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Abstract—To assure high software quality for large-scale in-
dustrial software systems, traditional approaches of software
quality assurance, such as software testing and performance
engineering, have been widely used within Alibaba, the world’s
largest retailer, and one of the largest Internet companies in the
world. However, there still exists a high demand for software
quality assessment to achieve high sustainability of business
growth and engineering culture in Alibaba. To address this
issue, we develop an industrial solution for software quality
assessment by following the GQM paradigm in an industrial
setting. Moreover, we integrate multiple assessment methods into
our solution, ranging from metric selection to rating aggregation.
Our solution has been implemented, deployed, and adopted
at Alibaba: (1) used by Alibaba’s Business Platform Unit to
continually monitor the quality for 60+ core software systems;
(2) used by Alibaba’s R&D Efficiency Unit to support group-
wide quality-aware code search and automatic code inspection.
This paper presents our proposed industrial solution, including
its techniques and industrial adoption, along with the lessons
learned during the development and deployment of our solution.

Keywords—Software quality assessment, software quality
model, experience report

I. INTRODUCTION

With the widespread application of computing technologies,
various industries have become increasingly dependent on
software systems. At the same time, due to various software
quality problems, ranging from poor user experiences to
software failures, more and more severe accidents arise, not
only resulting in substantial economic losses [1], but also
sometimes even human-life losses [2]. Due to the importance
of software quality, significant efforts have been invested by
both academia and industry to assure high software quality.
As a result, a large number of software quality assurance
technologies have been proposed and applied, such as software
measurement, software testing, and code review.

Alibaba is the world’s largest retailer, and one of the largest
Internet companies in the world. It owns and operates a diverse
array of businesses worldwide, such as e-commerce services,
electronic payment services, and cloud computing services.
In order to support such a large-scale business, the size of
the underlying software systems is substantial, amounting to
several billion lines of code. The size is increasing continu-
ously with the rapid growth of the business. Significant efforts

have been made to assure high software quality for such large-
scale software systems. For example, we have built substantial
testing infrastructures (e.g., the automatic regression testing
platform and end-to-end stress testing platform) to assure
correct functionality and high reliability. Moreover, typically
the foundational system software (e.g., JVM and Tomcat) is
highly customized and optimized to improve the performance.

However, there still exists a high demand for software
quality assessment in Alibaba for two main reasons:

• Ensuring high sustainability of business growth. As
the rapid growth of Alibaba, it has become more than just
an e-commerce platform, but a vast commerce ecosystem
across many industries. The services provided by Alibaba
have become the infrastructure for the business industry
as well as an essential part of Chinese daily life. As the
businesses of Alibaba highly depend on the underlying
software systems, they should be easy to maintain and
evolve to support the sustainable business growth of
Alibaba.

• Building engineering culture. In order to develop core
technologies to support business innovation, Alibaba is
transforming from business-driven to technology-driven.
Building engineering culture is a critical part of the
transformation, as doing so can inspire the creativity of
engineers. Software quality assessment is perceived as
a vital step toward engineering culture: higher-quality
software typically requires less time to maintain and
allows developers to have more time to do creative work.

As a supplement to existing practices at Alibaba, we aim to
develop an industrial solution for software quality assessment
similar to a physical medical examination. First, there is a
rating representing the overall software quality (similar to the
health condition) so that the developers and managers can
obtain a direct understanding of the quality condition. Second,
there are various attributes for reflecting different aspects of
the software (similar to human body), and the overall rating
is aggregated from ratings for these attributes. Each attribute
can be used to identify problems (similar to health symptoms),
which can help pinpoint problematic code (similar to disease).
Third, quality assessment is fully automatic without human



intervention, because the efficiency and scalability of manual
assessment are infeasible when dealing with large-scale indus-
trial software systems.

To produce such an industrial solution, we conduct a sys-
tematic review to understand existing techniques for software
quality assessment. After that, we adapt and improve existing
techniques to build our solution for software quality assess-
ment. Our industrial solution has been implemented, deployed,
and adopted at two major units at Alibaba. First, it is adopted
by Alibaba’s Business Platform Unit, which is responsible for
developing foundational platforms to provide basic business
capability (e.g., membership management, trade management,
and fund management) and support a number of business
lines (e.g., Taobao, TMall, and AliExpress). Our solution has
been continually monitoring the quality for 60+ core software
systems and has operated stably for about one year. Second,
it is adopted by Alibaba’s R&D Efficiency Unit, which is
in charge of developing supporting platforms to improve the
efficiency and quality of software development in Alibaba. Our
solution is adopted to support quality-aware code search and
automatic code inspection.

