Appears inProceedings of the 19th IEEE International Conference oto#ated Software Engineering (ASE 2004hz, Austria.

Rostra: A Framework for Detecting Redundant Object-Oriented Unit Tests

Tao Xie Darko MarinoV David Notkin'
! Department of Computer Science and Engineering, Uniyes§itVashington, Seattle, WA 98195, USA
2 MIT Computer Science and Atrtificial Intelligence LaborataEambridge, MA 02139, USA
H{t aoxi e, not ki n}@s. washi ngt on. edu 2marinov@cs. mt. edu

Abstract and executing redundant tests that only increase thegestin
time and do not increase the ability to detect faults.

Object'oriented unit tests consist of sequences of method We propose Rostra’ a novel framework for detecting re-
invocations. Behavior of an invocation depends on the statequndant unit tests based on equivalent objects. Within Ros-
of the receiver object and method arguments at the begin-tra, we present five techniques with different tradeoffs in
ning of the invocation. Existing tools for automatic gen- 1) the assumptions about the code under test, 2) time and
eration of object-oriented test suites, such as Jtest andspace taken to find redundant tests, and 3) the number
JCrasher for Java, typically ignore this state and thus gen- of redundant tests found. These techniques are fully auto-
erate redundant tests that exercise the same method behavnatic and do not require any user input, except that two
iOI’,_ Wh|Ch increases the testing t|me W|th0ut inCI’eaSimgj th of the techniques assume that classes have proper'y imp|e_
ability to detect faults. ~ mented equality methods. Ideally, if a method claims that

This paper proposes Rostra, a framework for detecting two objects are equal, they should be observationally equiv
redundant unit tests, and presents five fully automatic-tech gjent [10,17],i.e., have the same behavior for all methed se
niques within this framework. We use Rostra to assess antquences they can be subject to. This is typically the case for
minimize test suites generated by test-generation to@s. W equal s methods in Java classes: fheva. | ang. Obj ect
also present how Rostra can be added to these tools to avoit|ass defines thequal s method and subclasses often over-

generation of redundant tests. We have implemented the f|VQ|de |t' asitis used pervasive'y' for examp|e' to compatre el
Rostra techniques and evaluated them on 11 subjects takegments in the Java collections [27].

from a variety of sources. The experimental results show Some existing testing tools also consider equivalent ob-
that Jtest and JCrasher generate a high percentage of re- g 9 q

dundant tests and that Rostra can remove these redundanjteCts.’ but differently than Rostra. For example, Asm_LT [11]
. :) . requires the user to provide an abstraction function [17]
tests without decreasing the quality of test suites.

and defines objects to be equivalent if they map to the
same abstract value. We can view some of our techniques
as automatically defining an abstraction function based on
1. Introduction equal s. Several other projects [2, 10, 14] define equiva-
lent objects using observational equivalence, but checkin

Several tools for automatic generation of object-oriented it Precisely is expensive: by definition it takes infinite &m
unit test suites, such as Jtest [21] (a commercial tool for (t0 check all method sequences), so in practice approxima-
Java) and JCrasher [7] (a research prototype for Javaj test tions are used_. Our techmques take much less time and are
class by generating sequences of method invocations. EacRore appropriate for testing.
test consists of one sequence; when two sequences dif- We can use Rostra for several testing tasks. Rostra en-
fer, these tools conservatively assume that the tests are naables assessing the quality of a test suite in terms of non-
equivalent. However, there are many cases when differentequivalent objects and non-redundant tests, and we can thus
method sequences exercise the same behavior of the classompare the quality of different test suites. We can also se-
under test. For example, two sequences can produce equiviect a subset of automatically generated tests to augment an
alent objects because some invocations do not modify stateexisting (manually or automatically generated) test suite
or because different state modifications result in the sameWe can further minimize an automatically generated test
state. Intuitively, invoking the same methods on such equiv suite for manual inspection or regression testing. Finally
alent objects is redundant. Since testing is typically con- existing test-generation tools can incorporate Rostra int
strained by time limits, a key issue is to avoid producing their test generation to avoid generation and execution of

196

redundant tests and instead invest the time in generation of, .o, i ¢ ciass I ntstack {

non-redundant tests that exercise more method behaviors.
This paper makes the following contributions:

e We propose Rostra, a formal framework for detecting
equivalent object states and redundant tests.

We make Rostra concrete with five techniques and
present an implementation of these techniques.

We propose four practical applications of Rostra.
We evaluate Rostra on 11 subjects taken from a variety

private int[] store;
private int size;
private static final int IN TIAL_CAPACI TY = 10;
public IntStack() {
this.store = new int[IN TI AL_CAPACI TY];
this.size = 0;

public void push(int value) {
if (this.size == this.store.length) {
int[] store = newint[this.store.length * 2];
System arraycopy(this.store, 0, store, 0, this.size);
this.store = store;

this.store[this.size++] = val ue;

of sources. The experimental results show that around
90% of the tests generated by Jtest for all subjects and
50% of the tests generated by JCrasher for almost half
of the subjects are redundant. The results also show
that removing these redundant tests does not decrease * _
. public bool ean equal s(Obj ect other) {
the branch coverage, exception coverage, and faultde- ~ it (! (other instanceof IntStack)) return fal se:
tection capability of the test suites.

}
public int pop() {
return this.store[--this.size];

}
public bool ean isEnpty() {
return (this.size == 0);

IntStack s = (IntStack)other;

if (this.size != s.size) return false;
for (int i =0; i < this.size; i++)
if (this.store[i] != s.store[i]) return false;

Example

return true;
}
We next illustrate how our techniques determine redun- !

dant tests. As a running example, we use an integer stack
implementation taken from Henkel and Diwan [14]. Fig-
ure 1 shows the relevant parts of the code.

