
Evacon: A Framework for Integrating Evolutionary and
Concolic Testing for Object-Oriented Programs

Kobi Inkumsah
Department of Computer Science

North Carolina State University
kkinkums@ncsu.edu

Tao Xie
Department of Computer Science

North Carolina State University
xie@csc.ncsu.edu

ABSTRACT
Achieving high structural coverage such as branch coveragein object-
oriented programs is an important and yet challenging goal due
to two main challenges. First, some branches involve complex
program logics and generating tests to cover them requires deep
knowledge of the program structure and semantics. Second, cov-
ering some branches requires special method sequences to lead
the receiver object or non-primitive arguments to specific desir-
able states. Previous work has developed the concolic testing tech-
nique (a combination of concrete and symbolic testing techniques)
and the evolutionary testing technique to address these twochal-
lenges, respectively. However, neither technique was designed to
address both challenges at the same time. To address the respec-
tive weaknesses of these two previous techniques, we propose a
novel framework called Evacon that integrates evolutionary testing
(used to search for desirable method sequences) and concolic test-
ing (used to generate desirable method arguments). We have im-
plemented our framework and applied it on six classes taken from
the Java standard library and basic data structures. The experimen-
tal results show that the tests generated using our framework can
achieve higher branch coverage than evolutionary testing or con-
colic testing alone.

Categories and Subject Descriptors: D.2.5 [Testing and Debug-
ging]: Testing tools

General Terms: Reliability.

Keywords: Test generation, Structural coverage.

1. INTRODUCTION
Software unit test coverage and adequacy measurements pro-

vide a good basis for assessing software unit quality. In unit test-
ing, achieving high structural coverage of the program unitunder
test such as a class helps increase confidence in the quality of the
unit. Although various unit-test generation tools have been de-
veloped to help increase structural coverage such as branchcov-
erage over manual testing, many branches in the program under
test are difficult to cover due to two main challenges. First,some
branches involve complex program logics and generating tests to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

cover them requires deep knowledge of the program structureand
semantics. Second, in programs especially object-oriented pro-
grams, covering some branches requires special method sequences
to lead the receiver object or non-primitive arguments to specific
desirable states, and generating such method sequences is often
challenging because of the huge search space of method sequences:
we need not only the right method sequence skeleton1 but also the
right method arguments in the method sequence skeleton.

To address the first main challenge (especially to generate spe-
cial primitive-type arguments to cover branches that are difficult
to cover), recently concolic testing tools such as CUTE/jCUTE [1]
execute the program under test using concrete inputs and collect
symbolic constraints at all branching points during concrete exe-
cution. The collected constraints are solved if feasible, and the
solutions are used to generate a new set of test inputs that force
the next execution of the program under test along an alternate
path. This process is repeated until all feasible paths havebeen
explored or the number of explored feasible paths has reached the
user-specified bound. During each execution, test inputs that lead to
an unexplored path are saved and used to generate tests that achieve
high code coverage such as branch coverage. However, these con-
colic testing tools do not provide effective support for generating
method sequences that produce desirable receiver-object states or
non-primitive-argument states.

To address the second main challenge, some bounded-exhaustive
testing tools such as JPF [4], Rostra [5], and Symstra [6] generate
exhaustive method sequences up to a small bound (with some prun-
ing based on state equivalence [4, 5] or subsumption [4, 6]).How-
ever, sometimes covering some branches requires long method se-
quences whose length is beyond the low bound that can be handled
by these tools. Some evolutionary testing tools such as eToc[3]
represent initial randomly generated method sequences as apopu-
lation of individuals and evolve this population by mutating its in-
dividuals until a desirable set of method sequences is found. How-
ever, because these evolutionary testing tools do not use program
structure or semantic knowledge to directly guide test generation,
they cannot provide effective support for generating desirable prim-
itive method arguments even if the right method sequence skeleton
is generated.