In this paper, we present our proposed industrial solution
for software quality assessment developed upon adapting and
improving existing techniques. Furthermore, we summarize
the lessons that we learn to provide useful guidelines for other
researchers or practitioners to conduct technology transfer of
software quality assessment to industrial practices.

In summary, this paper makes the following main contribu-
tions:

• A brief overview of the general process and existing
techniques for software quality assessment. Moreover, we
give some brief explanation for the choices of technology
genres.

• A detailed description of our proposed industrial solution,
including its techniques and industrial adoption.

• Lessons learned during the development and deployment
of our proposed industrial solution, from both technical
aspects and social aspects.

The rest of the paper is organized as follows. Section II dis-
cusses the background and related work. Section III presents
the technical details of our proposed industrial solution. Sec-
tion IV describes our industrial adoption at Alibaba. Section V
discusses the lessons learned, and Section III concludes and
outlines future work.

II. BACKGROUND AND RELATED WORK

To build a system for software quality assessment, there are
generally two phases: building a model of software quality
and defining a method of software quality assessment. Since
software quality is a complex and multifaceted concept, a
quality model is a common way to define software quality in
a structured manner. Ideally, a quality model can decompose
the quality into some software metrics that represent certain
aspects of quality. However, the measurement results usually
cannot be directly used for quality assessment for two reasons.
First, there is often a gap between software metrics and

software quality, so we need to transform the raw metric
values to ratings that represent software quality. Second, many
metrics are defined at low-level entities, such as methods and
classes, and aggregation is required to derive a single value for
the entire project under assessment. Therefore, the assessment
method should clarify both how to rate and how to aggregate.

A. Model of Software Quality

A large number of quality models have been proposed since
the emergence of this research topic in the 1970s. At the
early stage, models such as Boehm [3] and McCall [4] explore
various characteristics of software quality in a top-down fash-
ion. Based on these early quality models, the ISO/IEC 9126
standard was defined in 1991, and its successor ISO/IEC 25010
was proposed in 2011. These standards provide reference
models for the quality of software products. However, these
standards are often too complex to be practical. Therefore,
some recent work [5]–[8] focuses on adapting these standard
models in practice. Compared with such work, our work
focuses on building a model of software quality from software
quality problems observed in practice by following the Goal-
Question-Metric (GQM) paradigm [9], especially providing
some guidelines for detailed procedures (e.g., metric selection
and threshold derivation). Additionally, the model derived
from our work can be integrated with standard quality models
by mapping software quality problems observed in practice to
quality factors.

B. Method of Software Quality Assessment

A method of software quality assessment consists of two
parts: rating and aggregation. We next provide a brief overview
of existing techniques on these two parts.

Existing techniques of software quality rating mainly
fall into three categories: threshold-based techniques [10],
utility-function-based techniques [7], and probabilistic tech-
niques [11]:

• Threshold-based techniques [10] assign an approximate
risk level or profile to specific metric values according
to predefined threshold values. However, the number
of levels is finite, indicating that many different metric
values can fall into the same level, and the expressiveness
of the assessment result is limited.

• Utility-function-based techniques [7] can be viewed as
continuous generalizations of threshold-based techniques.
There are two steps for utility-function-based techniques:
(1) define the worst and best cases for the metrics and
assign the lowest and highest scores to the corresponding
metric values, and (2) define a utility function that can
fit these two fixed points. However, it is difficult to
determine the worst or best case for some metrics. For
example, as the metric of Lines Of Code in method
(LOCm) follows a power-law distribution, any extreme
value is possible to appear.

• Probabilistic techniques [11] are the most desirable
techniques, because the assessment result is not a single



value, but a probability distribution. The key of proba-
bilistic techniques is constructing the goodness function
(the probabilistic generalizations of the utility function),
from histograms of metric values. However, the assess-
ment result of this technique is hard to understand.