The following is an exampleest suitewith three tests for
thel nt St ack class:

Figure 1. An integer stack implementation

each test execution produces a sequence of method execu-
tions. Eachmethod executiois characterized by the actual

Test 1 (T1): _ method that is invoked andrapresentatiorof the state (re-
L Pemm oy s Mo e stack: ceiver object and method arguments) at the beginning of
s1. push(3); the execution. We call this stateethod-entry stafer sim-
el ply state when it is clear from the context. For instance, T2
s1. push(5); has three method executions:

Test 2 (T2): . ..
IntStack s2 = new I ntStack(); 1. a constructor without arguments is invoked;
s2. push(3);
s2. push(5); 2. push adds3 to the empty stack;

Test 3 (T3): i
PntStack 3 = new I ntStack(): 3. push addss to the previous stack.
s3. push(3); N . .
s3. push(2); In this list, we use English language to describe the method-
s3. pop();

entry states. The techniques that we compare use several
Eachtesthas a method sequence on the objects of the classformal representations for a state and several approaches f
For example, T2 creates a staek and invokes twgpush determiningequivalenttates (Section 3.2).
methods on it. Tests of this form are generated by tools such We call two method executions equivalent if they are
as Jtest [21] and JCrasher [7]. For such tests, the correctinvocations of the same method on equivalent states. Our
ness checking typically relies on design-by-contract anno framework consideredundantests: a test is redundant for
tations [16, 20]; if the code has annotations, the toolsstran @ test suite if every method execution of the test is equiva-
late them into run-time assertions [5, 21] that are checkedlent to some method execution of some test from the suite
during the execution. If there are no annotations, the tools(Section 3.4).
only check the robustness of the code: they execute the tests We next briefly explain different techniques for deter-
and check for uncaught exceptions [7]. mining equivalent states and illustrate redundant tests th
To determine redundant tests, our techniques dynami-these techniques find in the example test suite.
cally monitor test executions. Each execution consists of WholeSeq:This is the most conservative technique that
transitions on the state of the Java program. Our tech-models the existing test-generation tools. Two tests ame co
nigues track these transitions at the granularity of method sidered equivalent only if they are identical. The techeiqu

197

represents states using method sequences that create ob-
jects and compares states using sequence equality. It finds. . .
Jall three examgle tests to be nor?—redqundant. : ! |nv_oc':.:i|‘”nethc,>'d (exp:‘) o e
ModifyingSeq: This technique improves on the previ- primz:="nul I " | “true” | “fal se” [“0" | "1
ous one by using in state representation only those method
invocations that actually modify the state. It finds that 33 i
redundant, because it exercises a subset of method execu-

tions that T1 e>.<erc?ses. _ “State of the receiver” refers to the abstract state, noy onl
WholeState: This technique uses the whole concrete e fields of the concreteni s object. For example, if the

state for representation and compares states by iSOMOrteceiver is a head of a linked list of nodes, any node can be
phism (Section 3.2.2). It also finds that T3 is redundant be‘modified, not only the head. Henkel and Diwan make the
cause of T1. However, it does not find T2 to be redundantgyme assumption for algebraic specifications [14].

because of T1: these two tests have different concretesstate pa \WholeState technique makes no other assumption.
beforepush(5) —the arrayst or e has the valu¢ 3, 0] in
s2 and the valu¢ 3, 2] insl1.

MonitorEquals: This technique leverages tlegual s
method to extract only the relevant parts of the state. Isfind A2e: Theequal s methods are implemented to respect the
T2, as well as T3, to be redundant because of T1. Although contract inj ava. | ang. Qbj ect [27].

the whole concrete states in T2 and T1 befpuah(5) . .
The contract requires that ea@yual s implements an

are different, the relevant parts of the states are the same, ~ | lati i it should b floxi ;
namely the subarray sf or e up tosi ze is[3] équivalence relation, i.e., it should be reflexive, symmet-

PairwiseEquals: This technique uses directly the ric, and transitive. In practice, we have found mestal s

equal s method to compare pairs of states. In the run- methlod§ tot|mplemgnt obstervzu?nal Fequlvalenci.[l?]: i
ning example, it finds the same redundant tests as theSaual s 1S stronger (ie., returnsal se 1or Some Objects
: : that are observationally equivalent), our techniques nody n

previous technique. : . .

remove some ideally redundant testsedfual s is weaker
(i.e., returns r ue for some objects that are not observation-
ally equivalent), our techniques may remove some ideally
non-redundant tests. Rostra can dynamically check an ap-

-:-Ih'.s ?ﬁcuon formahzetz_s th\e;vn(f)_tlotnj_ mtrodtjhced infor- proximation of observational equivalence fogual s and
mally in the previous section. We first discuss the assump-hello,[he user tune the method.

tions that our techniques make about the code under test. We
next describe approaches for representing states and com-))

paring them for equivalence. We then describe how each3.2. State Representation and Comparison

of the five techniques builds the appropriate represemtatio)]

and finds equivalent states. We finally show how equivalent ~Our techniques use two main approaches for state rep-

states give rise to equivalent method executions and defind@sentation: 1) method sequences and 2) concrete states of
redundant tests and test-suite minimization. the objects. Both approaches view classes under test as hav-

ing a set of methods (represented uniquely by their defining
class, name, and the entire signature) and consider constru
tors as methods.