In this paper, we propose a novel framework called Evacon that
integrates evolutionary testing [3] and concolic testing [1] to ad-
dress the respective weaknesses of these two techniques andto pro-
duce tests that achieve higher branch coverage than the tests gen-
erated by each technique alone. In particular, we establisha bridge
from evolutionary testing to concolic testing by generalizing con-
crete tests generated by evolutionary testing to symbolic tests as

1A method sequence skeleton is a method sequence whose meth-
ods’ primitive arguments are unspecified.

public class BankAccount {
...

public void deposit(int amount){...}
public void withdraw(int amount) {

if (amount > balance) {
printError();
return;

}
dispense(amount);
balance = balance - amount;
points++;
if (points == 10)
alertCustomer();

}
}

Figure 1: A bank account example

public void testGenByEtoc() {
BankAccount acc = new BankAccount();
acc.deposit(1);
acc.withdraw(20);

}

Figure 2: A test generated by an evolutionary testing tool

public void testGenByEtocAugmentedByjCUTE() {
BankAccount acc = new BankAccount();
acc.deposit(10);
acc.withdraw(1);

}

Figure 3: A test generated by our integrated evolutionary-
concolic testing tool

public void testGenByjCUTEAugmentedByeToc() {
BankAccount acc = new BankAccount();
acc.deposit(10);
acc.withdraw(1);
...//repeated acc.withdraw(1) 8 times
acc.withdraw(1);

}

Figure 4: A test generated by our integrated concolic-
evolutionary testing tool

test drivers to concolic testing. Therefore, concolic testing can help
improve the method arguments in method sequences initiallygen-
erated by evolutionary testing. We also establish a bridge from
concolic testing to evolutionary testing by encoding concrete tests
generated by concolic testing as chromosomes; these chromosomes
are the generation of population individuals for evolutionary test-
ing to evolve. We have implemented our proposed framework and
applied it to test six classes taken from the Java standard library
and basic data structures. The experimental results show that our
framework can achieve higher branch coverage than evolutionary
testing or concolic testing alone.

2. EXAMPLE
We next illustrate how our framework is used in testing object-

oriented programs through aBankAccount example as shown in
Figure 1. ThisBankAccount example is a Java class implementa-
tion of a bank account service, which declares several public meth-
ods. Among them, thedeposit method allows money to be de-
posited in the account and thewithdraw method allows money to
be withdrawn from the account. Thewithdraw method begins by
checking whether the withdrawal amount is more than the available
balance. If so, an error message is printed and the method exits;
otherwise, the withdrawal amount is dispensed and the balance is
updated. The end of thewithdraw method body also implements
a reward system in which each successful withdrawal earns a point
and when the earned points reach10, an alert is issued to the cus-
tomer.

Figure 2 shows a sample test generated by an evolutionary test-
ing tool forBankAccount. The test invokes thewithdraw method

Evolutionary

Testing

Concolic

Testing

Java program

under test

Java program
under test

Final test
suite

Final test

suite

Argument
Transformation

Chromosome
Construction

Generated

tests

Symbolic test driver

Chromosomes
Generated

tests

Figure 5: Framework overview

with an argument value (20) that is greater than the argument value
(1) of the earlierdeposit method. This test cannot cover the
false branch of the first conditional within the method body.Note
that additional invocations of thewithdraw method and as such
a longer method sequence cannot succeed in exercising the false
branch unless awithdraw method argument is less than the argu-
ment value of the earlierdeposit method. However, an evolu-
tionary testing tool such as eToc [3] relies on random testing for
generating primitive argument values forwithdraw, and it is not
effective in generating desirable argument values.

To address the weakness of evolutionary testing in generating
desirable primitive argument values, we integrate evolutionary and
concolic testing. In particular, we generalize the concrete primitive
values (1 and20 in Figure 2) in the sequence to be symbolic. Then
given the sequence with symbolic values, the concolic testing tool
can generate concrete primitive values to cover feasible paths in the
methods. One of the generated tests is shown in Figure 3. Thistest
includes a desirable method argument value (1) of withdraw for
covering its first conditional’s false branch and the value is less than
the argument value (10) of the earlierdeposit method.

Given the sequence with symbolic values derived from Figure2,
a concolic testing tool still can never generate method arguments to
cover the true branch of the second branch ofwithdraw; its cov-
erage requires at least ten successful withdrawals denotedby ten
invocations ofwithdraw. An existing concolic testing tool such as
jCUTE [1] does not provide mechanisms in searching for desirable
method sequences. To address the weakness of concolic testing in
generating desirable method sequences, we integrate concolic and
evolutionary testing by evolving the method sequences generated
by concolic testing to a desirable one as shown in Figure 4 forcov-
ering the true branch of the second conditional ofwithdraw.

