A Framework and Tool Supports for Generating Test Inputs
of AspectJ Programs

Tao Xie
Department of Computer Science
North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu

Jianjun Zhao

Department of Computer Science & Engineering

Shanghai Jiao Tong University
Shanghai 200240, China

zhao-jj@cs.sjtu.edu.cn

ABSTRACT INTRODUCTION

Aspect-oriented software development is gaining popularity with ~ Aspect-oriented software development (AOSD) is a new tech-
the wider adoption of languages such as AspectJ. To reduce thenique that improves separation of concerns in software develop-
manual effort of testing aspects in AspectJ programs, we have de-ment [9, 18,22, 30]. AOSD makes it possible to modularize cross-
veloped a framework, called Aspectra, that automates generation ofcutting concerns of a software system, thus making it easier to
test inputs for testing aspectual behavior, i.e., the behavior imple- maintain and evolve. Research in AOSD has focused mostly on
mented in pieces of advice or intertype methods defined in aspects the activities of software system design, problem analysis, and lan-
To test aspects, developers construct base classes into which th@uage implementation. Although it is well known that testing is a
aspects are woven to form woven classes. Our approach |everage§b0r-intensive process that can account for half the total cost of
existing test-generation tools to generate test inputs for the wovensoftware development [8], research on testing of AOSD, especially
classes; these test inputs indirectly exercise the aspects. To enabl@utomated testing, has received little attention.

aspects to be exercised during test generation, Aspectra automati- Although several approaches have been proposed recently for
cally synthesizes appropriate wrapper classes for woven classes. Tdesting aspect-oriented programs [4, 35, 37, 38], none of these ap-
assess the quality of the generated tests, Aspectra defines and medroaches is able to provide a framework for automated generation
sures aspectual branch coverage (branch coverage within gspectsof test inputs for Aspectd programs. AOSD can lead to better-
To provide guidance for developers to improve test coverage, As- quality software, but it does not provide the correctness by itself.
pectra also defines interaction coverage. We have developed toolsAn aspect-oriented design can lead to a better system architec-
for automating Aspectra’s wrapper synthesis and coverage mea-ture, and an aspect-oriented programming language enforces a dis-
surement, and applied them on testing 12 subjects taken from aciplined coding style, but they do not protect against mistakes made
variety of sources. Our experience has shown that Aspectra effec-by programmers during the system development. In addition, Aspect-
tively provides tool supports in enabling existing test-generation oriented programming can introduce specific (and hard to detect)
tools to generate test inputs for improving aspectual branch cover- errors that ordinary object-oriented programming is not subject to.
age. As a result, software testing remains an inevitable and important
task in AOSD.

Aspect-oriented programming languages, such as AspectJ [18],
introduce some new language constructs (such as join points, ad-
vice, intertype declarations, and aspects) to the common object-
oriented programming languages, such as Java. The behavior of an
aspect in AspectJ programs can be categorized into two types [23]:
aspectual behavior (behavior implemented in pieces of advice) and
aspectual composition behavior (behavior implemented in point-
cuts for composition between base and aspectual behavior).

When we treat an aspect as a unit and intend to test its aspec-
tual behaviorunit tests for an aspect are created to test in isolation
pieces of advice defined in the aspect. However, it is often diffi-

Keywords
Aspect-oriented software development. aspect-oriented proarams cult to manually or automatically construct the aspect’s execution
P P » asp Prog ‘context in unit tests. When we intend to test aspectual composition

Aspect], software testing, test generation, coverage criteria, Cover'behavior related to an aspeattegration tests for the aspect are

age measurement created to test interaction or composition between the aspect class
and the affected classes. These integration tests can consist of invo-
cations of those methods affected by the aspect. These invocations
eventually exercise the interaction between the aspect class and the
affected classes by invoking pieces of advice from the advice-call
sites inserted within the affected classes.

Our research focuses on automatic generation of test inputs that
test aspectual behavior, an important type of an aspect’s behavior.
We leave the issue on automatic generation of test inputs for as-
pectual composition behavior for our future work. Specifically, we

1.

Categories and Subject Descriptors

D.2.5 [Software Engineering: Testing and Debugging-Festing
tools (e.g., data generators, coverage testing)

General Terms
Experimentation, Measurement, Reliability, Verification

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatddbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

AOSD 06, March 20-24, 2006, Bonn, Germany

Copyright 2006 ACM 1-59593-300-X/06/03%5.00.

propose Aspectra, a novel framework for generating test inputs to an exception handler. Aointcut is a set of joint points that op-
exercise aspectual behavior. Given aspects to be tested, developtionally expose some of the values in the execution of these joint
ers can construct base classes that the aspects can be woven infooints. AspectJ defines several primitpantcut designators that

to produce woven classes. We can view these base classes as pra@an identify all types of join points. Pointcuts in AspectJ can be
viding scaffoldings necessary to drive the aspects. Aspectra devel-composed and new pointcut designators can be defined according
ops a wrapper-synthesis technique to address aspect weaving isto these combinations.

sues in test generation (by providing visibility of woven methods Advice is a method-like mechanism used to define certain code
to test-generation tools and avoiding unwanted weaving). Given that executebefore, after, or around a pointcut. Thear ound ad-

a woven class, Aspectra automatically synthesizes a wrapper claswice executesn place of the indicated pointcut, which allows the

for the woven class and then feeds the wrapper class to our test-aspect to replace a method. An aspect can also usetatype
generation tool based on state exploration [33, 34]. In order to as- declaration to add a public or private method, field, or interface
sess the quality of generated tests, we define and measure aspectuahplementation declaration into a class.

branch coverage, which characterizes branch coverage within as- Aspects are modular units of crosscutting implementation. As-
pect code. Sometimes initially generated test inputs for base classepects are defined by aspect declarations, which have similar forms
(constructed by developers) may not be sufficient to achieve good of class declarations. Aspect declarations may include pointcut, ad-
aspectual branch coverage. To guide developers to improve testvice, and intertype declarations, as well as method declarations that
coverage, we define interaction coverage that measures the interare permitted in class declarations.

actions among four types of methods in AspectJ programs (which AspectJ compilers such as ajc [1, 16] aspect weaving to com-

will be explained in Section 4.1): advised methods (defined in base pose the code of the base classes and the aspects to ensure that
classes), advice, intertype methods, and public non-advice methodsapplicable advice runs at the appropriate join points. After aspect
(defined in aspects). These measurement results guide developergieaving, these base classes are then caltegn classes.

to improve the base-class construction and test generation. During the weaving process, the ajc compiler [1, 16] compiles
This paper makes the following main contributions with the pro- each aspect into an aspect class and each piece of advice in the as-
posal of the Aspectra framework. pect into a public method (calleativice method in short asadvice)

o We deve|0p awrapper_synthesis technique that prepares Wo_in the aSpeCt class. The pal’amete.rs of thlSpublIC method are the
ven classes to be given to test-generation tools; The synthe-Same as the parameters of the advice, possibly in addition to some
sized wrapper classes provide a clean interface between thet hi sJoi nPoi nt parameters. The body of this public method is

program under test and test-generation tools.We implement usually the same as the body of the advice. Then at appropriate lo-
a tool to automate the wrapper synthesis. cations of base classes, ajc inserts calls to compiled advice; meth-

ods (in base classes) that contain these call siteadarsed meth-
ods. At each site of these inserted calls, a singleton object of an
aspect class is first obtained by calling the static mettspect Of
* We define and measure branch coverage within aspect codethat is defined in the aspect class. Then a piece of advice is in-
We also classify four types of methods in AspectJ programs yoked on the aspect object. Note that the compilation of a piece
and measure the interactions among them. We implement of ar ound advice [16] is more complicated thaef or e or af t er
tools to automate these measurements. We provide guide-advice. A piece ofir ound advice is also compiled into a public
lines for developers to use these measurement results to im-method but it takes one additional argument:Aapundd osur e
prove test coverage. object. A call topr oceed in the compliecar ound advice body is
e We describe our experience in applying Aspectra to 12 As- replaced with a call to aun method on the\r oundd osur e ob-
pectJ programs from a variety of sources. The experience ject. However, when aAr oundd osur e object is not needed, the
shows that Aspectra provides effective tool supports to gen- ar ound advice is inlined in methods of the base classanound
erate test inputs for increasing structural coverage of aspectadvice method is created in the aspect class for this case.
code. The ajc compiler compiles each intertype field declaration in an
aspect into a field in the base class and compiles each intertype
The rest of the paper is organized as follows. Section 2 briefly method declaration in an aspect into a public static method (called
introduces AspectJ. Section 3 presents an example that we shall usentertype method) in the aspect class. The parameters of this pub-
to illustrate our approach. Section 4 presents our Aspectra frame-jic method are the same as the parameters of the declared method
work. Section 5 describes our implementation for Aspectra. Sec- in the aspect except that the declared method’s receiver object is
tion 6 presents our experience in applying Aspectra on various As- inserted as the first parameter of the intertype method. A wrapper
pectJ programs. Section 7 discusses related work and Section 8nethod is inserted in the base class that invokes the actual method

e \We leverage existing tools for testing Java programs to gen-
erate tests for AspectJ programs.

concludes. implementation in the aspect class. Moreover, all accesses to the
fields inserted in the base class are through two public static wrap-
2. ASPECTJ per methods in the aspect class for getting and setting field respec-

tively. An aspect can also declare a public method that is not any
type of advice. The ajc compiler also compiles it into a standard
public Java method (callgaublic non-advice method) in the aspect
class. For more information about AspectJ weaving, refer to [16].