All five techniques make the following assumption about 3.2.1. Method Sequence€ach execution of a test cre-

the code under test: ates several objects and invokes methods on these objects.
Al: Method executions are deterministic given the state Our method-sequence approach represents states using se-
reachable from the receiver and other arguments. guences of method invocations, following Henkel and Di-
o - . : : wan who use the representation to map Java classes to al-
This is realistic for single-threaded code; otherwisefedif P : P :
: : : gebras [14]. The state representation uses symbolic expres
ent executions for the same input may produce different . : o
:)) sions with the concrete grammar shown in Figure 2. Each
results, so model-checking techniques are more applicable bi dval d with i
than testing. object and value are represented with an expression. Argu-

. ._ments for method invocations are represented as sequences
Techniques based on method-sequence representation

: . . -of zero or more expressions; the receiver is treated as the
(Section 3.3.1 and 3.3.2) make an additional assumption: first method argument. Thest at e and. r et val expres-

A2s: Each method can only modify the state of the receiver sions denote the state of the receiver after the invocatidn a
and return a result. the result of the invocation, respectively. For brevityg-Fi

exp::=prim|invoc“. state” | invoc“. retval ”

“-1"|___

Figure 2. Grammar for symbolic expressions

Techniques based on the user-defirgdal s methods
(Section 3.3.4 and 3.3.5) make an additional assumption:

3. Formal Framework

3.1. Assumptions

198

ure 2 does not specify types, but the expressions are Wellygp i ds: // maps nodes into their unique ids

typed according to the Java typing rules [1]. int E,] i near i’v;ew_ode root, Heap <O E>) {
For example,s2 at the end of T2 is represented as 'refur_nnﬂlvn(rgf)%', <0 E>);

push(push(<init>().state, 3).state, 5).state, })

.o int[] lin(Node root, Heap <O E>) {
where<i ni t > represents the constructor that takes no re- " it (i ds. cont ai nskey(root))

ceiver ancki ni t >() . st at e represents the object created ~ return singl et onSequence(i ds. get (root));

. . . . int id = ids.size() + 1;
by the constructor invocation. This object becomes the re- s put (root . id);
ceiver of the method invocatigrush(3) , and so on. int[] seq = singletonSequence(id); ,
. Edge[] fields = sortByField({ <root, f, 0> in E });
Some of our techniques represent method-entry states foreach (<root, f, o> in fields) {
using tuples of expressions. Two tuples are equivalent iff if (isPrinitive(o)) _
. seq. add(uni queRepresentation(0));

their expressions are component-wise identical. el se
Our method-sequence approach allows the tests to con- ! seq. append(lin(o, <O E>));

ta_un loops, arlth_meuc, aliasing, _and/or polymorphismn€o return seq;

sider the following manually written tests T4 and T5: }

Test 4 (T4): Test 5 (T5):
IntStack t = new IntStack(); IntStack s5 = new I ntStack(); Figure 3. Pseudo-code of linearization
IntStack s4 =t; int i =0;
for (int i =0; i <=1; i++) s5. push(i);

s4. push(i); s5. push(i + 1);

Definition 3 A rooted heap is a paifr, h) of a root object
Our current implementation dynamically monitors the invo- r and a heapgh whose all nodes are reachable from
cations of the methods on the actual objects created in the .
tests and collects the actual argument values for these invo The techniques construct a rooted hgap from a program
cations. It represents each object using a method sequenc&eapw’ L) and a tuplgvy, .. ., vy) Of Po'mers and prim-
for example, it represents battis5 at the end of T4/T5as Ve valuesv; € O U P, where(S,Z ,S n. The con-
push(push(<init>().state, 0).state, 1).state. struction first c/reates the he@p = (0 ’E) whereO" =

In future work, we plan to add a static analysis that can O U {r} andE = EU{{niv))0 <i<nlir¢O
gather the method sequence without executing the test codéS the root object. It .then creates the r?oted hé’a‘h? '
Although this static analysis would be conservative ansl les whereh = (Oy, Ep) is the subgr_aph Oh t_hat contalrlls
accurate than the dynamic analysis, it would enable detect-_all nodes reachable_ fromand their edges, ."e.Qh /g 0
ing some redundant tests without executing them. is the set of all objects reachable fromwithin A’ and
En={{o,f,0') € F'lo € O}.
3.2.2. Concrete State=ach execution of a test operates Although there is no polynomial-time algorithm known
on the program state that includes a program heap. Oufor checking isomorphism of general graphs, it is possible t
concrete-state approach considers only parts of the heap; wefficiently check isomorphism of rooted heaps. Our imple-
also call each part a “heap” and view it as a graph: nodesmentatiorlinearizesheaps into sequences such that check-
represent objects and edges represent fields/Lbe the ing heap isomorphism corresponds to checking sequence
set consisting of all primitive values, includimgl |, inte- equality. Figure 3 shows the pseudo-code of the lineariza-
gers, etc. LeD be a set of objects whose fields form a set tion algorithm. It traverses the entire heap depth firstt-sta
F'. (Each object has a field that represents its class, and aring from the root. When it first visits a node, it assigns a

ray elements are considered index-labeled object fields.) unique identifier to the node, keeping this mapping ds
Definition 1 A heapis an edge-labelled grapHO, E), to use again for nodes that appear in cycles. Similar lin-
whereE = {(o, f,0')|lo € O, f € F,o' € OU P}. earization was used in model checking [15,22]. It is easy to

)))) . show that the linearization normalizes rooted heaps.
We define heap isomorphism as graph isomorphism

based on node bijection [3]. Theorem 4 Two rooted heap&:, h1) and{os, ho) are iso-

_ morphic iffl i i Jhi) =i [,ha).
Definition 2 Two heaps(O,, E1) and (O, E») are iso- phiciffl i neari ze(oy, h1) =l neari ze(oz, h)

morphiciff there is a bijectiorp : O; — O such that:

Ey = {{p(o), f,p(d")|(0, f,0') € E1,0" € O1} U
? KPEO)J, O/(>|<O>’|§f’ o) e>E1,o} € P). 1} Table 1 shows the techniques that we compare. Different

techniques use different representations for methodrentr
Note that the definition allows only nodes to vary: two states and different comparisons for equivalent statesh Ea
isomorphic heaps have the same fields for all objects andmethod-entry state describes the receiver object and argu-
the same values for all primitive fields. ments before a method invocation. We next explain details
Some techniques represent state watbhtedheaps. of all five techniques.