In summary, the three categories of techniques increase the
expressiveness in order, but the explainability decreases. In our
work, we adapt the first two categories of techniques because
having a concrete value to represent software quality is one of
the requirements for our solution. We choose the most suitable
rating techniques according to the characteristics of software
metrics, such as value ranges and data distributions.

Since we use threshold-based techniques to rate some
software metrics, we need to determine the threshold values
for each software metric. There are generally two types
of techniques to derive thresholds: expert-based techniques
and data-driven techniques. The former relies on experts as
they can define the thresholds based on their experiences.
However, there are many software metrics lacking off-the-shelf
thresholds defined by experts. The latter usually collects metric
data for a number of benchmarking software systems and
derive some percentiles of the metric-data distribution as the
thresholds. However, it is challenging to determine reasonable
percentiles. To address these issues, we combine the two types
of techniques by transferring expert knowledge based on data
distributions.

Many techniques have been applied to aggregate software
metrics [12], ranging from summation, measuring accumu-
lative effect, to some advanced concepts such as inequality
indices, measuring the degree of imbalance in distribution. We
use multiple aggregation techniques, including simple average,
weighted average, and logarithm-based aggregation [13], and
we choose the most suitable ones according to the require-
ments of aggregation, such as highlighting problematic code.

III. OUR INDUSTRIAL SOLUTION

In this section, we describe how we adapt and improve
existing techniques for software quality assessment and give
the details of our industrial solution, including building a
model of software quality and defining a method of software
quality assessment, along with the implementation and indus-
trial adoption.

A. Building a Model of Software Quality
We leverage the GQM paradigm [9] to build a model of

software quality. This paradigm generally consists of three
steps: (1) determining the goal of the stakeholders, (2) defining
the question that must be answered to determine whether the
goal is being met, and (3) deciding what must be measured to
answer the question accurately.

1) Determining Goal: As the first step, we follow the GQM
template and formulate our goal as below:�

�

�

�
“Analyze source code for the purpose of quality

assessment with respect to maintainability from the
point of view of developers in the context of large-scale
industrial software systems.”

We choose to analyze the source code, but not the process
or other products, because we intend to estimate the quality
risk at the early stage of the software development.

2) Defining Question: For the second step, we determine
the question by collecting the requirements from developers
for the industrial software systems. In this manner, our quality
model can reflect what the developers‘ concerns are. In par-
ticular, we conduct an informal interview with 20 technical
staff members at Alibaba to ask them about their opinions on
software quality and what quality factors should be included
for software quality assessment. The participants are from 4
different business units of Alibaba and consist of 12 senior
developers, 4 chief architects, and 4 senior testers. Each of
them has more than 10-year development experience. From
the result of the informal interview, we identify four most
commonly raised questions (corresponding to four dimensions
of software quality), as listed below:

• Coding convention. How well does the code comply with
Alibaba Java Coding Guidelines [14]? The guidelines
consolidate the best programming practices from Alibaba
Group’s technical teams. The guidelines can help devel-
opers minimize potential and repetitive coding mistakes.

• Code duplication. How much code duplication does
the project include? Code duplication can increase the
potential risk and maintenance effort, as we need to
ensure consistent changes to duplicated code fragments.

• Complexity. How complex is a code unit in the project?
A code unit (e.g., method and class) is the lowest-level
piece of functionality. It should be kept of low complexity
to assure high understandability and maintainability.

• Object-oriented (OO) design. How well does the code
conform to the object-oriented paradigm? As most back-
end systems of Alibaba are written in Java, and the OO
design quality can reflect architecture quality to some
extent, which also is an integral part of software quality.

3) Deciding Metrics: The final step is metric selection. We
select metrics according to two criteria: extensive validation
and wide acceptance. Meneely et al. [15] pointed out that
predictability is one of the most widely used criteria for
software metric validation. The quality risk that we intend
to estimate can be represented by the number of post-release
defects. Therefore, we select those metrics that are highly
predictable for post-release defects.

However, few past research efforts use coding-convention
metrics and code-duplication metrics to predict post-release
defects. So we use only two well-accepted metrics in prac-
tice: density of rule violations denoted as density(r v) and
duplication coverage denoted as cov(dup), respectively. The
former is defined as the number of rule violations divided
by the total number of lines of code from the project under
measurement. The latter is defined as the total number of lines
of duplicate methods divided by the total number of lines of
code from the project. A method m is marked as duplicate if
there is another method whose similarity with m exceeds the
predefined threshold.