Aspectra generates test inputs for AspectJ programs. We next
introduce background information on AspectJ [1]. Although we
present Aspectra in the context of AspectJ’s ajc compiler [1,16], the
underlying ideas are applicable to other AspectJ compilers [2, 7].

Aspect] adds to Java some new concepts and associated con:
structs including join points, pointcuts, advice, intertype declara- - EXAMPLE
tions, and aspects. Thein point in AspectJ is an essential con- We use a simple integer stack example (adapted from Retard
cept in the composition of an aspect with other classes. It is a al. [28]) to illustrate our Aspectra framework throughout this pa-
well-defined point in the execution of a program, such as a call per. The example shows some common language features of As-
to a method, an access to an attribute, an object initialization, or pectJ. Figure 1 shows the implementation of the stack class. This

class Cell {
int data; Cell next;
Cell(Cell n, int i) {
next n;
dat a i

}

public class Stack {

Cel | head;
public Stack() {
head = nul|;

}

public bool ean push(int i) {
if (i <0) return false;
head = new Cel | (head, i);
return true;

}
public int pop() {
if (head == null)
t hrow new Runti nmeException("enpty");
int result = head. data;
head = head. next;
return result;

Iterator iterator() {
return new Stackltr(head);
}

}

Figure 1: Integer stack implementation

interface Iterator {
publ i c bool ean hasNext ();
public int next();

public class Stackltr inplenents Iterator {
private Cell cell;
public Stackltr(Cell head) {
this.cell = head;

}
public bool ean hasNext () {
return cell !'= null;

public int next() {
int result = cell.data;
cell = cell.next;
return result;

Figure 2: Stack iterator

class provides standard stack operations as public non-constructo
methods:push andpop. The class also has one package-private
method:i t er at or returns an iterator that can be used to traverse
the items in the stack. The implementation of the iterator class is

shown in Figure 2.

The stack implementation accommodates integers as stack items.
Figure 3 shows three aspects that enhance the stack implemen
tation. TheNonNegat i veAr g aspect checks whether method ar-

aspect NonNegativeArg {
before() : execution(* *.x(..)) {
Obj ect args[] = thisJoinPoint.getArgs();
for(int i=0; i<args.length; i++) {
if ((args[i] instanceof Integer) &&
(((Integer)args[i]).intValue() < 0))
throw new RuntinmeException("negative arg of " +
t hi sJoi nPoi nt. get Si gnature().toShortString());

}

aspect NonNegative {
before(Stack stack) : call(* Stack.*(..)) &&
&& target(stack) && !within(NonNegative) {
Iterator it = stack.iterator();
while (it.hasNext()) {
int i =it.next();
if (i <0) throw new Runti meException("negative");
¥
}
}

aspect PushCount {
int Stack.count = O;
int allStackCount = 0;
public void Stack.increaseCount() {
count ++;

bool ean around(Stack stack):
execution(* Stack.push(int)) && target(stack) {
bool ean ret = proceed(stack);
stack. i ncreaseCount () ;
al | St ackCount ++;
return ret;

}

public int getAllStackCount() {
return all StackCount;

}

Figure 3: NonNegat i veAr g, NonNegat i ve, and PushCount as-
pects

declares an intertype fieldount for the St ack class. The field
keeps the number of timessaack’s push method is invoked. The
aspect declares a public intertype methadr easeCount for the

St ack class. The method increases thmunt intertype field of
St ack. Note that we declare this intertype method as public for
illustration purpose. Then a client can invoke timer easeCount
method to increaseount without invokingpush. The aspect also
contains a piece afr ound advice that invokes thst ack’s inter-
type method ncr easeCount declared in the aspect. The advice
is executed around any executionSfack’s push method. The
Pushcount aspect also defines a fieddl | St ackCount to record
the number of times &t ack’s push method is invoked on any ob-
ject. It defines a public methagkt Al | St ackCount for querying
the value ofal | St ackCount .

4. FRAMEWORK

We propose the Aspectra framework for generating test inputs to

guments are nonnegative integers. The aspect contains a piece ofest aspectual behavior. Aspectra classifies the executions of four
advice that goes through all arguments of an about to be executedtypes of methods in an AspectJ program: advised methods defined
method to check whether they are nonnegative integers. The advicein base classes, advice, intertype methods, and public non-advice

is executed before an execution of any method. NdveNegat i ve

methods defined in aspect classes (Section 4.1). Developers can

aspect checks the property of nonnegative items: the aspect con-construct base classes and weave aspects into base classes to pro-
tains a piece of advice that iterates through all items to check whetheduce woven classes, which can be fed to existing test-generation
they are nonnegative integers. The advice is executed before a caltools. To enable methods defined in aspects to be exercised during

of ast ack method.

The PushCount aspect counts the number of timestaack’s

test generation, Aspectra develops a wrapper mechanism to prepare
woven classes to be tested by existing test-generation tools (Sec-

push method is invoked on an object since its creation. The aspect tion 4.2). Then Aspectra leverages our test-generation tool for Java

programs [33] to generate test inputs for AspectJ programs (Sec- the weaving process. In addition, weaving the generated test

tion 4.3). Because the initially generated tests may not be sufficient classes with the aspect classes could introduce unwanted ad-
to cover aspectual behavior in aspects, Aspectra defines and mea- vice into the test classes. For example, weaving test classes
sures aspectual branch coverage and interaction coverage to guide with the advice in theNonNegat i veAr g aspect introduces
developers to improve the base-class construction and test genera- unwanted argument checking for methods defined in the test
tion (Section 4.4). classes.

e Public non-advice methods in aspect classes cannot be exer-

4.1 Method Executions of ASpeCt‘J Programs cised by the test inputs generated for woven classes, because

Each execution of a test produces a sequence of method calls woven classes do not have any call sites of these public non-
on the objects of the class under test (either the woven class or advice methods. For example, no generated test inputs for
the aspect class). Each method call in the sequence can eventually the wovenst ack class can exercise the public non-advice
invoke some other methods, producing more method calls. Each get Al | St ackCount method defined ifrushCount .

method call produces a method execution whose behavior depends Although here we do not intend to make a complete list of is-

on the state of the receiver object and method arguments at thesyes that can be encountered when testing full language features
beginning of the execution. We represent each method executionof AspectJ, the preceding issues are major ones that are encoun-
with the actual method that was executed and a representation oftered when we applied existing test-generation tools to a number of

the state (reachable from the receiver object and method argumentS)ypicaj AspectJ programs. To address these major issues, Aspectra
at the beginning of the execution. In a state representation for an automatically synthesizes a wrapper class for each constructed base
object or multiple objects, we use the values of all the fields that c|ass for aspects and then the wrapper class is fed to existing test-

are transitively reachable from the object(s) [33]. _ generation tools. In particular, there are six steps for generating test
We classify the executions of four types of methods during the inputs based on the wrapper mechanism (to simplify explanation,
execution of an AspectJ program: the executionadvfsed meth- we focus on only one base class below):

ods defined in base classemjvice, intertype methods, andpublic

non-advice methods defined in aspect classes. An example of a

public non-advice method iget Al | St ackCount defined in the .

PushCount aspect (Figure 3). To test aspectual behavior, Aspectra 2+ Synthesize a wrapper class for the base class based on the

focuses on testing the behavior exhibited by the last three types of woven class and aspect bytecode.

methods defined in aspect classes. Note that when advised meth- 3. Compile and weave the base class, wrapper class, and aspects

ods are executed, the last three types of methods defined in aspect into class bytecode using ajc.

classes may not be necessarily executed or covered. Our Aspectra 4. Clean up unwanted woven code in the woven wrapper class.

framework helps increase the structural coverage of these methods 5. Generate test inputs for the woven wrapper class using exist-

defined in aspect classes. ing test-generation tools based on class bytecode.

