
Effective Generation of Interface Robustness Properties for Static Analysis

Mithun Acharya, Tanu Sharma, Jun Xu, Tao Xie
Department of Computer Science
North Carolina State University

Raleigh NC USA 27695
{mpachary, tsharma}@ncsu.edu, {junxu, xie}@csc.ncsu.edu

Abstract

A software system interacts with its environment through
system interfaces. Robustness of software systems are gov-
erned by various temporal properties related to these inter-
faces, whose violation leads to system crashes and security
compromises. These properties can be formally specified
for system interfaces and statically verified against a soft-
ware system. But manually specifying a large number of in-
terface properties for static verification is often inaccurate
or incomplete, apart from being cumbersome. In this paper,
we propose a novel framework that effectively generates in-
terface properties for static checking from a few generic,
high level robustness rules that capture interface behavior.
We implement our framework for an existing static analyzer
with simple data flow extensions and apply it on POSIX-API
system interfaces used in 10 Redhat-9.0 open source pack-
ages. The results show that the framework can effectively
generate a large number of useful interface properties from
a few generically specified rules.

1 Introduction

Robustness of software systems are governed by various
temporal rules related to interfaces, such as rules for proper
exception handling. Traditional robustness testing [4] has
been used to detect robustness problems by generating in-
valid system inputs. However, the implicit exceptional re-
turns through system interfaces cannot be easily generated.
Proper exception handling and other robustness rules can be
specified as formal properties and statically verified [1, 2]
against a software system. Specifying formal properties re-
quire the knowledge of source code and interface specifi-
cations such as return values and exceptions. Thus man-
ually specifying a large number of interface properties for
static verification is often inaccurate or incomplete, apart
from being cumbersome. To address these issues, we pro-
pose a novel framework that generates interface properties

from a few generic, high level robustness rules that capture
interface behavior. Generic robustness rules are specified
at an abstract level that needs no knowledge of the source
code, system, or interfaces. These generic rules are then
translated by our framework into concrete properties, veri-
fiable by static analyzers. The translation uses interface and
source code level information that are specified by interface
implementers with low one-time effort. We implement our
framework for an existing static analyzer with our data flow
extensions and apply it to the well known POSIX-API sys-
tem interfaces. The generated concrete properties are used
to statically check 10 Redhat-9.0 packages for robustness
violations. This paper makes the following contributions:

• We propose a framework for effectively generating in-
terface properties from a few generic, high level ro-
bustness rules.

• We implement the framework and apply it to the the
well known POSIX-API system interfaces. Roughly,
1000 concrete formal properties (> 30,000 lines) were
generated from 6 generically specified rules (< 60
lines) for 280 POSIX-API interfaces, highlighting the
effectiveness of our approach. We statically check 10
Redhat-9.0 packages against the generated interface
robustness properties by using an existing static ana-
lyzer with our data flow extensions.

The rest of this paper is organized as follows. Section 2
presents our framework for generating interface robustness
properties. Section 3 presents our experimental results and
Section 4 concludes the paper with future work.

2 Robustness Property Generation

The goal of our framework is to allow developers to
specify robustness rules generically without the knowledge
of the system, language, and interfaces. To abstract away
these details from developers, we make use of two key ob-
servations about interfaces and their robustness rules. The

first observation is that related interfaces have similar struc-
tural elements (such as function parameters, return values
on success/failure, and error flags) when specified at a cer-
tain abstract level. The second observation is that most in-
terface robustness violations are temporal orderings of cer-
tain actions (such as invoking an interface, checking inter-
face returns for success/failure, dereferencing an interface
return, and passing an interface return to a function) that
could be performed on an interface or its elements.

specDB

patternDB

propertyEngineuse

called checked

error

start
call check

use

called checked

error

start

called checked

error

start
p=malloc()

p != null

!p

p == null

*p p[] p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p p[] p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p p[] p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p p[] p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p p[] p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p p[] p->x

Generic Property

Generated
Concrete Properties

specs

patterns

Figure 1. A Framework for Concrete Property
Generation

The overview of our framework is shown in Figure 1.
Developers define generic rules at a high level over interface
elements and actions, without the details of interfaces and
source code. The details of interfaces are stored in a specifi-
cation database (specDB) and the source-code details of in-
terface elements and actions are stored in a pattern database
(patternDB). The generic rules are translated into concrete
properties by a propertyEngine that queries specDB for
interface-level information and patternDB for source-code
level, programming-language specific information. In the
subsections that follow, we identify the elements and ac-
tions that characterize an interface and show how generic
rules are defined and concrete properties are derived from
them, with a simple illustrative example.