TABLE I: OVERVIEW OF OUR INDUSTRIAL SOLUTION

Dimension Metric Interpretation Rating Threshold
Aggregation

Across Entities Across Metrics Across Dimension
Coding 

Convention
density(r_v) Density of rule violations Max function based N/A N/A N/A

Weighted Average

Code 
Duplication

cov(dup) Duplication coverage Linear function based N/A N/A N/A

Complexity

CC Cyclomatic complexity Threshold based [10, 20, 35, 50]* Logarithm-based

Simple Average
LOCm Lines of code in method Threshold based [30, 45, 70, 100]* Logarithm-based
MND Max nested level Threshold based [4, 5, 6, 7]* Logarithm-based
NOP Number of parameters Threshold based [3, 5, 6, 7]+ Logarithm-based

Object-
oriented
Design

NOM Number of methods Threshold based [15, 20, 30, 50]* Logarithm-based

Simple Average

NOF Number of fields Threshold based [5, 7, 11, 20]* Logarithm-based
WMC Weighted method count Threshold based [50, 150, 250, 350] + Logarithm-based
CBO Coupling between objects Threshold based [20, 40, 60, 80] + Logarithm-based
RFC Response for class Threshold based [60, 120, 180, 240] + Logarithm-based
DAM Data access metric Linear function based N/A Logarithm-based
LCOM_HS Lack of cohesion of method Linear function based N/A Logarithm-based

* Expert-based Threshold Derivation + Data-driven Threshold Derivation

Fortunately, software metrics measuring complexity and OO
design are an active research topic, and a number of metrics
have been used to predict maintainability efforts and post-
release defects. Based on the result of previous literature
reviews [16], [17], we select 11 metrics for complexity and
OO design, respectively, as listed in Table I: 1 metric for
coding convention, 1 metric for code duplication, 4 metrics
for complexity, and 7 metrics for OO design.

B. Defining a Method of Software Quality Assessment

We next present the two parts in our defined method of
software quality assessment: rating and aggregation.

1) Rating: We use threshold-based rating and utility-
function-based rating in our work. We prefer utility-function-
based rating when we can define the worst case and best case
for specific metrics.

The rating of coding convention is derived from the density
of rule violations denoted as density(r v). Although the
value range of density(r v) is [0,+∞], we observe that the
maximum value does not exceed 1 in real data distributions.
Therefore, the best case for density(r v) is 0, which indi-
cates that there is no rule violation, and the worst case for
density(r v) is 1, which indicates that every line has one
rule violation on average. We use the max function to rate
coding convention, with the following formula:

rating(conv) = max((1− density(r v)) ∗ 100, 0) (1)

The rating of code duplication is based on duplication
coverage denoted as cov(dup). The value range of cov(dup)
is [0, 1]. The best case for cov(dup) is 0, which indicates that
there is no code duplication, and the worst case for cov(dup) is
1, which indicates that every method is duplicate. The formula
of duplication rating is

rating(dup) = (1− cov(dup)) ∗ 100 (2)

We mainly use threshold-based techniques to rate the 11
complexity metrics and OO design metrics as shown in Table I,

because 9 out of these 11 metrics follow the power-law
distribution, indicating that it is hard to define the worst case
for these metrics. At first, we decide to use the 5-point risk
level: very high, high, mediate, low, and very low, as Morisio
et al. [10] pointed out that the ideal number of risk levels is
between three and five. In order to ease the aggregation among
different risk levels, we assign continuous interval scores, from
0 to 4, to these levels, respectively.

However, it is difficult to determine reasonable thresholds
for these metrics, even after many attempts have been made
by researchers for decades. To overcome these drawbacks, we
combine expert-based techniques and data-driven techniques
with the following procedure:

1) Threshold collection. We perform a literature review and
web search to collect existing thresholds for five metrics,
including NOM, NOF, CC, LOCm, and MND.

2) Benchmark construction. As Klaus et al. [18] pointed
out that the larger the size of the benchmarking base
is, the less the variance of the quality assessment result
is. We construct a benchmark base by retrieving all
public and successfully compiled repositories written in
Java in an internal GitLab, which is the most widely
used version control system in Alibaba. The resulting
benchmark consists of more than 5,000 software systems
with various sizes and different application domains.