6. Compile the generated test class into class bytecode using a
Java compiler [5].

In the second step, we synthesize a wrapper class for the base
class under test. Figure 4 shows the wrapper class synthesized for
thest ack class (Figure 1) woven with the three aspects (Figure 3).

n this wrapper class, we synthesize a wrapper method for each

ublic method in the base class. This wrapper method invokes the
r[1)ublic method in the base class.

In this wrapper class, we also synthesize a wrapper method for

each public intertype method woven into the base class. This wrap-
per method uses Java reflection [5] to invoke the intertype method;

1. Compile and weave the base class and aspects into class byte-
code using ajc.

4.2 Wrapper Synthesis

Given aspects, developers can construct appropriate base classes
for the aspects and then use ajc to weave aspects into the con
structed base classes to produce woven classes in the form of byte
code. Several automatic test-generation tools generate test input
based on Java bytecode instead of source code. For example, bot
Parasoft Jtest [26] and JCrasher [10] generate random method se
qguences for the class under test based on its bytecode. Based o
Java bytecode, our previous work developed Rostra [32, 33] and
Symstra [34] for generating only method sequences that produce

different inputs for methods under test. To generate test inputs for ., i 1ha compilation in the third step can fail because inter-
AspectJ programs, developers may simply feed woven classes (intype meth,ods are not recognized by ajc before compilation. For
the bytecode form) to these_ existing test-generation tools and US€qyample, in thePushCount aspect, there is an intertype method
these tools to generate test inputs for the woven c_:lasses. i ncreaseCount and we synthesize a wrapper method for it. In a
However, we ne_ed_ to address a Ie_ast three major issues Wh_en WeSimilar way, we also synthesize a wrapper method for a public non-
leverage these existing test-generation tools to generate test input$, 4 ice method in aspect classes. For example, iPtiséCount

for AspectJ programs: aspect, there is a public non-advice metlyed Al | St ackCount

e When a piece of advice is relateddal | join points, such and we create a public wrapper method for it in the wrapper class.
as the advice in thionNegat i ve aspect, the existing test- These wrapper methods ensure that intertype methods or public
generation tools cannot execute the advice during its test- non-advice methods of aspect classes are tested by existing test-
generation process, because the advice is to be woven in Ca”generation tools.
sites, which are not available before test generation. In the third step, we use ajc to weave the wrapper class with the

e Although we can use ajc [1, 16] to weave the generated tests base class and aspects. This step ensures that the advice related
with the aspect classes in order to execute advice related toto cal | join points is executed during test-generation process, be-
cal | join points, the compilation can fail when the interfaces cause the invocations to the advice are woven into the call sites
of woven classes contain intertype methods and the gener- (within the wrapper class) of public methods in the base class.
ated test code invoke these intertype methods, such as the In the fourth step, we need to clean up unwanted woven code in
intertype method in th@ushCount aspect. The test code the woven wrapper class. For example, the wrapper method for the
cannot be compiled by ajc because ajc does not expect thatpush method ofSt ack is also advised by thexecut i on advice
the base class source files refer to intertype methods beforedefined in theNonNegat i veAr g aspect. The advice is unwanted

public class StackWapper { Set testgen(Set nonEqglnitArgs, Set nonEgMet hodAr gs,

Stack s; int maxlterNum {
public StackWapper() { //generate object states after constructor calls
s = new Stack(); Set newTests = new Set();
foreach (args in nonEglnitArgs) {
public bool ean push(int i) { Test newTest = nekeTest(args);
return s.push(i); newTest s. add(newTest) ;
public int pop() { Runtinelnfo runtinelnfo = runAndCol | ect (newTests);
return s.pop(); Set frontiers = runtinelnfo.get NewNonEqQbj St at es();
} / /I conmbi natorial testing of object states and argunent lists
for(int i=1;i<=maxlterNum & frontiers.size()>0;i++) {
public void increaseCount() throws Exception { Set newTestsForCurlter = new Set();
/* s.increaseCount(); */ foreach (objState in frontiers) {
Cass cls = Oass.forNanme("Stack"); foreach (args in nonEqMet hodArgs) {
Met hod meth = cls. get Met hod("increaseCount”, null); Test newTest = nmkeTest (obj State, args);
net h. i nvoke(s, null); newTest sFor Cur | t er. add(newTest) ;
} newTest s. add(newTest) ;
}
public int getAll StackCountPushCount() throws Exception { }
/* PushCount retl = PushCount.aspectOf (); */ runtimelnfo = runAndCol | ect (newTestsForCurlter);
/+ return retl.getAll StackCount(); */ frontiers = runtinmel nfo.get NewNonEqQhj St at es() .
Class cls = dass. forNane("PushCount");
Met hod nmethl = cls. get Method("aspect X", null); return newTests;
oj ect retl = (Object)nethl.invoke(null, null); }

Met hod neth2 = cls. get Method("get Al'l StackCount", null);
Integer ret2 = (Integer)nmeth2.invoke(retl, null);

} return ret2.intValue(); Figure 5: Pseudo-code of Rostra’s test-generation algorithm.

tertype methods, and public non-advice methods) in the interface
Figure 4: The wrapper class forst ack of a wrapper class.
We divide the test-generation problem for wrapper classes into
two sub-problems: receiver-object state setup and method argu-

by the wrapper method; otherwissysh’s arguments are checked —ment generation. Receiver-object state setup puts an object of the
twice during test generation, one time in the advised method and class under test into a particular state before invoking methods on
the other time in the wrapper metHode scan the bytecode ofthe it. Method argument generation produces particular arguments for
woven wrapper class and remove the woven code that are for advicea method to be invoked on the object state.
related toexecut i on join points. Note that we need to keep the We use Parasoft Jtest 4.5 [26] to generate arguments for public
woven code that is for advice relateddal | join points, because ~ methods of wrapper classes. Jtest uses symbolic execution [19]
the woven code there is needed for covering the advice related toto generate method arguments to achieve structural coverage. By
cal | join points. default, it generates method arguments for public methods of the

In the fifth step, we feed the woven wrapper class to existing class under test. Jtest exports its generated test inputs in the form
test-generation tools based on bytecode, such as Parasoft Jtest [26pf JUnit [17] test classes. Then we feed the Jtest-generated test
JCrasher [10], Rostra [32,33], and Symstra [34]. These toolsrexp classes to our Rostra tool [32,33], which uses method arguments to
generated tests to test code, usually as a JUnit test class [17]. Theexplore receiver-object state space. We next illustrate the algorithm
next section discusses how we use a combination of Jtest and Rostraf Rostra’s test generation.
to generate test inputs for wrapper classes. Rostra represents the state of an object with the values of all the

In the final step, we use a Java compiler [5] to compile the ex- fields that are transitively reachable from the object. A lineariza-
ported test class. We do not use ajc to weave the exported test clasgon algorithm [33] is used to linearize these values into a represen-
with the wrapper class, base class, or aspects, because the weavation string. Two states agguivalent iff their state-representation
ing process can introduce unwanted woven code into the test classstrings are the same, and a@nequivalent otherwise. Rostra first
For example, if we use ajc to weave the exported test class with executes Jtest-generated test classes and collects the exercised metho
St ack and theNonNegat i veAr g aspect, some methods defined in ~ arguments to fornmethod argument lists, each of which is charac-
the test class are also advised by #x@cut i on advice defined terized by the method name, method signature, and the argument
in the NonNegat i veAr g aspect. The advice is unwanted by the values for the method. Two argument lists ageivalent iff their

methods defined in the test class. method names, signatures are the same and the argument values are
) equivalent, and areonequivalent otherwise.
4.3 Test-Input Generation Rostra’s test generation is a type of combinatorial testing. It