3.3. Techniques

199

3.3.4. MonitorEquals This technique leverages user-

technique representation comparison ;

|Wh |Iqsu | hp _ ' — | F: ' | definedequal s methods to extract only the relevant parts

o é),e, eqs t ee?t';ethmet (ih s(;aquence equal!ty of the state. Like WholeState, MonitorEquals also repre-
odifyingSeq | a par orthe method sequenpequanty sents a state with a rooted heap, but this heap is only a

WholeState the entire concrete state isomorphism

subgraph of the entire rooted heap. Conceptually, Mon-
itorEquals first obtains the entire rooted heap from the
program heap and the valugsy,...,v,) of the re-
ceiver and arguments (as in WholeState). It then invokes
v;. equal s(v;) for each non-primitivev; and moni-
tors the field accesses that these executions make. The
rationale behind MonitorEquals is that these executions ac
3.3.1. WholeSeqThis technique uses the method- cess only the relevant object fields that define an abstract
sequence approach to represent state. It represents ea@ate. (The executions always retunrue for properly im-
object with an expression that included methods in- plementectqual s methods.)
voked on the object since it has been created, including MonitorEquals represents each method-entry state as a
the constructor. Our implementation obtains this represen (ooted heap whose edges consist only of the accessed fields
tat@on by exec;uting the tes_ts and keeping a mapping fromgnq the edges from the root. Formally, let (O, E)) be
objects to their corresponding expressions. the entire rooted heap arfd, C E be the set of all fields
Each method-entry state is simply a tuple of expressionsfrom E that are accessed duriegual s executions. (The
that represent the receiver object and the arguments. TWQaxecutions may additionally allocate temporary objects an
states are equivalent iff the tuples are identical. For ex- access their fields, but these fields are noEimnd these
ample, WholeSeq represents the states befosé(2) in objects are unreachable at the end of the executions.) The
T3and Tlaspush(<init>().state, 3).state, 2> method-entry state is the rooted he@p(O’, E')), where
and <push(i sEnpty(<init>().st).st, 3).st, 2>, E' = E,U{{o,f,o)lo = r A (o, f,0) € E} C E and
respectively, and these two states are not equivalent. O = {ol{o, f,0') € E'V (¢, f,0) € E'} C O. In Mon-

. _) itorEquals, two states are equivalent iff their rooted lseap
3.3.2. ModifyingSeq This technique also uses the meth- o isomorphic.

od-sequence approach. However, it represents each object For illustration, recall the example and consider the state

with an expression that '”F'Ud@.“"y those methods that . of stacks beforgpush(5) in T1 and T2. The whole con-
modified the state of the object since it has been created, in-

. ; . . crete state of1/s2 is shown in the left/right column:
cluding the constructor. Our implementation monitors the
method executions to determine at run time if some execu- // si before push(5) /1 s2 before push(5)
tion modifies the state or not. (Details are in Section 4.) store = @66a24 store = @.1f743

MonitorEquals| a part of the concrete state | isomorphism
PairwiseEquals the entire concrete state equal s

Table 1. State representation and comparison

o - store.length = 10 store.length = 10
ModifyingSeq builds and compares method-entry siorenl)] = g s:ore[gl = g
states in the same way as WholeSeq, but since Modify- 3 oref2) = 5 Serda T o
ingSeq uses a coarser representation for objects, it can find ool < o orelol = o
more method-entry states to be equivalent. For example, 5 ot°L% = i

i sEnpty does not modify the state of the stack, so Modi-
fyingSeq represents states befprash(2) in both T3and where the values of thet ore array are their identifiers
Tl as <push(<init>().state, 3).state, 2> and (reference addresses, prefixed w@h These states are not
thus finds them to be equivalent. equivalent, becausst or e[1] differs. However, the exe-
cution of t hi s. equal s(this) accesses only the fields
3.3.3. WholeStateThis technique represents method- si ze, st or e, and elements aft or e whose indices are up
entry states using the entire concrete state reachable fronto the value oki ze. In this example, the accessed part of
the receiver object and the arguments. Assume that a test exs1/s2 is shown in the left/right column:

ecution is about to invoke0. n{al, ..., an) and the i s(thi s) O thi s(thi's)

H - this.equal s(this this.equal s(this
program heap _|£{O,E>.. The execution has already eval- |, tefore s1. push(5) /1 before s2.push(5)
uated the receiver object and the arguments to some val- store = @66a24 store = @1ff43
uesv; € O U P, where0 < i < n. (Recall thatP storefol =3 storelo] =3

is the set of all primitive values.) WholeState repre-
sents the method-entry state with the rooted heap obtained’hese two states are not identical, as the addresses differ,

from (O, E) and (v,...,v,). Two states are equiva- but they are isomorphic. Thus, MonitorEquals reports that
lent iff the rooted heaps are isomorphic. the method-entry states befgresh(5) in T1 and T2 are
equivalent.

