clark’s Net Option Value (NOV) [1] analysis pro-

vides a general way to statically and quantitatively assess design
modularity based on design structure matrices (DSM) modeling.
Both Sullivan et al. [17] and Lopes et al. [12] applied this analysis
to software design comparison and evaluation. Instead of using one
number to assess design modularity, our testing framework allows
the designer to test design modularity from multiple dimensions,
making tradeoffs among these dimensions explicit. Garcia et al. [7]
quantitatively compared AO and OO solutions for design patterns
using a suite of metrics, such as coupling, cohesion, and size. Our
work is different in that our analysis works at the design level, tests
design modularity in terms of changeability, considers a sequence
of possible changes, and integrates net option value analysis.

Various previous approaches on testing or analyzing software de-
signs focus on functional correctness of software designs. For ex-
ample, Jackson et al. [9] developed the Alloy Analyzer to analyze a
software design written in the the Alloy modeling language against
user-specified properties. Dinh-Trong et al. [5] developed a tool
for generating test inputs for UML design models such as UML
class and sequence diagrams and checked the execution of the gen-
erated tests against common properties or user-specified properties.
Recently modularity on software designs has been exploited to sup-
port modular verification [11, 4] of the designs against functional
correctness. Different from these previous approaches of testing or
analyzing software designs for functional correctness, our frame-
work focuses on testing modularity of software designs.

5. FUTURE WORK AND CONCLUSION
In order to assess a software design’s modularity properties rig-

orously against its ability to accommodate changes, we have devel-



Table 1: Comparison of test input/output pairs of AO vs. OO design in terms of adding subjects
Design under test Test input Test output

size density NOV ∆size ∆density modification ∆NOV
OO AO OO AO OO AO OO AO OO AO OO AO OO AO
9 9 17.28% 9.88% 3.17 3.84 0: Screen as an subject 0 0 4.94% 0% 0 1 -0.45 0
9 9 22.22% 9.88% 2.72 3.84 1: add 1 new subject 1 1 5.72% -0.88% 0 1 -0.30 0.43
10 10 23.00% 9.00% 2.87 4.27 2: add 2 new subjects 2 2 5.86% -1.61% 0 1 -0.06 0.83
11 11 23.14% 8.26% 3.11 4.67 3: add 3 new subjects 3 3 5.63% -2.24% 0 1 0.22 1.19
12 12 22.92% 7.64% 3.39 5.03 4: add 4 new subjects 4 4 5.20% -2.78% 0 1 0.63 1.54

Table 2: Comparison of test input/output pairs of AO vs. OO design in terms of adding states
Design under test Test input Test output

size density NOV ∆size ∆density modification ∆NOV
OO AO OO AO OO AO OO AO OO AO OO AO OO AO
9 9 17.28% 9.88% 3.17 3.84 0: Positions as a new state 1 1 -1.28% 3.12% 2 0 0.40 0.03
10 10 16.00% 13.00% 3.57 3.87 1: add 1 new state 2 2 -2.41% 5.00% 2 0 0.77 0.10
11 11 14.88% 14.88% 3.94 3.94 2: add 2 new states 3 3 -3.40% 6.10% 2 0 1.11 0.20
12 12 13.89% 15.97% 4.28 4.04 3: add 3 new states 4 4 -4.27% 6.69% 2 0 1.44 0.31
13 13 13.02% 16.57% 4.61 4.15 4: add 4 new states 5 5 -5.04% 6.96% 2 0 1.75 0.46

oped a novel modularity testing framework. In this framework, we
model software designs and potential changes uniformly using aug-
mented constraint networks, independent of language paradigms
and modularization techniques. We define modularity vectors to
quantitatively reflect a number of informal design principles, and
to integrate the net option value analysis. Using this framework, we
analyzed the object-oriented observer pattern versus aspect-oriented
observer pattern in terms of their ability to accommodate a se-
quence of envisioned changes. The result shows that our frame-
work quantitatively and formally verified previously informal anal-
ysis results, and provides additional insights.

Sometimes designers may not be certain on what kinds of po-
tential changes that can happen in the future. In this situation, we
can enumerate possible changes to cover each design dimension
(coverage is defined based on whether a change occurs on the de-
sign dimension) and then analyze the overall modularity vectors
for these changes without requiring the designer to come up with
possible changes. The analogy in traditional software testing is to
enumerate possible test inputs to cover each branch where branches
are analogous to design dimensions. In future work, we plan to de-
fine a set of coverage criteria for a design in assessing how well the
generated changes cover the design space.
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