3. FRAMEWORK
Our framework integrates evolutionary and concolic testing to

generate tests that can achieve high code coverage. Figure 5shows
the overview of our framework, including four components: evo-
lutionary testing, concolic testing, argument transformation (for
bridging from evolutionary testing to concolic testing), and chro-
mosome construction (for bridging from concolic testing toevolu-
tionary testing).

3.1 Evolutionary Testing
Evolutionary testing techniques implement genetic algorithms

mimicking natural evolution. We have integrated into our frame-
work the technique for evolutionary testing proposed by Tonella [3].
The technique encodes a test (method sequence) as a chromosome
of an individual of a population. For the program under test,each
chromosome encodes object creation, a sequence of method calls
to prepare the receiver object, and finally a call to the method un-
der test. Evolution of tests begins with instrumenting the program
under test to determine the branch points within the programunder
test. The branch points are initialized as the targets to be covered.
A target is selected and a genetic algorithm searches a randomly
generated population of tests for a test that covers the selected tar-

public void testGenByEvTest() {
BankAccount acc = new BankAccount();
acc.deposit(cute.Cute.input.Integer());
acc.withdraw(cute.Cute.input.Integer());

}

Figure 6: The resulting symbolic test after argument transfor-
mation is applied on the test in Figure 2

get. Specifically, each test is executed to see if it covers the tar-
get. If a test is found to cover the target, it is saved, a new tar-
get is selected, and the remaining tests are executed on the new
target. This process continues until all targets are covered or the
evolution of tests is terminated. When existing tests cannot cover
a target, the fitness value of each test is calculated. The fitness
value of a test is defined as a probability measure proportional to
the ratio of the control and call dependence edges traverseddur-
ing a test execution over the control and call dependence edges of
the target. Subsequently, tests with the highest probabilities are se-
lected for crossover and mutation to produce the next generation of
tests. The crossover of chromosomes is to recombine those chro-
mosomes based on some predefined guidelines. The mutation of
chromosomes is to mutate methods and method arguments, or in-
sert or delete methods within a chromosome. After evolution, a set
of test cases are selected. Within our framework, evolutionary test-
ing serves to construct suitable method sequences whose method
arguments are to be improved through concolic testing.

3.2 Concolic Testing
The concolic testing technique [1] is a combination of concrete

execution and symbolic execution. During concrete execution, all
symbolic constraints along the path of execution are collected and
conjuncted together. The constraints are solved, if feasible, to gen-
erate new test inputs that forces the next execution of the program
under test along an alternate path. In particular, Sen and Agha [1]
developed jCUTE for combining concrete and symbolic execution
of Java programs. They use concrete input graphs for concrete in-
puts and symbolic states for symbolic variables, and execute the
program under test simultaneously on both concrete and symbolic
inputs with the symbolic execution guided by the concrete exe-
cution. During simultaneous execution on both input types,the
technique collects constraints on the symbolic variables and solves
them to produce inputs that force the next execution along a dif-
ferent path. The process is then repeated on the new set of inputs.
Within our framework, concolic testing serves to constructsuitable
method argument values whose method sequences are to be im-
proved through evolutionary testing.

3.3 Argument Transformation
The argument transformation component transforms the primi-

tive method arguments of method sequences (produced by evolu-
tionary testing) into symbolic arguments [2]. This transformation
allows concolic testing to do concrete and symbolic execution on
the primitive arguments. After concolic testing, we derivethe fi-
nal test suite by aggregating the test inputs generated by concolic
testing and method sequences generated by evolutionary testing.
Figure 6 shows the resulting symbolic test after argument transfor-
mation is applied on the test in Figure 2 (generated by evolution-
ary testing). An integer value is transformed to a symbolic integer
input represented ascute.Cute.input.Integer(). The argu-
ment transformation component is used when test generationstarts
with evolutionary testing followed by concolic testing. Given the
symbolic test in Figure 6, concolic testing can help generate de-
sirable method arguments for achieving new branch coverage; one
test generated with concolic testing is shown in Figure 3.