2.1 Interface Characterization

A set of interfaces implemented for a specific purpose
have similar structural details at a high level. We character-
ize an interface with its structural elements and actions that
can be performed on them. The characterization allows us
to systematically store the interface and language patterns
for these interfaces in a database. For a given interface, the
propertyEngine can query the database on the keywords
of elements or actions to get low-level details.

For any interface i ∈ I, where I is a related family of
interfaces, we define an interface specification as

spec(i) = {is(i), rs(i), ss(i),R,S,Z}
is(i) is the set of input parameters passed to the invoca-
tion of i, rs(i) is the result set, the set of variables that

store the return values of interface execution and ss(i) is
the status set, the set of variables that store the failure
status or type of failures of the interface. Any variable
v ∈ is(i)

⋃
rs(i)

⋃
ss(i) is called the element of i. R is a

mapping from rs(i) to Z , while S is a mapping from ss(i)
to Z , where Z holds the values that members of rs(i) and
ss(i) would assume on success or failure of interface exe-
cution. For a related family of interfaces, I, we define an
action set as a set of actions that can be performed on the
interface itself or its elements.

For example, I could be POSIX-API interfaces and
i ∈ I could be malloc. Before a statement such as p =

malloc(x) is executed in a program, is(malloc) is {x},
rs(malloc) is ∅ and ss(malloc) is ∅. After the statement
execution, rs(malloc) is {p} and ss(malloc) is {p}. For
malloc, the return and the failure/success indicator are the
same. If the malloc call succeeds, p is a memory pointer
(say, mptr) and then (p, mptr) ∈ R. If it fails, p assumes
value NULL and (p, NULL) ∈ R. Because the result set and
status set are the same for malloc, we have S = R. The
set Z = {mptr, NULL} holds the success/failure indicators
for the malloc API.

The action set for the POSIX-API interfaces comprises
alias, call, check, FALSE, failure, free, pass, return,
success, TRUE and use. The meanings of the actions are
self-evident. Whenever a return variable is aliased, the ac-
tion performed on v ∈ rs(i) (the return value of the in-
terface execution) is alias. The action of invoking the in-
terface is call. The action of checking the interface return
value or status against members in Z is check. If check
fails, the action is FALSE (for example, if the check if

(p==NULL) fails, the action is FALSE and p assumes
non NULL value). If check succeeds, the action is TRUE.
The interface execution can either be a failure or success.
When the interface return variable is passed to another func-
tion, a pass action is said to be performed. When the func-
tion in which the interface is executed returns, the action
performed is return. Finally, when the return value is used
in program expressions, the action is use. While interface
specificaiton details are stored in the specDB, source code
details for each of the actions and elements are stored in the
patternDB. We next present a simple example illustrating
how concrete robustness properties can be formed by defin-
ing generic rules over interface elements and actions.

2.2 Example

Generic rules for an interface i ∈ I are defined over the
members of the action set of I. A generic rule is some or-
dering constraints on the members of the action set. We
use a Finite State Machine (FSM) to graphically represent a
generic rule. The FSM has a start state and an error state as
well as other user-defined states. A sequence of actions that

violates the robustness property represented by the FSM
takes the FSM to the error state. The edges of the FSM are
members from the action set. For example, for the malloc
interface, the use action should always be preceded by the
check action. The FSM for such a rule is shown in Fig-
ure 2(a). Generic robustness rules are currently manually
specified.