200

3.3.5. PairwiseEqualsThis technique also lever- 4. Implementation
ages user-definedqual s methods to detect equivalent
states. It implicitly uses the entire program heap to rep- We have implemented the five Rostra techniques for
resent method-entry states. However, it does not com-collecting method-entry states and comparing equivalence
pare (parts of) states by isomorphism. Instead, it runs thein Java. Our current implementation collects method-entry
test to build the concrete objects that correspond to the re-states dynamically during test executions. We use the Byte
ceiver and arguments, and then usesetipgal s method to Code Engineering Library [8] to instrument the bytecodes
compare pairs of states. Two statgsand s, are equiva- of the classes under test at the class-loading time. The in-
lent iff s;. equal s(s2) returnstrue. strumentation adds the code for collecting state reprasent
This technique can find more equivalent objects than thetions at the entry of each method call in a test. It also adds
previous technique. For example, consider a class that im-the code for monitoring instance-field reads and writes.
plements a set using an array. PairwiseEquals reports two Our instrumentation collects the method signature, the
objects to be equivalent if they have the same set of arrayreceiver-object reference, and the arguments at the begin-
elements, regardless of the order, whereas MonitorEqualsiing of each method call in the test. The receiver of these
reports two objects with the same elements but different or- calls is usually an instance object of the class under tbst. T
der to be non-equivalent. However, PairwiseEquals is typi- instrumentation does not collect the method-entry states f
cally slower as it compares the whole state, whereas Moni-calls that are internal to these objects. Different techeg
torEquals compares only parts of the state, and additipnall also collect and maintain additional information.
Rostra uses efficient hashing and storing in MonitorEquals, The WholeSeq and ModifyingSeq techniques maintain a

because we know the representation (sequence). table that maps each object to a method sequence that rep-
resents that object. At the end of each method call, the se-
3.4. Redundant Tests guence that represents the receiver object is extended with

the appropriate information that represents the call, un-

Each test execution produces several method executiongdess the method execution has not modified the receiver,
in which case ModifyingSeq does not extend the sequence.
ModifyingSeq dynamically monitors the execution and de-
termines that the receiver is modified if there is a write to a

We denote with[t] the sequence of method executions field that is reachable from the receiver.
produced by a test, and we write(m, s) € [t] when a The WholeState technique uses Java reflection [1] to re-
method executiofin, s) is in the sequence far We define cursively collect all the fields that are reachable from the
equivalent method executions based on equivalent states. receiver and arguments before the method call. The Mon-
itorEquals technique executes equal s(v;) for the re-
ceiver and each non-primitive argument before the
method call. It then monitors these executions to col-

We further consider minimal test suites that contain no lect all fields that are accessed. (The MonitorEquals
redundant tests. technique needs to carefully avoid the common opti-
mization pattern that compares the receiver and the argu-
ment for identityt hi s == t hat within equal s meth-
ods.) To compare states, WholeState and MonitorEquals
use our implementation of the linearization algorithm (Sec
Definition 8 A test suiteS is minimaliff there is not € S tion 3.2.2). The PairwiseEquals technique creates the
that is redundant fo5\ {¢}. objects for the receiver and arguments and then com-
pares them usingqual s methods. Note that subsequent
test execution can modify these objects, so PairwiseE-
guals needs to reproduce them for comparison. Our current
implementation re-executes method sequences; an alterna-
Definition 9 A test suiteS minimizesa test suiteS”’ iff S tive would be to maintain a copy of the objects.
is minimal and for eaclt’ € S’ and each(m’, s") € [t'],
there existt € S and (m, s) € [t] such that(m’,s") and
(m, s) are equivalent.

Definition 5 A method executionm, s) is a pair of a
methodmn and a method-entry state

Definition 6 Two method executiofis:;, s1) and(ms, s2)
are equivaleniff m; = mo ands; ands, are equivalent.

Definition 7 A testt is redundanfor a test suiteS iff for
each method execution ¢f], there exists an equivalent
method execution of some test frén

Minimization of a test suiteS’ finds a minimal test
suite S C S’ that exercises the same set of non-equivalent
method executions & does.

5. Applications
Given a test suites’, there can be several test suites We propose these four applications of Rostra: test-suite

S C S’ that minimizeS’. Ourimplementation uses agreedy assessment, test selection, test-suite minimizationtestd
algorithm to find one of the test suites that minimi#&s generation.

201

AssessmentRostra provides a novel quantitative com-

parison of test suites, especially those generated by autor class meths ?#ebtlrlﬁs nlgrclb f;ifst Ji;ifger
matic test-generation tools. For each test suite, Rostra ca ST = = a o s
find non-equivalent object states, non-equivalent method ntstac
. UBStack 11 11 106 | 1423 14
executions, and non-redundant tests. We can then use thejr .
metrics to compare the quality of different test suites ShoppingCart 9 8 70| 470 31
-) BankAccount 7 7 34| 519 135
Selection:We can use Rostra to select a subset of auto-[gBijnSearchTree 13 3| 246 | 277 56
matically generated tests to augment an existing (manually BinomialHeap 22 17 | 535 | 6205 238
or automatically generated) test suite. We feed the existin [DisjSet 10 71 1661 779 64
test suite and the new tests to Rostra, running the existing FibonacciHeap 24 14 | 468 | 3743 150
test suite first. The minimal test suite that Rostra then pro-| HashMap 27 19 | 597 | 5186 47
duces will contain those new tests that are non-redundant LinkedList 38 32 | 398 | 3028 86
with respect to the existing test suite. TreeMap 61 25| 949 | 931 1000

Minimization: We can use Rostra to minimize an auto-
matically generated test suite for correctness inspeetioh
regression executions. Without a priori specifications, au
tomatically generated tests typically do not have test ora-g Experiments
cles for correctness checking, and the tester needs to manu-
ally inspect the correctness of (some) tests. Rostra hiedps t This section presents two experiments that assess how
tester to focus only on the non-redundanttests, or more preyye|| Rostra detects redundant tests: 1) we investigate the
cisely the non-equivalent method executions. Running re-penefit of applying Rostra on tests generated by existing
dundant tests is inefficient, and Rostra can remove thesgqo|s: and 2) we validate that removing redundanttests-iden
tests from a regression test suite. However, we need to bgjfieq by Rostra does not decrease the quality of test suites.
careful because changing the code can make a test that i§\,e have performed the experiments on a Linux machine
redundant in the old code to be non-redundant in the newitn a Pentium IV 2.8 GHz processor using Sun’s Java 2
code. If two method sequences in the old code producegpk 1.4.2 JVM with 512 MB allocated memory.
equivalent object stateand the code changes do not im-
pact these two method sequences [25], we can still safely6_1. Experimental Setup
determine that the two sequences in the new code produce
equivalent object states. Additionally, we can alwayslgafe
use Rostra to perform regression test prioritization [24] i jments. Thel nt St ack class is our running example. The
stead of test-suite minimization. UBSt ack class is taken from the experimental subjects used