$x71,BankAccount,[]:
$x71,BankAccount,deposit,[int]:10
$x71,BankAccount,withdraw,[int]:1

Figure 7: The resulting chromosome after chromosome con-
struction is applied on the test in Figure 3

Class #public methods#branchesLOC
BinomialHeap 10 63 215

BitSet 25 114 638
FibonacciHeap 9 73 207

HashMap 10 65 374
LinkedList 29 106 738
TreeMap 47 240 1626

Table 1: Experimental subjects

3.4 Chromosome Construction
The chromosome construction component constructs chromo-

somes out of method sequences collected from tests generated by
concolic testing. Therefore, the tests generated by concolic testing
are made available to evolutionary testing through the chromosome
encoding. Figure 7 shows the resulting chromosome after chro-
mosome construction is applied on the test in Figure 3 (generated
by concolic testing). Each chromosome is a string encoding of the
actions performed by a test. These actions are constructor invoca-
tions for object creation and one or more method invocationson
the object. A strand in the chromosome has four parts except for
constructor invocations, which have three parts. The first part iden-
tifies the chromosome using a unique alphanumeric value prefixed
by the$ symbol. The second part is the name of the class to which
the method being invoked belongs (this part is omitted for construc-
tor calls). The third part is the name of the method being invoked.
Finally, the fourth part lists the method arguments’ data types and
corresponding values. Evolutionary testing tries to find suitable
combinations of method sequences, starting from the methodse-
quences generated by concolic testing. For example, given the
chromosome in Figure 7, evolutionary testing can help generate de-
sirable method sequences for achieving new branch coverage; one
test generated with evolutionary testing is shown in Figure4.

4. EVALUATION
We have implemented our Evacon framework by adapting eToc [3]

and jCUTE [1]. We compared Evacon’s test effectiveness (in terms
of branch coverage) with eToc [3] or jCUTE [1] alone. We con-
ducted the experiments on a Pentium PC with a 1.86GHz processor
and 1Gb memory. Table 1 shows the six classes (taken from the
Java standard library and basic data structures) used in theexperi-
ments; these classes were previously used in evaluating white-box
test generation tools [3–6]. The classes range in size between 207
lines of code (LOC) and 1626 LOC. The number of public methods
vary between 9 and 47. The number of branches within the classes
vary between 63 and 240.

On the experimental subjects, we applied two types of Evacon
integrations: bridging eToc to jCUTE with the argument transfor-
mation component (denoted asEvacon-A) and bridging jCUTE to
eToc with the chromosome construction component (denoted as
Evacon-B). As comparison bases, we also applied eToc and jCUTE,
respectively, on the experimental subjects. To provide a fair com-
parison across the four tools, we measure the branch coverage achieved
by the tests generated by these four tools within the same period of
runtime, denoted as common runtime. We use Evacon-A’s runtime
as the common runtime, being eToc’s default runtime (60 seconds)
plus jCUTE’s runtime during Evacon-A’s integration process. We

Class Time Evacon-A branch covEvacon-B branch coveToc branch covjCUTE branch covNew branch cov by Evacon
(mins) (eToc⇒jCUTE) (jCUTE⇒eToc) over eToc/jCUTE

BinomialHeap 5 100.0% 100.0% 96.0% 92.0% 4.0%
BitSet 60 93.0% 91.0% 88.0% 65.0% 5.0%

FibonacciHeap 10 98.0% 100.0% 98.0% 66.0% 2.0%
LinkedList 23 68.0% 69.0% 62.0% 65.0% 4.0%
HashMap 9 67.0% 64.0% 62.0% 67.0% 0.0%
TreeMap 56 67.0% 75.0% 62.0% 69.0% 6.0%

Table 2: Branch coverage achieved by the four tools on the experimental subjects

Framework typeBinomialHeapBitSetFibonacciHeapLinkedList TreeMap
Evacon-A 6 12 - 12 -
Evacon-B 8 13 10 14 20

Table 3: The length of the longest method sequence generated
by Evacon-A or Evacon-B that achieve new branch coverage

configure the other three tools with the same runtime as below. For
Evacon-B, we first construct a symbolic test driver for jCUTEto
try bounded exhaustive method sequences up to the length of half
the number of public methods. We then run eToc up to the common
runtime. For eToc alone, we run it up to the common runtime. For
jCUTE alone, we incrementally increase the bound of the bounded
exhaustive method sequences till a bound that can cause the run-
time to exceed the common runtime, and stop jCUTE when reach-
ing the common runtime. Note that the branches not covered by
jCUTE or eToc are usually difficult to cover and therefore covering
even one of these difficult-to-cover residual branches is challeng-
ing enough. Evacon’s ability of covering some of these residual
branches would strongly reflect its effectiveness in test generation.