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

call check

use

called checked

error

start

(a) check should always precede use

generic property

(b) Concrete UseBeforeCheck property

for the malloc API call

Figure 2. Generic UseBeforeCheck property
and the corresponding concrete property for
malloc API

To generate concrete property for malloc,
propertyEngine queries the specDB for POSIX-
APIs to obtain details about malloc and learns that the
return type of malloc is a pointer on success and NULL on
failure. Based on this information, the propertyEngine

constructs a query to the patternDB that comprises
the keyword check, the data type of the return variable
(being a pointer in this case), and values on success and
failure. The patternDB processes this query and returns
patterns for all the possible ways a pointer variable can
be checked against NULL (or not NULL) (if(p==NULL),
if(p), if(!p), etc.). The propertyEngine expands the
generic keyword check to language and interface specific
patterns. The same procedure applies to the keyword call
(if(p=malloc(...))!=NULL, p=malloc(...), etc.)
and use (p->x, *p, p[x], etc.). The generated concrete
property is shown in Figure 2(b).

return value
API parameter list

return
type on success on failure

errno

chmod const char * path , … int 0 -1 EPERM, …
open const char * pathname, … int fd -1 EEXIST, …
malloc size_t size void * pointer null pointer
fsetpos FILE * stream , … int 0 -1 EBADF, …
remove const char * pathname int 0 -1 EFAULT, …

Figure 3. Selected Entries from the specDB for
POSIX-APIs (simplified for presentation)

3 Evaluation

We have manually built the pattern-DB for the C lan-
guage (using Abstract Syntax Tree notation to represent lan-
guage patterns) and specDB for 280 POSIX-API interfaces

(see Figure 3). The pattern-DB is a constant file specific
to each programming language and contains the source code
information for different language operations (e.g., derefer-
ence, check) that can be performed on simple and complex
or derived data types. The pattern-DB can also be built
for languages other than C.

We have built the framework to convert high-level,
language-independent robustness and safety rules into con-
crete properties that can be directly used by a static checker.
We have also applied the initial prototype to 10 Redhat
9.0 open source packages that use POSIX-API interfaces.
We specified six simple generic properties, all of which
pertain to the safe usage of memory pointers that hold
the interface return values. From these generic rules, the
propertyEngine generated more than a thousand useful
concrete robustness properties ready for static verification.
Figure 4 shows a highly simplified concrete property gen-
erated for the opendir interface. The concrete property
presented governs the correct usage of pointer return vari-
ables. Simplified details (shown in the box) are shown only
for one keyword, check, which is split into multiple edges
and states by the propertyEngine using return value in-
formation from the specification database.

E1

E5

E4

E3

E2

start

freed!NULL

NULL

!=cmp

==cmp

called

opendir

use

==NULL

!=NULL

FALSE

TRUE

FALSE

TRUE

use

free

free free

useE1: use before check

E2: NULL pointer deref

E3: NULL pointer free

E4: double free

E5: free pointer deref

check

Figure 4. Simplified concrete property for
opendir interface

We used our framework to analyze open source packages
written in C mostly from the Redhat-9.0 distribution. In our
experiments, we used a Pentium IV machine with 2.8GHz
processor speed and 1GB RAM running on the Fedora Core
3 2.6.9-1.667smp kernel. In the experiments, we selected
10 widely used open source packages from the Redhat-9.0
distribution; these 10 packages include near 100K lines of
C code. For static verification, we used a publicly avail-
able static analyzer called MOPS [2], which employs push-
down model checking to detect control flow errors at com-
pile time. It constructs a Push Down Automaton (PDA) for

a C program from its Control Flow Graph (CFG). It then
generates a new PDA by composing the property FSM to
be checked and the program PDA. The new PDA is model
checked [3] to see if there is any path in the program that
takes the new PDA to an error configuration. If there exists
such a path in the program, the static checker reports the
path as the error trace that violates the concrete robustness
property.

