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ABSTRACT

Achieving high structural coverage such as branch covereggect-
oriented programs is an important and yet challenging goal d
to two main challenges. First, some branches involve coxmple
program logics and generating tests to cover them requizep d
knowledge of the program structure and semantics. Secawd, c
ering some branches requires special method sequenceadto le
the receiver object or non-primitive arguments to speciéisid
able states. Previous work has developed the concoliotesch-
niqgue (a combination of concrete and symbolic testing tiegtes)
and the evolutionary testing technique to address theselhab
lenges, respectively. However, neither technique wagydedito
address both challenges at the same time. To address tleEresp
tive weaknesses of these two previous techniques, we pEopos
novel framework called Evacon that integrates evolutigriesting
(used to search for desirable method sequences) and aotesth
ing (used to generate desirable method arguments). We have i
plemented our framework and applied it on six classes tat@n f
the Java standard library and basic data structures. Tlezimen-

tal results show that the tests generated using our frankegaor
achieve higher branch coverage than evolutionary testirgpo-
colic testing alone.

Categories and Subject Descriptors: D.2.5 [Testing and Debug-
ging]: Testing tools

General Terms. Reliability.
Keywords: Test generation, Structural coverage.
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cover them requires deep knowledge of the program strueinae
semantics. Second, in programs especially object-odepte-
grams, covering some branches requires special methodrsezgi
to lead the receiver object or non-primitive arguments tectfjc
desirable states, and generating such method sequencéens o
challenging because of the huge search space of methodwegue
we need not only the right method sequence skeldbanalso the
right method arguments in the method sequence skeleton.

To address the first main challenge (especially to genepate s
cial primitive-type arguments to cover branches that afiécdit
to cover), recently concolic testing tools such as CUTE/JEU1]
execute the program under test using concrete inputs afettol
symbolic constraints at all branching points during cotecexe-
cution. The collected constraints are solved if feasible] the
solutions are used to generate a new set of test inputs tha fo
the next execution of the program under test along an aterna
path. This process is repeated until all feasible paths baesn
explored or the number of explored feasible paths has reatiee
user-specified bound. During each execution, test inpatdehd to
an unexplored path are saved and used to generate teststieata
high code coverage such as branch coverage. However, these c
colic testing tools do not provide effective support for geating
method sequences that produce desirable receiver-olgetes or
non-primitive-argument states.

To address the second main challenge, some bounded-exbaust
testing tools such as JPF [4], Rostra [5], and Symstra [6¢gea
exhaustive method sequences up to a small bound (with same pr
ing based on state equivalence [4, 5] or subsumption [4H&jyv-
ever, sometimes covering some branches requires long the&io
guences whose length is beyond the low bound that can bedtand|

Software unit test coverage and adequacy measurements proby these tools. Some evolutionary testing tools such as g8loc

vide a good basis for assessing software unit quality. Ibtest-
ing, achieving high structural coverage of the program under
test such as a class helps increase confidence in the qualftg o
unit. Although various unit-test generation tools haverbde-
veloped to help increase structural coverage such as b@nech

represent initial randomly generated method sequencepagLa
lation of individuals and evolve this population by mutatits in-
dividuals until a desirable set of method sequences is fodog-
ever, because these evolutionary testing tools do not wgggm
structure or semantic knowledge to directly guide test oo,

erage over manual testing, many branches in the progranr unde they cannot provide effective support for generating @ prim-

test are difficult to cover due to two main challenges. Fistne
branches involve complex program logics and generating tes
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itive method arguments even if the right method sequendetske
is generated.