Among the four types of methods, the wrapper mechanism pre- generates test ipputs to exercise each possible_ combination of non-
sented in the preceding section enables advised methods, intertyp&duivalent receiver-object states and non-equivalent methaed arg
methods, and public non-advice methods to be directly exercised Mentlists. The pseudo-code of the test-generation algorithmiis pre-
by generated test inputs. However, advice is not directly exercised Sented in Figure 5. _ _ _
but indirectly exercised through its advised method(s). We next il- Before running the aI_gonthm, we first coIIectaset_ of non-equivalent
lustrate how we leverage existing test-generation tools to generateconstructor argument lists and method argument lists from the ex-
test inputs to exercise wrapper methods (for advised methods, in__ecutlon Qf Jtest-generated test classes. Then we feed the collected
information as well as a (user-defined) maximum iteration number
\We can avoid unwanted woven code in the woseackW apper to the algorithm. In the algorithm, we first make a set of tests, each
if we rewrite the pointcut foNonNegat i veAr g to narrow downthe of which consists of a constructor call produced by using one of
scope to the methods 6f ack rather than any method. the non-equivalent constructor argument lists. Then we run these

tests and collect the non-equivalent receiver-object states prdduce might not be covered by the test inputs initially generated by test-
by these constructor calls. We put these object states into a fron-generation tools (such as the ones described in preceding section).
tier set. Then we iterate each object state in the frontier set andWe additionally define and measure interaction coverage, whose
each method argument list in the set of non-equivalent method ar- measurement results can guide developers to improve base classes
gument lists. We make a test for each combination: the test invokesor test-generation tools, in order to cover those branches uncovered
a non-equivalent method argument list on an object state. After we by the initially generated tests.

generate tests based on all combinations, we run all these generated

tests and collect runtime information. From the collected runtime 4.4.1 Aspectual Branch Coverage

information, we extract the new non-equivalent object states that

are encountered at runtime. We set them as the new frontier set Atest adequacy criterion provides a stopping rule for testing and

. ; : : ! . 'a measurement of test-suite quality [39]. A test adequacy criterion
With this new frontier set, we start the subsequent iteration until can be used to guide test selection. Because we do not have test

we have reached the maximum iteration number or the frontier set oracles for those generated test inputs of Aspect] proarams and it
has no object state. Then the algorithm returns the collected gener-, 9 P P Prog

. i ; - is not practical for developers to inspect a large number of gener-
ated tests (in the form of JUnit [17] test classes) over all iterations. ated tests, we can use test adequacy criteria to select generated test
For example, Parasoft Jtest 4.5 generates arguments fauthe

i inputs for inspectionProgram-based criteria [39] specify testing
method ofSt ackw ap;?er as -1, 0, and .7' Jiest also generates requirements based on whether all the identified features in a pro-
calls of St ackW apper s constructorpop, i ncr easeCount , and

get Al | St ackCount PushCount methods: these method calls do gram have been fully exercised. Identified features in a program

.~ ___can be statements, branches, paths, or definition-use paths. In our
not have arguments. Then Rostra collects the constructor call into : o ;
) . research, we focus on whether all the identified branches in the as-
the set of non-equivalent constructor argument lists. Rostra also

fan A rogram h n full rcised. We call th

collectspush(-1), push(0),push(7),pop(),increaseCount (), pects ofa . spectJ P c;?t? ﬁve been fully exercised. We call the
andget Al | St ackCount PushCount () into the set of non-equivalent coverage criteriaspectua’ branch coverage.
method argument lists. Before the first iteration, Rostra generates Aspectual branch coverage can be measured at the source code

gumen : ’ ag level or bytecode level. We decide to measure aspectual branch
one test, which simply includes the constructor call. This construc- ;

- o : coverage at the bytecode level because the same piece of source

tor call produces an empty stack. Then in the first iteration, the

. . code in aspects (e.g., source codarinund advice) can be woven
following six tests are generated fBrackWw apper , correspond- P (eg ,)

ing to the combinations of the empty stack and six non-equivalent into multiple places in woven bytecode and covering these several
9 o Pty q places are often necessary for assuring high quality of the woven
method argument lists:

code. In principle, code coverage criteria defined at the bytecode

Test 1: level are stronger than the same ones defined at the source code
StackW apper sl = new StackW apper () ; level. In other words, if two test suites achieve the same coverage
si.push(-1); at the bytecode level, then these two test suites also achieve the

Test 2: same coverage at the source code level. However, if two test suites
StackW apper s2 = new StackW apper () ; achieve the same coverage at the source code level, these two test
s2. push(0); suites may achieve different coverage at the bytecode level.

Test 3 When measuring aspectual branch coverage at the bytecode level,
StackW apper s3 = new StackW apper (); we face several complications in tool implementation. First, we
s3. push(7); need to identify bytecode that is compiled from aspect source code.

Test 4 One possible solution is to develop our tool based on an AspectJ
StackW apper s4 = new StackW apper (); compiler such as ajc [1, 16] or abc [2, 7]. But the tool implemen-
s4.pop(): tation based on an existing AspectJ compiler requires much devel-

Test 5: opment effort; in addition, much maintenance effort is needed to
St ackW apper s5 = new St ackW apper () ; keep the tool implementation up to date when new versions of the
s5.increaseCount (); compiler are released. The alternative solution, which we adopt,

Test 6: is to scan the woven bytecode based on some characteristics of the
St ackW apper s6 = new StackW apper(); woven bytecode produced by an Aspectd compiler. In our tool im-
6. get All St ackCount PushCount () ; plementation, we identify a class (in the bytecode form) produced

by ajc [1, 16] to be araspect class if it has a method whose name
After we execute the tests generated during the first iteration, Starts with‘aj ¢$”. The methods in an aspect class aspect meth-
only 3 object states produced by Tests 1-3 are new. Then in the sec-0dS. Because some new methods of a base class are also created by
ond iteration, we generate 18 tests, which correspond to the combi-8ic for advice such aar ound advice, we identify a method in a
nations of the 3 new object states and and 6 non-equivalent method"ON-aspect class also to be an aspect method if its name ends with
argument lists. Below we show only one test for the combination “$advi ce”. Then the branches within an aspect method are instru-

of the new object state generated by Test 1 anghtisér(- 1) non- mented automatically and their coverage is measured at runtime.
equivalent method argument list: Note that in this research context, a method entry is considered as
one branch; therefore, measuring method coverage is part of mea-
Teg a(7:;<W apper s7 = new StackW apper(); suring branch coverage.
s7. push(-1) ' The second complication is that some methods woven in the
s7. push(-1); bytecode of an aspect class can be difficult or infeasible to be cov-
ered by tests generated for woven classes. For example, ajc cre-
4.4 ASpeCtual Coverage Measurement ates ahasAspect method in the class bytecode énNeagi ve

In this section, we have measured the branch coverage withinand no call site of this method is inserted in the base class. We
aspects. Because advice in aspects sometimes may not be woveprefer to leave this type of methods out of scope when we mea-
into initially constructed base classes, some branches in the aspectsure branch coverage. We have inspected uncovered methods and

. voi d process(Set unCoveredAspect Met hods) {
branches measured by our tool and determine whether these uncov-"; | o, (min unCover edAspect Met hods) {

ered methods or branches are infeasible or uninteresting to cover. if ('isAdvice(m) {
If so, we improve our tool to exclude them from measurement. !V;et ?od n = Igle; Ur{)perl\/bst NonPri vat eCal | er (m;
I n == nu
4.4.2 Interaction Coverage report Unreachabl e()
s return;

One goal of our research is to generate tests to cover all feasible o
branches in aspect methods. Often achieving this goal requires suf- ' ipcf‘ésreigg?)clng) ,
ficient tool supports. The measurement results of aspectual branch return: ’

coverage gives feedback to developers on what parts of aspkt co }

are to be exercised. To give further guidance to developers on how m=n

to improve the aspectual branch coverage, we have defined and ,%,Ethod | = get Advi sedMet hCal | er Wt hUnCovCal | Si te(m);
measured interaction coverage. The next section (Section 4.4.3) if (I ==null) {

illustrates our methodology of using interaction coverage measure- i mproveBased ass() ;

ments in improving test generation. This interaction coverage cri- bl isremr{oveTest Gen();

terion also indicates how well a test suite exercises the interactions 1 '

among advised methods, advice, and intertype methods. }

Our interaction coverage criterion is defined on the granularity }
of methods. Section 4.1 classifies four types of methods: advised
methods, advice, intertype methods, and public non-advice meth-gjq e 6. pseudo-code of using measurement results to improve
ods. We call advice, intertype methods, and public non-advice base-class construction and test generation
methods asaspect methods. We particularly focus on the inter-
actions between advised methods and aspect methods, and the in-
teractions between aspect methods and aspect methods. We Cha?ﬁethod tom), developers may improve base classes to make
acterize interactions with method invocations. In particular, an in- '

teraction from methodh: to methodms is characterized by a call be woven into base classes. If there exists an uncovered call site
site inm+’s body and thlis call site invzoke& We cate or)ilze in- of it in base classes (that is, there is an uncovered interaction from