The generic properties we specified are data-flow sen-
sitive, i.e., they are dependent on the value of the return
variable along different execution paths. Because the ba-
sic MOPS static checker is data-flow insensitive, it assumes
that a given variable might take any value. Therefore, it
assumes that both branches of a conditional statement may
be taken and that a loop may execute anywhere between
zero to infinite iterations. Because exception handling pro-
cedures are usually characterized by conditional constructs
that check the return value of an API call, we write ex-
tensions to the static analysis procedure in order to make
it possible to track the value of variables that take the re-
turn status of an API call along different branches of con-
ditional constructs. For each possible execution sequence,
our extensions associate a value to the variable that is be-
ing tracked using pattern matching. The concrete properties
(in the form of FSMs) generated by the propertyEngine
are given to the static analyzer enhanced with our data flow
extensions. We evaluate the effectiveness and usefulness of
our framework as follows.

Effectiveness: A user only needs to specify a small set
of generic properties at a high level. The propertyEngine
automatically generated more than a thousand formal con-
crete properties (> 30,000 lines) from 6 generically speci-
fied rules (< 60 lines) for 280 POSIX APIs. For static verifi-
cation, we selected 60 critical API calls that are mainly used
for memory management, file and string I/O, permission
management, setting privileges, and spawning processes.
These APIs are frequently used in applications and their
safe and robust usages are critical for reliability and secu-
rity. We then generated concrete properties for them across
6 generic properties using our property generation frame-
work. For these 60 APIs, more than 300 concrete rules were
generated and they were checked against the 10 Redhat-9.0
open source packages for robustness violations.

Usefulness: Table 1(a) presents the total number of ro-
bustness property violations our tool found for each of the
checked packages. We found around 200 robustness vio-
lations in 10 Redhat-9.0 open source packages. We have
shown the API-level violation breakdown for one selected
package (SysVinit-2.84-13) in Table 1(b). Of the 60 an-
alyzed APIs, 19 of them gave violations with this package.

Table 1. Robustness violations detected for
the open source packages

package # errors
ftp-0.17-17 18
ncompress-4.2.4-33 6
routed-0.17-14 15
rsh-0.17-14 9
sysklogd-1.3.31-3 27
sysstat-4.0.7-3 24
SysVinit-2.84-13 64
tftp-0.32-4 14
traceroute-1.4a12-9 7
zlib-1.1.3-3 4

 (a) Overall Errors 10 Packages (b) Errors from SysVinit-2.84-13

API # errors API # errors
fdopen 1 chdir 2
closedir 1 fstat 3
fflush 2 malloc 1
fileno 1 open 2
fputc 1 fclose 12
fputs 2 putchar 1
fseek 2 unlink 4
ftell 1 write 4
getpwuid 1 setuid 1
close 26

4 Conclusions and Future Work

We have proposed a framework for effectively gener-
ating a large number of interface properties from generic,
high level robustness rules. We have implemented our
framework and applied it to the well known POSIX-API
system interfaces. We statically checked 10 Redhat-9.0
packages against the generated interface robustness proper-
ties by using an existing static analyzer with our simple data
flow extensions. Although we have applied our approach
only to POSIX-APIs, it can be easily applied to any set of
interfaces. The specDB could be instantiated for other fam-
ilies of interfaces. Likewise, patternDB can be instanti-
ated for languages other than C. Interface specifications (re-
quired for the generation of concrete properties) and many
system-specific properties that govern the robustness, se-
curity and performance of software systems are often not
documented by developers. We are currently working on a
framework to automatically infer system-specific interface
specifications and implicit temporal properties from pro-
gram source code. We use a model checker to generate
static traces related to the interfaces. The interface spec-
ifications and temporal properties are inferred from these
traces using statistical analysis and certain heuristics.

References

[1] K. Ashcraft and D. Engler. Using programmer-written com-
piler extensions to catch security holes. In Proc. of IEEE Sym-
posium on Security and Privacy, pages 143–159, 2002.

[2] H. Chen and D. Wagner. MOPS: an infrastructure for exam-
ining security properties of software. In Proc. of ACM Con-
ference on Computer and Communications Security (CCS),
pages 235–244, 2002.

[3] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Effi-
cient algorithms for model checking push down systems. In
Proc. of Computer Aided Verification (CAV), pages 232–247,
2000.

[4] P. Koopman and J. DeVale. The exception handling effec-
tiveness of POSIX operating systems. IEEE Transactions on
Software Engineering, 26(9):837–848, 2000.