In this paper, we propose a novel framework called Evacon tha
integrates evolutionary testing [3] and concolic testitfytp ad-
dress the respective weaknesses of these two techniqués anod
duce tests that achieve higher branch coverage than ttsegest
erated by each technique alone. In particular, we estaalisitdge
from evolutionary testing to concolic testing by geneializcon-
crete tests generated by evolutionary testing to symbebtstas

A method sequence skeleton is a method sequence whose meth-
ods’ primitive arguments are unspecified.



public class BankAccount {

public void deposit(int amunt){...}
public void withdraw(int anount) {
if (amunt > bal ance) {
printError();
return;

di spense(anount) ;

bal ance = bal ance -

poi nt s++;

if (points == 10)
al ert Cust omer () ;

anount ;

Figure 1: A bank account example

public void testGenByEtoc() {
BankAccount acc = new BankAccount();
acc. deposit(1);
acc. w t hdraw 20);

Figure2: A test generated by an evolutionary testing tool

public void testGenByEt ocAugnent edByj CUTE() {
BankAccount acc = new BankAccount ();
acc. deposi t (10);
acc.w thdraw(1);

Figure 3: A test generated by our integrated evolutionary-
concolic testing tool

public void testGenByj CUTEAugnent edByeToc() {
BankAccount acc = new BankAccount ();
acc. deposi t (10);
acc.w thdraw(1);
..llrepeated acc.withdraw(1) 8 tines
acc.w thdraw(1);

}
Figure 4: A test generated by our integrated concolic-
evolutionary testing tool

test drivers to concolic testing. Therefore, concolicitestan help
improve the method arguments in method sequences inigialty
erated by evolutionary testing. We also establish a bridgm f
concolic testing to evolutionary testing by encoding ceteitests
generated by concolic testing as chromosomes; these choones
are the generation of population individuals for evoluéipntest-
ing to evolve. We have implemented our proposed framewodk an
applied it to test six classes taken from the Java standararyi
and basic data structures. The experimental results shavoth
framework can achieve higher branch coverage than evaohryo
testing or concolic testing alone.

2. EXAMPLE

We next illustrate how our framework is used in testing objec
oriented programs throughBankAccount example as shown in
Figure 1. ThisBankAccount example is a Java class implementa-
tion of a bank account service, which declares several pufdith-
ods. Among them, thdeposi t method allows money to be de-
posited in the account and thet hdr aw method allows money to
be withdrawn from the account. Thét hdr awmethod begins by
checking whether the withdrawal amount is more than thdablai
balance. If so, an error message is printed and the methts] exi
otherwise, the withdrawal amount is dispensed and the btalen
updated. The end of the t hdr aw method body also implements
a reward system in which each successful withdrawal earogé p
and when the earned points redah an alert is issued to the cus-
tomer.

Figure 2 shows a sample test generated by an evolutionary tes
ing tool forBankAccount . The test invokes thei t hdr awmethod
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Figure5: Framework overview

with an argument value2() that is greater than the argument value
(1) of the earlierdeposit method. This test cannot cover the
false branch of the first conditional within the method bohipte
that additional invocations of thei t hdr aw method and as such
a longer method sequence cannot succeed in exercisingltige fa
branch unless @i t hdr aw method argument is less than the argu-
ment value of the earliedeposi t method. However, an evolu-
tionary testing tool such as eToc [3] relies on random tgstom
generating primitive argument values fart hdr aw, and it is not
effective in generating desirable argument values.

To address the weakness of evolutionary testing in generati
desirable primitive argument values, we integrate evohaiy and
concaolic testing. In particular, we generalize the corepetmitive
values ( and20 in Figure 2) in the sequence to be symbolic. Then
given the sequence with symbolic values, the concolicrtggtol
can generate concrete primitive values to cover feasiltfespa the
methods. One of the generated tests is shown in Figure 3183tis
includes a desirable method argument vateadf wi t hdr aw for
covering its first conditional’s false branch and the vakiess than
the argument valueL Q) of the earliedeposi t method.

Given the sequence with symbolic values derived from Fi@ure
a concolic testing tool still can never generate methodraemis to
cover the true branch of the second branchiafhdr aw; its cov-
erage requires at least ten successful withdrawals deryteen
invocations ofa t hdr aw. An existing concolic testing tool such as
JCUTE [1] does not provide mechanisms in searching for désr
method sequences. To address the weakness of concoligtesti
generating desirable method sequences, we integratelmand
evolutionary testing by evolving the method sequences rgéss:
by concolic testing to a desirable one as shown in Figure dder
ering the true branch of the second conditionahiof hdr aw.