S y - R 9 an advised method ta), developers may improve test generation
teractions into the following three types:

such as adding relevant arguments to augment Jtest-generated ar-

e from advised methods to aspect methods (in shatieised- guments or increasing the user-defined maximum iteration number
aspect interaction). One example advised-aspect interaction for Rostra.
is the call site irst ack’s i nsert method body that invokes Assume that an uncovered aspect methoi not advice. Nor-
thear ound advice defined iPushCount . mally m is not an intertype method or public non-advice method,
e from aspect methods to aspect methods (in shoaspect- because our wrapper mechanism assures that test-generation tools
aspect interaction). One example aspect-aspect interaction generate test inputs to cover them. Theris likely to be a private
is the call site inrPushCount 's ar ound advice body that in- non-advice method. We statically construct call chains:owith
vokesPushCount 's i ncr easeCount method. call site information that we collect during interaction-coverage in-
e from aspect methods to advised methods (in shoaspect- strumentation. If developers find out noneafs (either direct
advised interaction). One example aspect-advised interac- Or indirect) callers is non-private (that is, none of them is advice,
tion is the call site iMNonNegat i ve's bef or e advice body intertype method, or public non-advice method),is inherently
that invokesSt ack’si t er at or method. unreachable. Ifn’s upper most non-private calleris already cov-

ered, developers may improve test generation to generate test inputs
Note that we do not include interactions from advised methods to coverm through the call chain from to m. If n is not covered,
to advised methods because we focus on testing aspectual behawhen we go through the preceding procedurerfowhenm is ad-
ior and aspectual composition behavior, rather than the interactionsvice.
between advised methods in general. After going through the uncovered aspect methods, developers
An interaction is covered if its corresponding call site is covered. can focus on those uncovered branches within aspect methods. In
We measure interaction coverage as the number of covered inter-order to cover these branches, developers may improve either base-
actions divided by all the identified interactions; in our tool's de- class construction or test generation.
fault configuration, we include only the advised-aspect and aspect-
aspect interactions in the measurement because the coverage infor-
mation of these two types of interactions can help us to improve 5. IMPLEMENTATION

aspectual branch coverage, as is presented in the next section. Our implementation of Aspectra uses bytecode rewriting tech-
S . niques based on the Byte Code Engineering Library (BCEL) [11]
4.4.3 Guidelines of Using Measurement Results (instead of code instrumentation by using aspect-oriented paradigm).

To increase aspectual branch coverage, developers can first fo\We have automated the wrapper synthesis by adapting a package
cus on the coverage of aspect methods, because in order to covein the Apache Avalon Framework [3] (also based on BCEL); this
branches within an aspect method, the aspect method needs to bpackage generates wrapper classes for Java containers. Given the
covered first. We next illustrate how developers can use measure-bytecode of a woven class as well as aspect classes, our tool auto-
ment results of interaction coverage to improve base-class con-matically synthesizes a wrapper class in the form of bytecode.
struction and test generation. We leverage Jtest [26] and our previously developed Rostra tool [32,

Figure 6 shows the pseudo-code of using measurement results t33] to generate test inputs. Rostra uses Java reflection mecha-
improve base-class construction and test generation. Assume thahisms [5] to generate and execute new tests online. In the end of
an uncovered aspect methodis advice. If there exists no call site test generation, Rostra exports the test inputs generated after each
of itin base classes (that is, there is no interaction from any advisediteration to a JUnit test class code [17]. More implementation de-

tails of Rostra can be found elsewhere [32, 33]. St at eDesi gnPat t er n benchmark had been implemented using
We have also automated the measurement of aspectual branciispectd by Hannemann and Kiczales [13]. @ benchmark

coverage and interaction coverage. Our tool reports the percentagevas implemented using Aspect) by Hassetiral. [15] to vali-

numbers for branch coverage or interaction coverage. In addition, date their proposed dynamic coupling metric (DCM) [14]. The

our tool reports the details of covered branches or call sites as well Pr odLi ne benchmark was implemented using intertype declara-

as uncovered branches or call sites. The details of a branch includetions by Lopez-Herrejon and Batory for product lines of graph al-

the corresponding conditional, its line number in the source code, gorithms [24]. TheBean benchmark was used as an example by

and the true or false branch of the conditional. The details of a call the AspectJ primer oaspectj . org. It enhances a class with the

site include its line number in the source code and the correspond-functionality of Java beans. Th@D benchmark was implemented

ing caller and callee method names in the woven bytecode. To by Lieberherret al. to check the Law of Demeter [21]. It includes

facilitate human inspection of these names, our future work plans one checker for object form and the other one for class form. We

to keep the mapping between a method name in the woven byte-focus on testing the checker for object form. Becausebtmand

code and the corresponding method name in the source code, and.oD benchmarks as well as the first five benchmarks do not come

present to developers also the method name in the source code. with base classes, we use thieack class (shown in Figure 1) or
During class loading time, our tool dynamically determines whethets adapted version as their base classes.

aclass is an aspect class by inspecting the names of its methods, be-

cause the ajc compiler [1, 16] gives special names for advice. We 6.2 Procedures

on its method name. We scan bytecode to identify branches andiest generation, we first generate test inputs without using wrapper

then insert probes at branching points for collecting branch cover- ¢jasses: we use the ajc compiler [1, 16] to weave aspects with base

age information. We also scan the bytecode to identify call sites |asses and then feed the resulting woven classes to Jtest 4.5 [26] to

and classify them into different types of interactions, and then also generate method arguments. Then Jtest-generated test classes are

insert probes for collecting interaction coverage information. fed to our Rostra test-generation tool. We set Rostra’s maximum
iteration number as three. We measure the aspectual branch cover-
6. EXPERIENCE age and interaction coverage achieved by the generated tests. The

measurement results are presented in Columns 5 and 6 of Table 1.
Next we repeat the preceding procedure except that we feed syn-

thesized wrapper classes to Jtest and Rostra for test generation.

Columns 7 and 8 list the measurement results of aspectual branch

This section presents our experience in applying Aspectra on
12 Aspectd benchmarks collected from a variety of sources (Sec-
tion 6.1). We have applied Aspectra to generate test inputs for the
collected be“ﬁhma@ (Section 6'2]2' (t)urt.results su?tgest th?t Ourcoverage and interaction coverage, respectively. We fill “-” in those
wrapper mechanism IS necessary for testing several types Of pro-g iias"that achieve the same measurement results as those pro-

grams and our coverage measurement re_sults are helpful for_ US O, ced without using wrapper classes (shown in Columns 5 and 6).
improve aspectual branch coverage (Section 6.3). We also discuss Finally, given the measurement results, according to the guide-

some issues of Aspectra (Section 6.4). lines presented in Section 4.4.3, we improve either base class con-

6.1 Benchmarks struction or test generation trying to get better coverage. Columns
' . . 9 and 10 list the measurement results of aspectual branch cover-
Our benchmarks include most of the programs used by REtard 5ge and interaction coverage, respectively. Similarly we fill “~” in

al. [28] in evaluating their classification system for aspect-oriented those entries that achieve the same measurement results as those
programs. The benchmarks also include most of the programs produced by initially generated test inputs (shown in Columns 7
used by Dufourt al. [12] in measuring performance behavior of = 54 g),

AspectJ programs. Our benchmarks also include one of the aspect-

oriented design pattern implementatidhyg Hannemann and Kicza- 6.3 Results

les [13]. NonNeaativeArah tionioi int and usi i
Table 1 lists the benchmarks that we used. The first and sec- oniNegativeArghas arexecut I on Join point and using wrap

ond columns show the benchmark names and their advice/pointcutpertcﬁlstsef _doe? not rc])_ffer ;urYtQ(ir help mt telstbgene;atlon. The geon-

types, respectively. We measure the number of total branches inerale es élnphu S ﬁc fleI\I/e . y I?Spec. ual branc ((:jgverag;lle._ ur

aspect code and the number of total call sites for the interaction tpo repir’te_ that the fo %ngg ﬁa _S|tek|s nc;:m(e:?vere da.l ca site

coverage defined in Section 4.4.2, which are shown in the third (in St ac §|terat%:/met °)tdathlnvo es i d Oré"? V'fje ;]n

and fourth columns, respectively. The aspect examples in Fig- NonNegat i veAr g. We Inspected thét ack code and found that

ure 3 are listed as the first three benchmarks, bsimguegat i ve i terator is notdeclared asubl i c and Jtest or Rostra generates
NonNegat i veAr g, andPushCount . Thel nst ru’nem at igon ben’ch- test inputs only for public methods. We then declaredr at or as

mark is an aspect that counts the timepuwsh calls. Thenul I Check a public method and regenerated test inputs. The generated test in-

benchmark is an Aspect] program used by Asberry to detect whethePUtS could achieve 100% interaction coverage. But our tool still re-
method calls return null [6]. Following Rinaret al. [28], we re- ported that the false branch(adr gs[i] instanceof Integer)
fer to these first five benchmarks basic aspects. The Tel ecom in NonNegat i veAr g (shown in Figure 3) was not covered. We in-

benchmark is an example available with the AspectJ distribution [1]. Egzcéi?ersftoicek aioi?nz:? z;(r)llcjint(:nitshgi Vn?ngiffse?‘; r;itﬁg(ijnttgater
It simulates a community of telephone users. Basi nessRul el npl g 9 9

benchmark comprises two aspects of business rules for a bankingtype' We added a public methpdsh(doubl e d) to thest ack