3) Distribution analysis. We observe that existing thresh-
olds of these five metrics approximately represent 95%,
99%, 99.5%, and 99.9% quantiles of the corresponding
data distribution in the benchmark. Figure 1 shows the
distributions and thresholds of NOM and NOF. Due to
the large scale of the benchmark, the data distribution is
extremely right-skew, and these percentiles are very close
to each other.

4) Threshold transfer. For the remaining metrics following
the power-law distribution, we use the 95%, 99%, 99.5%,
and 99.9% quantiles as their thresholds.

The threshold values used in our solution are listed in
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Fig. 1: Distribution of NOM and NOF

Table I. Note that the ratings of DAM and LCOM HS are
calculated by utility-function-based techniques, specifically,
linear-function-based rating. Because these two metrics are
both ratio-scale-type metrics with closed intervals, it is easy
to define the best case and worst case for these two metrics.

2) Aggregation: After we get ratings for each metric, we
aggregate all these ratings to one overall rating. The rating
aggregation includes three steps. First, we aggregate ratings of
low-level entities (such as methods and classes) to get the rat-
ing for each metric at the system level. Second, we aggregate
ratings of metrics in each dimension (of the four dimensions
listed in Section III-A2) to get ratings of dimensions. Finally,
we aggregate ratings of dimensions to get the overall rating.

In the first step, most existing work aggregates low-level
ratings into top-level ratings directly. However, doing so is un-
acceptable for quality assessment, because one of the require-
ments for our industrial solution is to pinpoint problematic
code. When developers investigate the identified problematic
code, it is more desirable for the developers to drill down
step by step to lower-level entities. So we decide to aggregate
ratings across the code structure, including methods, classes,
files, modules, and systems. As most of the metrics follow
the power-law distribution, indicating that the majority of the
code has high ratings and low risk. Therefore, we decide to use
the logarithm-based aggregation to highlight the problematic
code, with the following formula:

y = log10

∑n
i=1 10

−xi

n
(3)

where xi is the low-level ratings and y is the resulting high-
level rating.

2 3

1

Fig. 2: An Example of Dashboard

To aggregate ratings of different metrics, we use the simple
average function to aggregate ratings of metrics to ratings of
dimensions. Most existing work uses the weighted-average
function for aggregation. However, it is difficult even for
experts to determine the weight of metrics. Therefore, we use
the simple average function instead.

We use the weighted-average function to aggregate ratings
of dimensions to the overall rating. Because these four dimen-
sions are extracted from our interview with industrial devel-
opers, we conduct another survey to ask about 50 industrial
developers to assign a weight for each dimension. One third
of the participants each have more than 10-year development
experiences, and the rest of them each have at least 5-
year development experiences. We use the average weight
as the final weight for each dimension, being 0.34 (coding
convention), 0.25 (code duplication), 0.215 (complexity), and
0.195 (OO design).

IV. INDUSTRIAL ADOPTION OF OUR SOLUTION

A. Adoption by Alibaba’s Business Platform Unit for core
software development

Alibaba’s Business Platform Unit is responsible for develop-
ing foundational platforms, such as membership management,
trade management, and fund management, to support various
business lines, such as Taobao, TMall, and AliExpress. Thus,
the quality of these foundational platforms is critically impor-
tant to the Alibaba business.

Based on our solution, we develop a prototype to measure
and analyze the quality of these foundational platforms. The
prototype pulls the latest code from version control systems
(e.g., Git and Subversion), collects raw metric data by state-
of-the-art tools (e.g., p3c-pmd [19] for coding convention and
SourcererCC [20] for clone detection), stores rating data into
a large-scale data warehousing system [21], and visualizes
rating data by powerful analysis tools [22]. Figure 2 shows
an example of a dashboard for some projects. All the ratings
are labeled in different colors based on the values to highlight
low ratings (Figure 2-1). Each column can be sorted as
the descending or ascending order to support top-k analysis
(Figure 2-2). We provide a query panel to enable easy selection
of ratings of interest (Figure 2-3). We also provide similar
dashboards for each dimension and metric.