3. FRAMEWORK

Our framework integrates evolutionary and concolic testm
generate tests that can achieve high code coverage. Figha\s
the overview of our framework, including four componentso-e
lutionary testing, concolic testing, argument transfaiora (for
bridging from evolutionary testing to concolic testinghdachro-
mosome construction (for bridging from concolic testingtolu-
tionary testing).

3.1 Evolutionary Testing

Evolutionary testing techniques implement genetic athors
mimicking natural evolution. We have integrated into ownfie-
work the technique for evolutionary testing proposed byeTiar{3].

The technique encodes a test (method sequence) as a chroenoso
of an individual of a population. For the program under teath
chromosome encodes object creation, a sequence of methed ca
to prepare the receiver object, and finally a call to the netto

der test. Evolution of tests begins with instrumenting thegpam
under test to determine the branch points within the prograder
test. The branch points are initialized as the targets taokered.

A target is selected and a genetic algorithm searches amapdo
generated population of tests for a test that covers thetsel¢ar-



public void testGenByEvTest () {
BankAccount acc = new BankAccount () ;
acc. deposit(cute. Cute.input.Integer());
acc.wi thdraw(cute. Cute.input.Integer());

}
Figure 6: Theresulting symbolic test after argument transfor-
mation isapplied on thetest in Figure 2

get. Specifically, each test is executed to see if it covezstdh
get. If a test is found to cover the target, it is saved, a new ta
get is selected, and the remaining tests are executed orethe n
target. This process continues until all targets are caverethe
evolution of tests is terminated. When existing tests canoeer

a target, the fitness value of each test is calculated. Thes§itn
value of a test is defined as a probability measure propa@ttitmn
the ratio of the control and call dependence edges travetsed
ing a test execution over the control and call dependenceseaiy
the target. Subsequently, tests with the highest probiaksikire se-
lected for crossover and mutation to produce the next géopraf
tests. The crossover of chromosomes is to recombine thase ch

$x71, BankAccount, []:
$x71, BankAccount , deposit,[int]: 10
$x71, BankAccount, wi thdraw, [int]:1

Figure 7: The resulting chromosome after chromosome con-
struction isapplied on thetest in Figure 3

Class #public methodgtbrancheld OC
BinomialHeaf 10 63 215
BitSet 25 114 638
FibonacciHeap 9 73 207
HashMap 10 65 374
LinkedList 29 106 (738
TreeMap 47 240 |162

Table 1: Experimental subjects

3.4 Chromosome Construction

The chromosome construction component constructs chromo-
somes out of method sequences collected from tests gethdnate
concolic testing. Therefore, the tests generated by cantesting

mosomes based on some predefined guidelines. The mutation ofare made available to evolutionary testing through therolsmme
chromosomes is to mutate methods and method arguments, or inencoding. Figure 7 shows the resulting chromosome aftes-chr

sert or delete methods within a chromosome. After evolyoset
of test cases are selected. Within our framework, evolatiptest-
ing serves to construct suitable method sequences whos$madnet
arguments are to be improved through concolic testing.

3.2 Concolic Testing

The concaolic testing technique [1] is a combination of ceter
execution and symbolic execution. During concrete exeoutll
symbolic constraints along the path of execution are catband
conjuncted together. The constraints are solved, if féasib gen-
erate new test inputs that forces the next execution of tbgram
under test along an alternate path. In particular, Sen arhAf
developed jCUTE for combining concrete and symbolic exeout
of Java programs. They use concrete input graphs for cantret
puts and symbolic states for symbolic variables, and erethé
program under test simultaneously on both concrete and aljenb
inputs with the symbolic execution guided by the concrete- ex
cution. During simultaneous execution on both input typas,
technique collects constraints on the symbolic variabhessalves
them to produce inputs that force the next execution along-a d
ferent path. The process is then repeated on the new setw&inp
Within our framework, concolic testing serves to constsigtable