; ! 0
system, which were used as examples in Section 12.5 of [20]. Theclass. Then generated inputs can achieve 100% aspectual branch

coverage.
2The AspectJ programs used by Dufetial. [12] can be obtained NonNegative has acal | join point; therefore, without using
fromhttp://wwmv. sabl e. ncgi |l 1. ca/ benchmar ks/ . wrapper classes, no aspectual branch coverage was achieved by

3Hannemann and Kiczales's design pattern implementations can begenerated test inputs (there were no interactions from the methods
obtained fromht t p: / / www. cs. ubc. ca/ ~j an/ ACDPs/ . of the base class to the aspect methods). Then we fed the gener-

ated wrapper class to test-generation tools and the generated testlass, branches within advice witlal | join points cannot be cov-
inputs achieved 66% aspectual branch coverage and 100% inter-ered. In addition, becaudé ni ng andBi | | i ng define three pub-
action coverage. Our tool reported that the true branch of the fol- lic non-advice methods, before using wrapper classes, these three
lowing aspect code imonNegat i ve (shown in Figure 3) is not methods were not covered. After using wrapper classes, generated
covered: test inputs achieved 100% aspectual branch coverage and 100% in-
if (i <0) throw new Runti meException("negative"); teraction coverage.
We inspected the generated test code and found that test code BusinessRulelmplhas a base class &hvi ngsAccount and
contained method invocations pfish(- 1) , which push negative two aspectsM ni nunBal anceRul eAspect and
elements into the stack. Then we further inspected the method bodyOver dr af t Pr ot ect i onRul eAspect . M ni nunBal anceRul eAspect
of push and found that the uncovered branch is due to the first line defines a piece dfef or e advice for method execution and
of push: Overdraft ProtectionRul eAspect defines another piece béf or e
if (i <0) return false; advice for method execution. Our tool reported that generated test
After we commented out this line, which prevents negative ele- inputs achieved only 50% aspectual branch coverage. We inspected
ments from being finally pushed into the stack, the generated testthose uncovered branches and found that some arguments gener-
inputs achieved 100% aspectual branch coverage. ated by Jtest are not sufficient. For exampeyi munBal anceRul eAspect
PushCounthas a public non-advice method required the minimum balance to be 25 but the Jtest-generated ar-
get Al | St ackCount ; therefore, without using wrapper classes, no guments foiSavi ngsAccount ’s cr edi t method are only -1, 0, or
coverage ofiet Al | St ackCount can be achieved by generated test 7; after they are invoked even for three iteratic®es;i ngsAccount
inputs. After using the wrapper class, we achieve 100% aspectualstill could not get sufficient funds for withdrawal. We improved
branch coverage. Jtest-generated method arguments by adding some new arguments
Instrumentation has twaocal | join points and no aspectual branch to improve the aspectual branch coverage to 80% but we could not
coverage was achieved by generated test inputs for the woven clas®asily improve test generation to exercise two uncovered branches
(without using a wrapper class). After we fed the generated wrap- because the complexity of necessary conditions for covering these
per class to test-generation tools, the generated test inputs achievetivo branches is beyond our capability. A more sophisticated test-
100% aspectual branch coverage and 100% interaction coverage. generation tool is needed for generating tests to cover them.
NullCheck hasar ound advice for those methods whose returns StateDesignPatternhas aQueueSt at eAspect aspect that de-
are not void and not of primitive types: clares three pieces aff t er advice for method calls. Because

Qbj ect around(): execution(Cbject+ *.x(..)) { these advised call sites already exist in the code base, using wrap-
iC?J ?I(:T?{e{ sglt val ;uﬂ;’c‘ze"()' per classes does not offer further help in test generation. Our tool
System err. println(reported that generated test inputs achieved 88% aspectual branch
"Detected null return value after calling " + coverage, with one branch uncovered. We inspected the uncovered
,‘,h: ﬁJ?: l”:",', nt. get Signat ure().toShortstring() + branch, which indicated that the base classue has not reached
t hi sJoi nPoi nt . get Sour ceLocat i on() . get Fi | eNane() + th_e full state yet. We therefore increased Rostra’s ma?dmum iter-
" at line " + ation number and when the number was four, we achieved 100%
t hi sJoi nPoi nt . get Sour ceLocati on().getLine()); aspectual branch coverage.
E’et urn | Ret Val : DCM has anvet ri cs aspect that uses ound andaf t er ad-
1 vice for method executions. Our tool reported 34% aspectual branch

coverage. We found that seven aspect methods are uncovered, two
class in Figure 1 by changing theat type tolnteger. Then ﬂg}'ﬁfﬁfﬁ#n(&?&eﬁgrﬁggfs vagtfg ?JC:]Sd tii;m:g\?%nr? rt}:w:tsheogdwce
both thepop anditerator methods ofSt ack are advised by . jon p ’ . yac

in the base class but our base class did not haws a method. We

Nul | Check. Using wrapper classes does not offer further help . .
in test generation. The generated test inputs achieved 25% aspeCgonstructed ami n method for the base class and then six of these

tual branch coverage. Our tool reported that a call sitepck’s seven originally uncovered methods were covered. The aspectual

) 0 o . .
ot o method)of ey cund scie b | reckisnotcov. Y90 CVEIR08 e teased Tom 346 (0523, B pepectng
ered. Similar to what we did fokonNegat i veAr g, we declared 9 ' Y

i terator as a public method and then the generated test inputs the value ohkt ri cs’s static fielddunpi nt er val was never 1 but

could achieve 100% interaction coverage and but 50% aspectualIts value is preSEt as -1 and could not be updated t_hrough code in-
terface (that is, these branches cannot be covered inherently unless
branch coverage. We found that the false brancliidtet val

= nl1) I ot coered, becauserem vales of iy or = O 09 005 e o2, For cberneovren rancies, e
I terator can never be null. We modifie&t ack to be able to sophisticated tgst- peneration t%ol is needed for eneratin tests to
store any object type instead of justt eger and therpop can re- P 9 9 9

turn an element that is null. Given the new base class, Jtest andCOVer them.

Rostra generated test inputs that achieved 75% aspectual branch ProdLme has base classes that are a. set of emply classes. Our
testing focuses on one of these class&s:t ex. The woven class

verage. One remaining uncover ranch, the fal ranch of ; : '
coverage. One remaining uncovered branch, the false branch o contains 10 intertype fields that are declared by seven aspects. It

To provide a base class fowl | Check, we adapt thest ack

(I Retval == null) inthe inlined around advice fon er at or, . ’
is infeasible to cover becauseer at or’s return value can never also cor_1ta|ns four m.ethOdS that are declared by Wo aspeess:
be null. andUndi r ect ed, which are developed for depth-first search and

undirected graph, respectively. Note that our coverage measure-
ment tool measures all aspect classes loaded at class loading time.
Many other loaded aspect classes tbag andundi r ect ed were
loaded and thus measured. Our tool reported low aspectual branch
coverage (28%) and interaction coverage (13%). We inspected
these uncovered branches or call sites and found that many of them

Telecomhas one key base classnnecti on. There are two
aspects:Ti ni ng andBi | | i ng. TheTi mi ng aspect records the
phone connection time and tBel | i ng aspect uses the connection
time to bill the dialer. Eithefi ni ng or Bi | | i ng aspect declares
two pieces ofaf t er advice withcal | join points. Both aspects
also declare intertype fields and methods. Without using a wrapper