Generation: Existing test-generation tools can incorpo- by Stotts et al. [26]. Th&hoppi ngCart class is a popular
rate Rostra to avoid generating and executing redundankexample for JUnit [6]. Th®ankAccount class is an exam-
tests. Although our five Rostra techniques are dynamic, theyple distributed with Jtest [21]. The remaining seven classe
can determine whether a method executianis equivalent are data structures used to evaluate Korat [3,19]. The first
to some other executiobeforerunningme; the method- four columns show the class name, the number of meth-
entry state required for determining equivalence is avail- ods, the number of public methods, and the number of non-
able before the execution. Test-generation tools thatl#é&ec comment, non-blank lines of code for each subject.
tests, such as Jtest [21], can easily integrate Rostraedtes We use two third-party test generation tools, Jtest [21]
ecutes already generated tests and observes their behavieind JCrasher [7], to automatically generate test inputs for
to guide the generation of future tests. Running Jtest is cur program subjects. Jtest allows users to set the lengthlef cal
rently expensive—it spends over 10 minutes generating theing sequences between one and three; we set it to three,
tests for relatively large classes in our experiments (Sec-and Jtest first generates all calling sequences of length
tion 6)—but much of this time is spent on redundant tests. one, then those of length two, and finally those of length

We have implemented a prototype test-generation toolthree. JCrasher automatically constructs method segsence
based on Rostra [28]. It dynamically and iteratively gen- to generate non-primitive arguments and uses default data
erates non-redundant tests to exercise non-equivalent obvalues for primitive arguments. JCrasher generates tests
ject states. Our prototype performs combinatorial testing as calling sequences with the length of one. The last two
by generating tests that exercise each possible combinaeolumns of Table 2 show the number of tests generated by
tion of non-equivalent method, receiver, and arguments. Ou Jtest and JCrasher.
preliminary results show that our prototype generates test Our first experiment uses the five Rostra tech-
suites better by several metrics than Jtest. nigues to detect redundant tests among those gener-

Table 2. Experimental subjects

Table 2 lists the 11 Java classes that we use in our exper-

202

100% 100%

90% f : : : 0%
80% | . E E E E 80% -
70% 4 . } } } } 70% 4
60% - : 60% -
50% | f f f f f 50% -
40% - 40% -
30% - m\WholeSeq 30% - mWholeSeq
O ModifyingSeq EIModifyingSeq
20% ®WholeState 20% ®WholeState
10% | & MonitorEquals 10% | £ MonitorE quals
@ PairwiseEquals B PairwiseEquals
0% - 0% -

b G S S G G G <
/@,@04 @’%; %% ;:%yooo%%oo%/@%/ o, ,%) ’4@%@@%‘]
%,7 o”o, 47}@@ A/@% 6&% “
Figure 4. Percentage of redundant tests Figure 5. Percentage of redundant tests
among Jtest-generated tests among JCrasher-generated tests

ated by Jtest and JCrasher. Our second experiment com- We also measured the percentages of equivalent object
pares the quality of original and Rostra-minimized test s’Fate_s and equivalent method executions; they have similar
suites using 1) branch coverage, 2) non-equivalent, un-distributions as the redundant tests. . o
caught-exception count, and 3) fault-detection capabil- The elaps_ed real time of running our implementation is
ity. We adapt Hansel [12] to measure branch coveragere¢asonable: it ranges from a couple of seconds up to sev-
and non-equivalent, uncaught-exception count. (Two ex- &ral minutes, determined primarily by the class complexity
ceptions are equivalent if they have the same throwing and the numberofgeneratgd tests. To put this time |nt(_J per-
location and type.) To estimate the fault-detection Capa_spectlve, we need to consider the vyhole test generatlon_: if
bility, we use two mutation-analysis tools for Java: Jmuta- {€St-generation tools such as Jtest incorporated Rosra in
tion [18] and Ferastrau [19]. We select the first 300 mutants 9&neration, the time savings achieved by avoiding redun-
produced by Jmutation and configure Ferastrau to pro_dgnt tests would significantly exceed the extra cost of run-
duce around 300 mutants for each subject. We have writ-Ning Rostra [28]. .
ten specifications and used the JML runtime verifier [5]to ~ Table 3 shows the results of the second experi-

compare the method-exit states and returns of the origi-Ment: non-equivalent, uncaught-exception counts (cotimn
nal and mutated method executions. 2 and 3), branch-coverage percentages (columns 4 and