Our prototype is deployed to continually monitor the quality
of these foundational platforms for about one year. Figure 3-
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Fig. 3: Overview of Alibaba Projects Under Assessment

1 depicts the distribution of some size metrics (the number
of lines of code and the number of commits) for the projects
under assessment by quantile plots. We can observe that there
are about 20% projects with more than 100,000 lines of code,
but account for more than 80% code for all the projects. The
number of commits for these projects also follows the same
distribution. Figure 3-2 shows the histogram of the overall
ratings of the projects. We can observe that the distribution
follows a normal distribution (Shapiro-Wilk test p-values are
larger than 0.05), which conforms to our intuition that the vast
majority of the projects are of medium quality.

During the adoption by the Business Platform Unit, the
quality assessment results are qualitatively validated from two
aspects. First, we validate whether the overall quality ratings
can be used to detect quality differences between different
projects. We invite about 20 technical leaders in the Business
Platform Unit to review the overall ratings for the software
systems that they are responsible for. Specifically, they are
asked to check the quality level of the software systems; the
quality level is derived from the assessment results. Their
feedback indicates that the quality level is consistent with
their subjective opinions. Second, we validate whether the
assessment results can be used to detect problematic code.
Figure 4 shows the distribution of ratings for dimensions of
the projects. We can observe that (1) there are some projects
whose ratings of code duplication are much lower than the
average, and (2) whose ratings of complexity and OO design
have much room for improvement, especially for OO design.
Therefore, we select some projects with the lowest ratings in
these three dimensions and locate problematic code based on
our assessment results. We observe some typical code smells
in these projects, such as Type I Clone, Long Method, and
God Class. We then contact the developers of these projects,
and most of the reported problems are confirmed by these
developers.

B. Adoption by Alibaba’s R&D Efficiency Unit for group-wide
software development

Alibaba’s R&D Efficiency Unit is responsible for devel-
oping supporting platforms to improve the efficiency and
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Fig. 4: Distribution of Ratings for Each Dimension

quality of software development in Alibaba. Our solution has
been integrated with Aone, which is a one-stop collaborative
platform for software development, from project planning
and source code management to continuous integration and
continuous deployment. More specifically, Aone applies the
assessment capability of our solution in two scenarios: code
search and code review.

The R&D Efficiency Unit develops and deploys a code
search platform to promote code sharing and reuse in Alibaba,
similar to code search in GitHub. Given a search query, the
code search platform retrieves relevant code snippets from all
the source code of repositories hosted by Aone. Traditionally,
the candidate code snippets are ranked according to relevance
to the given query. However, the quality of code snippets is
ignored in this way, which brings the risk to spread low-
quality code snippets across the code base. Therefore, the
R&D Efficiency Unit integrates and deploys our solution into
the code search platform so that it can take the quality of code
snippets as a factor when ranking the candidate code snippets.

As a critical part of the code review practice in Alibaba,
the R&D Efficiency Unit develops a code inspection platform
based on our solution. This platform is similar to Sonar-
Qube [23], which can perform fully automatic reviews for
quality assessment and provide powerful visualization for deep
analysis. In fact, SonarQube also has been integrated into
Aone, but development teams rarely adopt it in Alibaba due to
its high false-positive rate under default settings. Moreover, it
is not trivial to customize SonarQube to reduce false positives
for two main reasons: (1) there are many coding rules that need
to be customized; (2) there are no guidelines for customization,
especially for those threshold-based rules.

V. LESSONS LEARNED

In this section, we discuss the lessons that we learn during
the development and deployment of our proposed industrial
solution. We classify these lessons into technical aspects and
social aspects, respectively.

A. Technical Aspects

1) Being Aware of Conflicts Among Requirements of Qual-
ity Assessment: During the stage of requirements analysis, we
conduct various actions of gathering requirements, and collect
a number of requirements. However, it is not unusual that
some requirements are in conflict with each other. We need to



prioritize these requirements and make tradeoffs between the
conflicting requirements.

For example, the accuracy and explainability of quality
assessment are in conflict with each other. Many techniques,
such as various complex regression and prediction models, can
be applied to improve the accuracy of the assessment results,
but the explainability of the assessment results is likely to be
decreased in this manner. In particular, for utility-function-
based rating, one of the reasons for us to select the linear
function is that we can induce the original values from ratings
by the inverse function, so that the assessment results can be
interpreted directly according to the definition of metrics.