AspectJ program advice type: branches| callsites| before wrapping after wrapping after guidance
pointcut type Yobranch] %inter | %branch] %inter | %branch] %inter
NonNegativeArg | before:exec 4 4 75% 50% — — 100% | 100%
NonNegative before:call 3 3 0% 0% 66% | 100% 100% —
PushCount around:exec;inte 4 3 75% | 100% 100% — — —
Instrumentation after:call 2 1 0% 0% 100% | 100% - —
NullCheck around:exec 4 2 25% 50% — — 75% | 100%
Telecom after:call 14 10 85% 70% 100% | 100% - —
BusinessRulelmpl| before:exec 10 7 50% | 100% - — 80% —
StateDesignPatterp after:call 9 2 88% | 100% - — 100% —
DCM around/after:exeq 50 16 34% 38% - — 52% 87%
ProdLine inter 141 74 28% 13% - — - —
Bean around:exec;inte 10 10 100% | 100% — — — —
LoD before:call/exec 22 70 45% 24% 59% 67% 68% 80%

Table 1: Results of applying Aspectra to generate test inputs for L subjects

are infeasible to be covered by those test inputs generatedifoex. ure out how to improve test coverage, especially when we were not
To achieve high coverage of all aspects, we would need to gener-familiar with the code base under test. This observation suggests
ate test inputs for all these base classes. When we focused on the¢he need of developing tools to automatically construct appropriate
coverage ofDFS andUndi r ect ed, our generated test inputs got base classes given aspects. We plan to pursue this research direc-
reasonably sufficient coverage. tion in our future work.

Beanhas a base clag®i nt . TheBoundPoi nt aspect declares The runtime overhead of applying Aspectra is low. Because
five intertype methods. Then the aspect usesund advice for our coverage measurement is focused on aspects or interactions
method execution. Without using wrapper classes, Jtest and Rostrébetween aspects and base classes, the runtime overhead of mea-
generated test inputs that achieved 100% aspectual branch coveragsurement is negligible. Although running Rostra with a large num-
and 100% interaction coverage. ber of iterations could be expensive, all 12 benchmarks except for

LoD has aCheck aspect that declares two piecesabt er ad- St at eDesi gnPat t er n require no more than three iterations to
vice for checking the method calls. There are two other aspects achieve optimal aspectual branch coverage with Jtest-generated ar-
Percfl owandPertarget for collecting calling context through ~ guments.
the use ofper cf | ow, pertarget, andcf | ow. Our tool reported Sometimes Jtest-generated arguments are not sufficient (such as
that generated test inputs achieved 45% aspectual branch coveragehose forBusi nessRul el npl). We expect that using a more pow-
After we used a wrapper class, the aspectual branch coverage wagrful tool with symbolic execution [31, 34] could generate better
increased to 59%; the increase is due to the increase of call depthsaarguments to cover some branches and thus reduce manual efforts
affecting LoD’s behavior, rather than our original intention of the in producing relevant method arguments based on coverage mea-
wrapper mechanism. We further inspected uncovered advice andsurement results.
found a piece of uncovered advice advisesan method and an- Aspectra focuses on testing aspectual behavior. Although As-
other piece advises Java library method calls. We constructed apectra also measures interaction coverage and tries to cover the in-
mai n method in the base class and put some call sites of Java li- teractions between aspects and base classes, testing aspectual com-
brary methods in theai n method. Then the generated test inputs position behavior may require developments of new techniques.
achieved 68% aspectual branch coverage. We could not easily im- Aspectra tests aspectual behavior of an aspect by weaving the
prove base-class construction or test generation for the remainingaspect with one or several constructed base classes (including only
uncovered branches. Besides a more sophisticated test-generatiogeveral representative base classes if the total number of basesclass
tool, a sophisticated base-class construction tool is needed for help-s too large). Then it leverages the existing test-generation tools to
ing further improve the aspectual branch coverage. generate test inputs on a per-class basis. Indeed, in the context of

AOP, an aspect typically impacts more than one class and the as-
6.4 Discussion pect is usually executed in a broader context than what Aspectra

Although we applied Aspectra on only 12 AspectJ benchmarks, has tested. HOW‘?Verx as was argued by Lopes and _Ngo_ [23.]' testing
we expect that Aspectra can be applied to a wide range of AspectJ@SPectual behavior individually can be cost-effective in diagnos-
programs. In our experience, the wrapper mechanism is useful ining fgllures and detecting faults in .aspectu.al.|mplementat|ons. In
test generation when advicedal | advice and there are no call addition, they found that the majority of existing aspects are gen-
sites of its advised methods in the code base. In addition, the wrap-€a! Purpose such as logging, tracing, persistence, profiling, and de
per mechanism is useful in test generation for public non-advice sign patterns. Testing these aspe_cts woven W'.th some re_presentatlve
methods of aspect classes. From our experience with testing thesé)ase classeg can often _be effec_tlve In _detgctlng faults in aspeciual
12 benchmarks, constructing appropriate base classes turned ou{TPlémentations before integration testing is done.

to be more important than we originally thought, especially for
" Jney potany espeeey RELATED WORK

complex aspects. As we discussed in Section 6.1, we simply used7-
St ack for those aspects that were not equipped with base classes. Souteret al. [29] developed a test selection technique based on

It turned out thast ack may not be sufficient for some aspects such concerns. A concern is the code associated with a particular main-
asDCMandLoD. The measurement results of both interaction cov- tenance task. An aspect in AspectJ programs can be seen as a
erage and aspectual branch coverage are helpful for guiding us inconcern. To reduce the space and time cost of running tests on
improving base classes as well as test generation. But at the saménstrumented code, they proposed to instrument only the concerns
time, we also noticed that it is sometimes not trivial to manually fig- for collecting runtime information. They also proposed to select or

prioritize tests for the selected concerns. In particular, they select velopers can use the classification system and analysis to structure
a test if the test covers a concern that has not been been exercisetheir understanding of the aspect-oriented programs. Aspectra de-
by previously selected tests. Zhetial. [38] also used the same fines and measures the coverage of interactions between advised
technique for selecting tests for an aspect. These two test selectiormethods and aspect methods in the granularity of methods.
approaches assume that there already exist a set of tests for an As-

pectJ program (or just for the base classes in the Aspectd program)g CONCLUSION

whereas Aspectra focuses on automatically generating test inputs

for an AspectJ program and using coverage measurement results to V;/.e prtop?§ed ?s?ec'tAra, a rlgvel framewo1r_k ftor atlutomattlcglly ge:-
guide developers to improve test coverage. Our aspectual branchtratng test Inputs for ASpectJ programs. 10 lest aspects in an As-
ectJ program, developers can construct base classes, which can

coverage or interaction coverage can also be used to select tests: i 6 woven with aspects 1o broduce woven classes. Aspectra svnthe
a test input covers at least one new aspectual branch or interaction,sizes 2 Wrapper glass for%ach woven class Thé wrg or myecha
the test input is selected for inspection when there are no test or->". pp . L ’ rapper.

ism allows test-generation tools to indirectly exercise advice re-

acles for generated test inputs. Our aspectual branch coverage o o i)) .

interaction coverage defines coverage in the granularity of branches(;’ne.cI tocal | join po_mts and public nor_1-adV|ce method; In aspects
or call sites, whereas Soutetral. or Zhouet al. define coverage in uring test ge.neratlon. At the same time, the mgchamsm prevents
a coarser granularity of whole aspects. the methods in generated test classes from being advised by un-

Xu et al. [35] presented a specification-based testing approach wanted advice. Given wrapper classes, Aspectra leverages existing

for aspect-oriented programs. The approach creates aspectaal sta test_—ge_neration tools for generating _test inputs. .BUt sometim_es be-
models by extending the existing FREE (Flattened Regular Expres-_h"’.“_/'or in aspects may not be sufficiently exercised by test inputs
sion) state model, which was originally proposed for testing object- initially generated by these tools for base classes constructed by

oriented programs. Based on the model, they developed two tech_?evelozers. To assess tthe lqbualltyhof generated :je_sttlnputt_s, we de-
niques for testing aspect-oriented programs. The first technique iNE and measure aspectual branch coverage and interaction cover-

transforms an aspectual state model to a transition tree and generf’1ge based on four types of methods in AspectJ programs: advised

ates tests based on the tree. The second technique constructs aHHdethsgs’ adv_lge, m"[(tjar}_ype rfnetglodsl, and p,[Ub“C non-advice m?th-
searches an aspect flow graph for achieving statement coverdge an®0s: Ve provide guidetines for developers to Use measurement re-
branch coverage. Their work focuses on testing aspect-orientedsuns to improve base-class construction or test generation. Our ex-

programs based on abstract state models, whereas Aspectresfocusé’e”erlcetsthowS tr;z;t our \%rapper mecha(rjnsm IS hecessary ftor sorlTe
mainly on automatically generating test inputs based on implemen- important types of ASpect. programs and our measurement resuits
tations. provide useful guidance for improving test coverage.