5), killing rates for Ferastrau mutants (columns 6 and 7),

and killing rates for Jmutation mutants (columns 8 and 9).
6.2. Experimental Results The columns marked “te” and “jcr” correspond to Jtest

and JCrasher, respectively. The original Jtest-generated

Figures 4 and 5 show the results of the first experiment—and JCrasher-generated test suites have the same mea-
the percentage of redundant tests generated—for Jtest angures as their corresponding Rostra-minimized test suites
JCrasher, respectively. We observe that all techniques exin all cases except for the four cases whose entries are
cept WholeSeq identify around 90% of Jtest-generated testsnarked with “*”. The differences are due only to the Mon-
to be redundant for all subjects and 50% of JCrasher-jtorEquals and PairwiseEquals techniques. The minimized
generated tests to be redundant for five out of 11 subjects Jtest-generated test suites fort St ack andTr eeMap can-
Possible reasons for higher redundancy of Jtest-generatedot kill three Ferastrau-generated mutants that the origi-
tests include: 1) Jtest generates more tests; and 2) Jtesial test suites can kill. This shows that minimization based
generated tests have longer call length. on equal s can reduce the fault-detection capability of a
The two method-sequence techniques identify fewer re-test suite, but the probability is very low. The minimized

dundant tests than the three concrete-state techniqueis, anJtest-generated test suites fashMap andTr eeMap can-
there is no significant difference in the results for the lat- not cover two branches that the original test suites can
ter three techniques. We hypothesize that our experimentatover. We have reviewed the code and found that two fields
subjects do not have many irrelevant object fields for defin- of these classes are used for caching; these fields do not af-
ing object states and/or the irrelevant object fields do notfect object equivalence (defined kyual s) but do affect
significantly affect the redundant test detection. branch coverage. These four cases suggest a further in-

203

observational equivalence [17]. These techniques are typi

class excptn| branch | Ferastray Jmutation e

count | cov %] | Kill[%] | Kill [%] _caIIy u_sed to infer axioms in algebraic specnﬁpanons OF ver

fie [jor | Jte] Jer| je | jor| Jte] jor ify their correctness, while our Rostra tec_hmques are l_Jsed
IntStack TT 11 671 501*45 1 40] 24| 23 to detect redundant tests. Pre_wous techniques are tipical
UBStack 5T 0l 941 561 571 251 78] 37 much slowe.r than our techniques, _but our r_immal s-
ShoppingCart| 2| 1| 93] 71| 57| 51| 80| 20 based_techmques can find fewer equlva_llent objects (too con-
BankAccount | 31 3110011001 98| 98| 89| 89 servative) and ouequal s-based techniques can, depend-
BinSearchTree 31 01 671 14| 33| 5] 57| 11 ing onequal s, find more equivalent objects (unsound) than
BinomialHeap| 3| 3| 90| 66| 89| 34| 64| 48 observational equivalence.
DisjSet 0| 0] 61| 51| 26| 18| 40| 29 Grieskamp et al. present the AsmLT test-generation tool
FibonacciHeag 2| 2| 86| 58| 73| 21| 68| 35 that incorporates test selection [11]. AsmLT allows theruse
HashMap 1| 1|*72| 43| 52| 23| 48] 24 to provide an abstraction functioa)that maps states of ab-
LinkedList 19/10| 79| 48| 24| 7| 25| 9 stract state machines into so-called “hyperstates”; twiste
TreeMap 4| 3|*33| 11|*16| 4| 16| 7 are equivalent if they lead to the states @nd s;) that

map to the same hyperstatg = s2 < a(s1) = a(s2)).

Table 3. Quality of Jtest-generated, JCrasher- Rostra, instead, allows the user to define equivalence more
generated, and minimized test suites directly via a binary, boolean-returning method)(that

takes two statess(andss) and determines their equiva-
lence 61 = s2 < m(s1,s2)). In practice, the existing
equal s methods suffice and Rostra uses them fully auto-
matically, but in principle, Rostra allows the user to powvi
other methods for equivalence. Moreover, our WholeState
and MonitorEquals techniques compare states using iso-
morphism, whereas AsmLT always uses equality. Our test-
generation tool based on Rostra [28] uses combinatorial

vestigation on the use afqual s methods in detecting
redundant tests as future work.

6.3. Threats to Validity

The threats to external validity primarily include the de-
gree to which the subject programs and third-party test gen- . C o :
eration tools are representative of true practice. Ouresid] generation 5"“""?“ to ASmLT, with dlf.fe.ren.t selections. .
are from various sources and the Korat data structures have, Chang anq Richardson use sP ecification-coverage crite-
nontrivial size for unit tests. Of the two third-party topls ria for selecting tests that exercise new aspects of a priori

one—Jtest—is popular and used in industry. These threaty_OViOIed unit specifications [4]. Without requiring a pri-

could be further reduced by experiments on more Subjects0r| specifications, Harder et al. use the operational differ

and third-party tools. The main threats to internal valid- ence technique to a_ugment and minimize. regre§sion test
ity include instrumentation effects that can bias our rssul tswtels [%3]' OuTIpr?wotl)Jls wogk l:sefs otperattpn:la}l V'OL?;'OTS
Faults in our implementation, Jtest, JCrasher, or other mea 0 select a small valuable subset of automatically generate

surement tools might cause such effects. To reduce thesé‘eSts for manual inspection [29]. Clustering and sampling

threats, we have manually inspected the collected exetutio the e>_<ecut|on profiles are also used to select tests _fo_r n-
traces for several program subjects. spection [9]. There are also several approaches to minimiz-

ing [23] or prioritizing [24] tests for regression testinmi-
marily based on structural coverage. Rostra complements
these existing approaches based on specifications or struc-
Rostra techniques are related to work on state represenEural coverage. These approaches typl_c aII_y select fewts te

X . . . than Rostra, but Rostra differs in that it aims to selecstest
tation and comparison, and Rostra itself is related to work

on test selection and minimization. (Test generation basedthat preserve the quality of the original test suite.

on Rostra is also related to work on test generation [28].)
losif [15] and Robby et al. [22] use linearization to en- 8. Conclusion
code states in model checkers. They do not apply any tech-
nigue as our MonitorEquals to collect only the relevant ob- We have proposed Rostra, a novel framework for de-
ject fields, but always collect all fields. Zimmermann and tecting redundant object-oriented unit tests, and present
Zeller use a memory graph and its visualization to repre- five techniques within this framework. We have proposed
sent and explore states during C program executions [30].four practical applications of the framework. We have con-
They reduce the comparison of program states to the com-ducted experiments that evaluate the effectiveness of&ost
parison of graphs. on detecting redundant tests in test suites generated by two
Most of the previous work on detecting equivalence of third-party test-generation tools. The results show theg-R
object states [2, 10, 14] has developed techniques based otra can substantially reduce the size of these test suiths wi

7. Related Work

204

out decreasing their quality. These results strongly sstgge [14] J. Henkel and A. Diwan. Discovering algebraic specifica
that tools and techniques for generation of object-ornte
test suites must consider avoiding redundant tests.