mosome construction is applied on the test in Figure 3 (geedr
by concolic testing). Each chromosome is a string encodirigeo
actions performed by a test. These actions are construstoca-
tions for object creation and one or more method invocatmms
the object. A strand in the chromosome has four parts exoept f
constructor invocations, which have three parts. The fastigen-
tifies the chromosome using a unique alphanumeric valuexprkfi
by the$ symbol. The second part is the name of the class to which
the method being invoked belongs (this part is omitted foistaic-
tor calls). The third part is the name of the method beingkedo
Finally, the fourth part lists the method arguments’ dafsetyand
corresponding values. Evolutionary testing tries to findale
combinations of method sequences, starting from the method
quences generated by concolic testing. For example, given t
chromosome in Figure 7, evolutionary testing can help geaete-
sirable method sequences for achieving new branch coverage
test generated with evolutionary testing is shown in Figure

4. EVALUATION

We have implemented our Evacon framework by adapting eToc [3
and jCUTE [1]. We compared Evacon'’s test effectivenessefims

method argument values whose method sequences are to be imef branch coverage) with eToc [3] or JCUTE [1] alone. We con-

proved through evolutionary testing.

3.3 Argument Transformation

The argument transformation component transforms theiprim
tive method arguments of method sequences (produced by-evol
tionary testing) into symbolic arguments [2]. This tramgfation
allows concolic testing to do concrete and symbolic exeoutin
the primitive arguments. After concolic testing, we derikie fi-
nal test suite by aggregating the test inputs generated fiigotio
testing and method sequences generated by evolutionanygtes
Figure 6 shows the resulting symbolic test after argumemistior-
mation is applied on the test in Figure 2 (generated by eiavlut
ary testing). An integer value is transformed to a symbaiteger
input represented asut e. Cut e. i nput. I nteger (). The argu-
ment transformation component is used when test generstaors
with evolutionary testing followed by concolic testing. v@n the
symbolic test in Figure 6, concolic testing can help gereeos-
sirable method arguments for achieving new branch covemge
test generated with concolic testing is shown in Figure 3.

ducted the experiments on a Pentium PC with a 1.86GHz process
and 1Gb memory. Table 1 shows the six classes (taken from the
Java standard library and basic data structures) used iexjezi-
ments; these classes were previously used in evaluating-vbk

test generation tools [3—6]. The classes range in size let®687
lines of code (LOC) and 1626 LOC. The number of public methods
vary between 9 and 47. The number of branches within theedass
vary between 63 and 240.

On the experimental subjects, we applied two types of Evacon
integrations: bridging eToc to JCUTE with the argument sfamn-
mation component (denoted Bsacon-A and bridging jCUTE to
eToc with the chromosome construction component (denaged a
Evacon-B. As comparison bases, we also applied eToc and jJCUTE,
respectively, on the experimental subjects. To providdaractan-
parison across the four tools, we measure the branch cavachieved
by the tests generated by these four tools within the saniedef
runtime, denoted as common runtime. We use Evacon-A'smanti
as the common runtime, being eToc’s default runtime (60rs@£)0
plus jJCUTE’s runtime during Evacon-A's integration proseVe



Class Time [Evacon-A branch cdtvacon-B branch cdeToc branch cdjCUTE branch colNew branch cov by Evacgn
(mins) (eToc=jJCUTE) (JCUTE=-eToc) over eToc/jCUTE

BinomialHead 5 100.0% 100.0% 96.0% 92.0% 4.0%
BitSet 60 93.0% 91.0% 88.0% 65.0% 5.0%
FibonacciHeap 10 98.0% 100.0% 98.0% 66.0% 2.0%
LinkedList | 23 68.0% 69.0% 62.0% 65.0% 4.0%
HashMap 9 67.0% 64.0% 62.0% 67.0% 0.0%
TreeMap 56 67.0% 75.0% 62.0% 69.0% 6.0%

Table 2: Branch coverage achieved by the four tools on the experimental subjects

Framework typfBinomialHeapBitSetFibonacciHeajinkedList TreeMaj
Evacon-A 6 12 - 12 -
Evacon-B 8 13 10 14 20