Alexanderet al. [4] developed a fault model for aspect-oriented N In future wgrlt(, vx\e pIartho acciiapt our_]l‘r%mbewotrklf |mplemﬁntat|on h
programming, including six types of faults that may occur in aspect- 0 accommodate ASpect) code compiied Dy other COmPpIiers suc

oriented systems. Their fault model provides useful guidance in de- as abp [2,7]. We plan to p.rowde tool supports for automatic con-
veloping testing coverage tools for aspect-oriented programs, Mere(?ructlon of base classes given aspectg. We also plan tg extend our
Aspectra proposes an automated approach for generating tests t famework to addr_e_ss testmg of _other _|mportant bghawor_such as
achieve structural coverage. Recently, Nathan and Alexander [25] aspectual composition behavior, |nclud|ng not on_ly Interactions b?'
proposed another fault model that results from maintenance IorOb_tween base classes and aspects but also interactions among multiple
lems for aspect-oriented programs. They also reported their evalu-aSpECtS'

ation of AspectJ’s ability to distribute class files containing woven

concerns and to reweave them later. Although their fault model Acknowledgments

may lead to a better understanding of maintenance issues inheren{ye thank Darko Marinov for discussion on this work and com-

in aspect-oriented software, it still does not provide a testing solu- ments on a previous draft of this paper. We thank Parasoft Co. for
tion for aspect-oriented programs. providing the Jtest tool to us.
Zhao [36, 37] proposed a data-flow-based unit testing approach

for aspect-oriented programs. For each aspect or class, the ap+

proach performs three levels of testing: intra-module, inter-module, 9. REFERENCES

and intra-aspect or intra-class testing. His work focused on unit [1] AspectJ compiler 1.2, May 2004.

testing of aspect-oriented programs based on data flow, whereas http://eclipse. org/ aspectj/.

Aspectra focuses on automatically generating test inputs for As- [2] abc: The AspectBench Compiler for AspectJ, version 1.0.2,

pectJ programs. Feburary 2005ht t p: / / aspect bench. org/ .

Rajan and Sullivan [27] presented an approach to expressing and [3] Apache Avalon Framework, August 2005.
automating test adequacy criteria relative to crosscutting concerns http://excalibur. apache.org/.
using aspect-oriented languages. Their approach represents tester4] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards
intentions within source code in an explicit and abstract way. They the systematic testing of aspect-oriented programs. Technical
also provided a white-box join point model and a generalized action Report CS-4-105, Department of Computer Science,
framework to support white-box testing tools. Their work focuses Colorado State University, Fort Collins, Colorado, 2004.

on using aspect-oriented languages to support general and auto- (5] k. Arnold, J. Gosling, and D. Holmedhe Java

mated test adequacy analysis, whereas Aspectra focuses on gener- ~ programming Language. Addison-Wesley Longman
ating test inputs for AspectJ programs and using structural coverage Publishing Co., Inc., 2000.

measurement results to guide how to improve test coverage. 6]
Rinard et al. [28] proposed a classification system for aspect-

oriented programs and developed a static analysis to support au- manuscript, 2002.

tomatic classification. Their system characterizes the interactions [7] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins

between advice and advised methods based on field accesses. De- J: Lho&k, O. Lhéak, 0. de Moor,,D.. Sereni, T '

R. D. Asberry. Aspect oriented programming (AOP): Using
AspectJ to implement and enforce coding standards. Draft

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

(20]
[21]

[22]

(23]

(24]

(25]

(26]

G. Sittampalam, and J. Tibble. abc: an extensible AspectJ
compiler. InProc. 4th International Conference on
Aspect-Oriented Software Development, pages 87-98, 2005.
B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 1990.

L. Bergmans and M. Aksits. Composing crosscutting
concerns using composition filteilGommun. ACM,
44(10):51-57, 2001.

C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Ja\@ftware: Practice and

Experience, 34:1025-1050, 2004.

M. Dahm and J. van Zyl. Byte Code Engineering Library,
April 2003.htt p: // j akart a. apache. or g/ bcel /.

B. Dufour, C. Goard, L. Hendren, O. de Moor,

G. Sittampalam, and C. Verbrugge. Measuring the dynamic
behaviour of AspectJ programs. Rnoc. 19th annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 150169,
2004.

J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ Aroc. 17th ACM

S GPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 161-173,
2002.

[27]

(28]

[29]

[30]

[31]

[32]

Y. Hassoun, R. Johnson, and S. Counsell. A dynamic runtime [33]

coupling metric for meta-level architectures.Rroc. 8th
European Conference on Software Maintenance and
Reengineering, pages 339-346, 2004.

Y. Hassoun, R. Johnson, and S. Counsell. Emprical
validation of a dynamic coupling metric. Technical Report
BBKCS-04-03, Birbeck College London, March 2004.

E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proc. 3rd International Conference on Aspect-Oriented
Software Development, pages 26—35, 2004.

JUnit, 2003ht t p: / / www. j uni t. org.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. IrProc. 11th European Conference on
Object-Oriented Programming, pages 220-242. 1997.

J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385—-394, 1976.

R. LaddadAspectJ in Action. Manning, 2003.

K. Lieberherr, D. H. Lorenz, and P. Wu. A case for statically
executable advice: checking the law of demeter with aspect;.
In Proc. 2nd International Conference on Aspect-Oriented
Software Devel opment, pages 40-49, 2003.

K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methodSommun. ACM,
44(10):39-41, 2001.

C. V. Lopes and T. Ngo. Unit testing aspectual behavior. In
Proc. AOSD 05 Workshop on Testing Aspect-Oriented
Programs, March 2005.

R. E. Lopez-Herrejon and D. Batory. Using AspectJ to
implement product-lines: A case study. Technical report,
University of Texis at Austin, September 2002.

N. McEachen and R. Alexander. Distributing classes with
woven concerns - a look into potential fault scenarios. In
Proc. 4th International Conference on Aspect-Oriented
Software Development, pages 192—200, March 2005.
Parasoft. Jtest manuals version 4.5. Online manual, April
2003.ht t p: / / www. par asoft. coni.

(34]

[35]

[36]

[37]

[39]

H. Rajan and K. Sullivan. Aspect language features for
concern coverage profiling. PProc. 4th International
Conference on Aspect-Oriented Software Devel opment,
pages 181-191, March 2005.

M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programBrado.
12th International Symposium on the Foundations of

Software Engineering, pages 147-158, 2004.

A. L. Souter, D. Shepherd, and L. L. Pollock. Testing with
respect to concerns. Proc. International Conference on
Software Maintenance, page 54, 2003.

P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of
concerns. IrProc. 21st International Conference on Software
Engineering, pages 107-119, 1999.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder.Pnoc. 2004 ACM

S GSOFT International Symposium on Software Testing and
Analysis, pages 97-107, 2004.

T. Xie, D. Marinov, and D. Notkin. Improving generation of
object-oriented test suites by avoiding redundant tests.
Technical Report UW-CSE-04-01-05, University of
Washington Department of Computer Science and
Engineering, Seattle, WA, Jan. 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit test®roc. 19th
|EEE International Conference on Automated Software
Engineering, pages 196—205, Sept. 2004.

T. Xie, D. Marinov, W. Schulte, and D. Noktin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. IfProc. the International Conference

on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 2005), April 2005.

D. Xu, W. Xu, and K. Nygard. A state-based approach to
testing aspect-oriented programsPFiroc. 17th International
Conference on Software Engineering and Knowledge
Engineering, July 2005.

J. Zhao. Tool support for unit testing of aspect-oriented
software. InProc. OOPSLA' 2002 Workshop on Tools for
Aspect-Oriented Software Development, Nov. 2002.

J. Zhao. Data-flow-based unit testing of aspect-oriented
programs. IrProc. 27th |EEE International Computer
Software and Applications Conference, pages 188-197, Nov.
2003.

Y. Zhou, D. Richardson, and H. Ziv. Towards a practical
approach to test aspect-oriented softwardPrioc. 2004
Workshop on Testing Component-based Systems (TECOS
2004), Net.ObjectiveDays, Sept. 2004.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequa@®CM Comput. Surv., 29(4):366—427,
1997.