Acknowledgments

We thank Yu-Seung Ma and Jeff Offutt for providing the

Jmutation tool. We thank Andrew Petersen, Vibha Sazawal,
and the anonymous reviewers for their valuable feedback
on an earlier version of this paper. This work was supported [17

in part by the National Science Foundation under grants

ITR 0086003 and CCR00-86154. We acknowledge support

[15]

[16]

through the High Dependability Computing Program from [18]
NASA Ames cooperative agreement NCC-2-1298.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

K. Arnold, J. Gosling, and D. HolmesThe Java Program-
ming Language Addison-Wesley Longman Publishing Co.,
Inc., 2000.

G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a tddftw.
Eng. J, 6(6):387—405, 1991.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: autoetht
testing based on Java predicatesPtaceedings of the Inter-
national Symposium on Software Testing and Analpsiges
123-133, 2002.

J. Chang and D. J. Richardson. Structural specificatiased
testing: Automated support and experimental evaluatian. |
Proceedings of the 7th ESEC/FSiages 285-302, 1999.

Y. Cheon and G. T. Leavens. A simple and practical apgroac
to unit testing: The JML and junit way. IRroc. European
Conference on Object-Oriented Programming (ECOQP)
pages 231-255, 2002.

M. Clark. Junit primer. Draft manuscript, October 2000.

C. Csallner and Y. Smaragdakis. Jcrasher documentsnénl
manual, December 2003.

M. Dahm and J. van Zyl. Byte code engineering library, i\pr
2003.

W. Dickinson, D. Leon, and A. Podgurski. Finding failgre
by cluster analysis of execution profiles. Pnoceedings of
the 23rd International Conference on Software Engineering
pages 339-348, 2001.

R.-K. Doong and P. G. Frankl. The astoot approach to
testing object-oriented program#ACM Trans. Softw. Eng.
Methodol, 3(2):101-130, 1994.

W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state ma-
chines. InProceedings of the International Symposium on
Software Testing and Analysgages 112-122, 2002.

Hansel 1.0, 2003. htt p:// hansel . sour cef or ge.
net/.

M. Harder, J. Mellen, and M. D. Ernst. Improving testtesi
via operational abstraction. Proceedings of the 25th Inter-
national Conference on Software Engineeripgges 60-71,
2003.

205

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26

—_—

[27]

tions from Java classes. [rth European Conference on
Object-Oriented Programmingages 431-456, 2003.

R. losif. Symmetry reduction criteria for software nebd
checking. InProceedings of the 9th SPIN Workshop on Soft-
ware Model Checkingpages 22—41, July 2002.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-
sign of JML: A behavioral interface specification language
for Java. Technical Report TR 98-06i, Department of Com-
puter Science, lowa State University, June 1998.

] B. Liskov and J. Guttag.Program Development in Java:

Abstraction, Specification, and Object-Oriented Design
Addison-Wesley, 2000.

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutatiop-
erators for Java. IRroceedings of International Symposium
on Software Reliability Engineeringages 352-363, 2002.
D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and MiR
nard. An evaluation of exhaustive testing for data struc-
tures. Technical Report MIT-LCS-TR-921, MIT CSAIL,
Cambridge, MA, September 2003.

B. Meyer. Eiffel: The Language Prentice Hall, New York,
N.Y., 1992.

Parasoft. Jtest manuals version 4.5. Online manudbliec
2002.

Robby, M. Dwyer, J. Hatcliff, and R. losif. Space-retion
strategies for model checking dynamic softwarePtaceed-
ings of the 2003 Workshop on Software Model Checkial
ume 89 ofENTCS 2003.

G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. Anrem
pirical study of the effects of minimization on the fault de-
tection capabilities of test suites. Rroc. the International
Conference on Software Maintenanpages 34-43, 1998.

G. Rothermel, R. J. Untch, and C. Chu. Prioritizing teestes
for regression testindEEE Trans. Softw. Eng27(10):929—
948, 2001.

B. G. Ryder and F. Tip. Change impact analysis for object
oriented programs. IrProceedings of ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineeringpages 46-53, 2001.

D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic junit test case generatiorRrbteed-
ings of the 2002 XP/Agile Universpages 131-143, 2002.
Sun Microsystems. Java 2 Platform, Standard Edition,
v1.3.1 API Specification http://java. sun. com

j 2se/ 1. 3/ docs/ api /.

] T. Xie, D. Marinov, and D. Notkin. Improving generatiof

[29]

[30]

object-oriented test suites by avoiding redundant testsh-T
nical Report UW-CSE-04-01-05, University of Washington
Department of Computer Science and Engineering, Seattle,
WA, January 2004.

T. Xie and D. Notkin. Tool-assisted unit test selectiased

on operational violations. IRroceedings of 18th IEEE In-
ternational Conference on Automated Software Engineering
pages 40-48, 2003.

T. Zimmermann and A. Zeller. Visualizing memory graphs
In the Dagstuhl Seminar on Software Visualizatisolume
2269 of LNCS pages 191-204, 2001.