Table 3: Thelength of the longest method sequence gener ated
by Evacon-A or Evacon-B that achieve new branch coverage

configure the other three tools with the same runtime as béfow
Evacon-B, we first construct a symbolic test driver for jCUE
try bounded exhaustive method sequences up to the lengtifof h

sequences with evolutionary algorithms and the latter igees de-
sirable method arguments by exploring alternate pathsiwitte
methods under test. In particular, our Evacon frameworkiges
a bridge from evolutionary testing to concolic testing byngeliz-
ing concrete tests (generated by evolutionary testingynabslic
tests as test drivers to concolic testing. Our Evacon frammeaiso
establishes a bridge from concolic testing to evolutiortasting
by encoding concrete tests generated by concolic testimdras
mosomes, inputs to evolutionary testing.We have impleeteatr

the number of public methods. We then run eToc up to the common framework and applied it to six classes taken from the Jarastrd

runtime. For eToc alone, we run it up to the common runtime. Fo
JCUTE alone, we incrementally increase the bound of the Hedn
exhaustive method sequences till a bound that can causerhe r

time to exceed the common runtime, and stop JCUTE when reach-

library and basic data structures. The experimental resiibw

that the tests generated using our framework can achieveshig

branch coverage than evolutionary testing or concolidrtgstione.
The two types of integrations in Evacon can form a feedback

ing the common runtime. Note that the branches not covered by loop between evolutionary testing and concolic testinge Teed-

JCUTE or eToc are usually difficult to cover and thereforeeaxing
even one of these difficult-to-cover residual branches @lehg-
ing enough. Evacon’s ability of covering some of these nresid
branches would strongly reflect its effectiveness in tesegation.

back loop can start from either evolutionary testing or alicdest-
ing. Then the iterations can continue until neither evoludiry test-
ing nor concolic testing can generate tests that achievebnamch
coverage. In future work, we plan to empirically investey#te

Table 2 shows the experimental results. Column 2 shows the effectiveness of the feedback loop compared to the twoiegist-

common runtime. Columns 3-6 shows the branch coveragewathie
by the four tools: Evacon-A, Evacon-B, eToc, and jCUTE, re-
spectively. Column 7 shows the new branch coverage achigyed
Evacon-A or Evacon-B over eToc or JCUTE. We highlight in bold
font the table entries where the highest branch coveragdie\aed.
We observe that Evacon-A achieves highest branch coverage i
three of the six classes8i(noni al Heap, Bi t Set, andHashMap).

For two of the three classeBi(noni al Heap andHashMap), Evacon-
A ties with Evacon-B and jCUTE, respectively, for achievithg
highest branch coverage. We observe that Evacon-B achileges
highest branch coverage in four of the six clas@es¢ni al Heap,

Fi bonacci Heap, Li nkedLi st , andTr eeMap). Evacon-B ties with
Evacon-A forBi noni al Heap. Both Evacon-A and Evacon-B to-
gether achieve higher branch coverage than eToc and jCUbFE al
for all six classes except fatashMap, where Evacon-A ties with
JCUTE. In summary, the experimental results demonstradémn-
efits of the Evacon integration techniques over eToc and JEUT
alone and the two types of Evacon integrations are complamgn
being effective in different subjects.

Table 3 shows the length of the longest method sequences that

achieve new branch coverage for subjects where Evacon-#emds-

B achieves higher branch coverage than eToc and jCUTE alone.[4]

For these subjects except fBrnoni al Heap, method sequences
of length at least ten were required to achieve new branchreov
age. In other words, existing tools [1, 4—6] with boundedasdh
tive method sequences may need to be able to handle a rilative
large bound in order to achieve new branch coverage for méany o
the experimental subjects.

5. CONCLUSION

To achieve high structural coverage such as branch covefage
object-oriented programs, we have developed a novel esitgen-
eration framework called Evacon for integrating evoluéipntest-
ing and concolic testing. The former searches for desinalgithod

tegration types in Evacon. We also plan to compare our Evexsn
with random testing tools [4] and systematic testing toolshsas
JPF [4], Rostra [5], and Symstra [6] in terms of their effeetiess
of achieving structural coverage.
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