Table 2 shows the experimental results. Column 2 shows the
common runtime. Columns 3-6 shows the branch coverage achieved
by the four tools: Evacon-A, Evacon-B, eToc, and jCUTE, re-
spectively. Column 7 shows the new branch coverage achievedby
Evacon-A or Evacon-B over eToc or jCUTE. We highlight in bold
font the table entries where the highest branch coverage is achieved.
We observe that Evacon-A achieves highest branch coverage in
three of the six classes (BinomialHeap, BitSet, andHashMap).
For two of the three classes (BinomialHeapandHashMap), Evacon-
A ties with Evacon-B and jCUTE, respectively, for achievingthe
highest branch coverage. We observe that Evacon-B achievesthe
highest branch coverage in four of the six classes (BinomialHeap,
FibonacciHeap,LinkedList, andTreeMap). Evacon-B ties with
Evacon-A forBinomialHeap. Both Evacon-A and Evacon-B to-
gether achieve higher branch coverage than eToc and jCUTE alone
for all six classes except forHashMap, where Evacon-A ties with
jCUTE. In summary, the experimental results demonstrate the ben-
efits of the Evacon integration techniques over eToc and jCUTE
alone and the two types of Evacon integrations are complementary,
being effective in different subjects.

Table 3 shows the length of the longest method sequences that
achieve new branch coverage for subjects where Evacon-A or Evacon-
B achieves higher branch coverage than eToc and jCUTE alone.
For these subjects except forBinomialHeap, method sequences
of length at least ten were required to achieve new branch cover-
age. In other words, existing tools [1, 4–6] with bounded exhaus-
tive method sequences may need to be able to handle a relatively
large bound in order to achieve new branch coverage for many of
the experimental subjects.

5. CONCLUSION
To achieve high structural coverage such as branch coverageof

object-oriented programs, we have developed a novel unit-test gen-
eration framework called Evacon for integrating evolutionary test-
ing and concolic testing. The former searches for desirablemethod

sequences with evolutionary algorithms and the latter generates de-
sirable method arguments by exploring alternate paths within the
methods under test. In particular, our Evacon framework provides
a bridge from evolutionary testing to concolic testing by generaliz-
ing concrete tests (generated by evolutionary testing) to symbolic
tests as test drivers to concolic testing. Our Evacon framework also
establishes a bridge from concolic testing to evolutionarytesting
by encoding concrete tests generated by concolic testing aschro-
mosomes, inputs to evolutionary testing.We have implemented our
framework and applied it to six classes taken from the Java standard
library and basic data structures. The experimental results show
that the tests generated using our framework can achieve higher
branch coverage than evolutionary testing or concolic testing alone.

The two types of integrations in Evacon can form a feedback
loop between evolutionary testing and concolic testing. The feed-
back loop can start from either evolutionary testing or concolic test-
ing. Then the iterations can continue until neither evolutionary test-
ing nor concolic testing can generate tests that achieve newbranch
coverage. In future work, we plan to empirically investigate the
effectiveness of the feedback loop compared to the two existing in-
tegration types in Evacon. We also plan to compare our Evacontool
with random testing tools [4] and systematic testing tools such as
JPF [4], Rostra [5], and Symstra [6] in terms of their effectiveness
of achieving structural coverage.

Acknowledgments
This work is supported in part by a gift from Microsoft Research.

6. REFERENCES
[1] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing

and explicit path model-checking tools. InProc. 18th
International Conference on Computer Aided Verification,
pages 419–423, 2006.

[2] N. Tillmann and W. Schulte. Unit tests reloaded:
Parameterized unit testing with symbolic execution.IEEE
Softw., 23(4):38–47, 2006.

[3] P. Tonella. Evolutionary testing of classes. InProc. ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pages 119–128, 2004.

[4] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek. Test input
generation for Java containers using state matching. InProc.
ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 37–48, 2006.

[5] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InProc. IEEE
International Conference on Automated Software
Engineering, pages 196–205, 2004.

[6] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. InProc. 11th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems, pages 365–381, 2005.