2) Paying Attention to Different Implementations of Soft-
ware Metrics: During the implementation of collecting soft-
ware metrics, we explore various existing tools, but find that
they sometimes implement the same metric in different ways,
and there are two main causes of such differences. First, the
definition of a metric is sometimes quite flexible. For example,
the definition of WMC does not specify how to set the weight,
so people use different types of weight, such as unified weight,
CC, and LOCm. Second, the definition of a metric is generally
independent of the programming language used in the project
under assessment. The divergence occurs when the metric is
implemented for a specific language. For example, implement-
ing most OO metrics encounters challenges in dealing with
inner classes. Some people ignore the differences between
inner and outer classes and deal with them in the same way.
Others take inner classes as part of outer classes and eliminate
inner classes by inlining.

However, different implementations are likely to have a
critical impact on the measurement results and further work
based on these results. Lincke et al. [24] pointed out that
existing software metric tools implement OO software metrics
differently, impacting the results of quality assessment based
on these metrics. To address this issue, we first inspect the
definitions of metrics and determine the implementation strate-
gies for common attributes to avoid inconsistency. We then
examine all the procedures influenced by the implementations
for software metrics. For example, when we collect existing
thresholds for metrics, we carefully inspect the implementation
details of these metrics to check whether their implementations
are consistent with ours.

B. Social Aspects

1) Increasing the Awareness of Assessment Tools: As
Campbell et al. [25] argue, software development tools often
suffer from the “deep discoverability” problem, which prevents
developers from being aware of these tools. To increase
awareness and adoption of assessment tools, we exploit three
different approaches:

• Posting on Online Developer Forums. There is a
popular technical forum in Alibaba for providing a col-
laborative environment to post development topics and
questions for open discussion with other developers. We
post some articles to introduce our tools and end up with
thousands of page views.

• Organizing Offline Technical Seminars. We also orga-
nize some technical seminars to promote our tools. To
attract more developers to attend, we invite some well-
known experts to give talks in these seminars.

• Supporting Programming Events. To promote the
adoption of the code inspection platform, we sponsor
some company-wide hackathons in Alibaba. In these
hackathons, the code inspection platform is employed
as one source of rating for the code written by each
participant.

2) Promoting the Adoption of Assessment Results: It is not
trivial to convince developers to adopt the assessment results
for improving software quality. As Jonathan et al. [26] pointed
out, quality improvement often fails in practice due to the
mishandling of the organizational and psychological factors.
To address this issue, we explore two main strategies:

• Being driven. The quality improvement is initiated in a
top-down manner, as developers are driven by managers
to improve software quality. This strategy is adopted by
the Business Platform Unit. In fact, the manager already
has an opinion on the quality condition of the software
systems. The main reasons why the manager introduces
our quality assessment solution are attaining evidence
from an independent assessor and having an external
party to announce unpleasant truths. Therefore, the man-
ager is willing to ask relevant developers to improve the
quality of software according to the assessment results.

• Being motivated. Developers are self-motivated to im-
prove software quality. This strategy is adopted by the
R&D Efficiency Unit. More specifically, we aim to help
developers gain reputation from high-quality code written
by them, but avoid damaging their reputation due to low-
quality code written by them. For example, the code
search platform displays the owners of each candidate
code snippet. The public exposure can increase the repu-
tation of developers, and cause them to be more willing to
write high-quality code to improve their rank in relevant
queries.

VI. CONCLUSION

In this paper, we have presented our industrial solution
for Alibaba’s software quality assessment to ensure high
sustainability of business growth and build engineering culture
in Alibaba. We have summarized our solution’s techniques
and industrial adoption, along with the lessons learned during
the development and deployment of our proposed industrial
solution.

In future work, we plan to improve the efficiency and
effectiveness of our solution. To address efficiency issues, we
plan to implement the incremental measurement mechanism,
inspired by the fact that most of the code usually remains
unchanged in revisions and the measurement result of the
unchanged code can be reused. To enhance the effectiveness,
we plan to introduce some advanced techniques in our solu-
tion, such as using the GQM+Strategies [27] methodology to



align business strategies with software measurement and using
architectural metrics to reflect the quality of high-level design.
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