
A Framework and Tool Supports for Generating Test Inputs
of AspectJ Programs

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu

Jianjun Zhao
Department of Computer Science & Engineering

Shanghai Jiao Tong University
Shanghai 200240, China

zhao-jj@cs.sjtu.edu.cn

ABSTRACT
Aspect-oriented software development is gaining popularity with
the wider adoption of languages such as AspectJ. To reduce the
manual effort of testing aspects in AspectJ programs, we have de-
veloped a framework, called Aspectra, that automates generation of
test inputs for testing aspectual behavior, i.e., the behavior imple-
mented in pieces of advice or intertype methods defined in aspects.
To test aspects, developers construct base classes into which the
aspects are woven to form woven classes. Our approach leverages
existing test-generation tools to generate test inputs for the woven
classes; these test inputs indirectly exercise the aspects. To enable
aspects to be exercised during test generation, Aspectra automati-
cally synthesizes appropriate wrapper classes for woven classes. To
assess the quality of the generated tests, Aspectra defines and mea-
sures aspectual branch coverage (branch coverage within aspects).
To provide guidance for developers to improve test coverage, As-
pectra also defines interaction coverage. We have developed tools
for automating Aspectra’s wrapper synthesis and coverage mea-
surement, and applied them on testing 12 subjects taken from a
variety of sources. Our experience has shown that Aspectra effec-
tively provides tool supports in enabling existing test-generation
tools to generate test inputs for improving aspectual branch cover-
age.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools (e.g., data generators, coverage testing)

General Terms
Experimentation, Measurement, Reliability, Verification

Keywords
Aspect-oriented software development, aspect-oriented programs,
AspectJ, software testing, test generation, coverage criteria, cover-
age measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 06, March 20–24, 2006, Bonn, Germany
Copyright 2006 ACM 1-59593-300-X/06/03 ...$5.00.

1. INTRODUCTION
Aspect-oriented software development (AOSD) is a new tech-

nique that improves separation of concerns in software develop-
ment [9, 18, 22, 30]. AOSD makes it possible to modularize cross-
cutting concerns of a software system, thus making it easier to
maintain and evolve. Research in AOSD has focused mostly on
the activities of software system design, problem analysis, and lan-
guage implementation. Although it is well known that testing is a
labor-intensive process that can account for half the total cost of
software development [8], research on testing of AOSD, especially
automated testing, has received little attention.

Although several approaches have been proposed recently for
testing aspect-oriented programs [4, 35, 37, 38], none of these ap-
proaches is able to provide a framework for automated generation
of test inputs for AspectJ programs. AOSD can lead to better-
quality software, but it does not provide the correctness by itself.
An aspect-oriented design can lead to a better system architec-
ture, and an aspect-oriented programming language enforces a dis-
ciplined coding style, but they do not protect against mistakes made
by programmers during the system development. In addition, Aspect-
oriented programming can introduce specific (and hard to detect)
errors that ordinary object-oriented programming is not subject to.
As a result, software testing remains an inevitable and important
task in AOSD.

Aspect-oriented programming languages, such as AspectJ [18],
introduce some new language constructs (such as join points, ad-
vice, intertype declarations, and aspects) to the common object-
oriented programming languages, such as Java. The behavior of an
aspect in AspectJ programs can be categorized into two types [23]:
aspectual behavior (behavior implemented in pieces of advice) and
aspectual composition behavior (behavior implemented in point-
cuts for composition between base and aspectual behavior).

When we treat an aspect as a unit and intend to test its aspec-
tual behavior,unit tests for an aspect are created to test in isolation
pieces of advice defined in the aspect. However, it is often diffi-
cult to manually or automatically construct the aspect’s execution
context in unit tests. When we intend to test aspectual composition
behavior related to an aspect,integration tests for the aspect are
created to test interaction or composition between the aspect class
and the affected classes. These integration tests can consist of invo-
cations of those methods affected by the aspect. These invocations
eventually exercise the interaction between the aspect class and the
affected classes by invoking pieces of advice from the advice-call
sites inserted within the affected classes.

Our research focuses on automatic generation of test inputs that
test aspectual behavior, an important type of an aspect’s behavior.
We leave the issue on automatic generation of test inputs for as-
pectual composition behavior for our future work. Specifically, we

propose Aspectra, a novel framework for generating test inputs to
exercise aspectual behavior. Given aspects to be tested, develop-
ers can construct base classes that the aspects can be woven into
to produce woven classes. We can view these base classes as pro-
viding scaffoldings necessary to drive the aspects. Aspectra devel-
ops a wrapper-synthesis technique to address aspect weaving is-
sues in test generation (by providing visibility of woven methods
to test-generation tools and avoiding unwanted weaving). Given
a woven class, Aspectra automatically synthesizes a wrapper class
for the woven class and then feeds the wrapper class to our test-
generation tool based on state exploration [33, 34]. In order to as-
sess the quality of generated tests, we define and measure aspectual
branch coverage, which characterizes branch coverage within as-
pect code. Sometimes initially generated test inputs for base classes
(constructed by developers) may not be sufficient to achieve good
aspectual branch coverage. To guide developers to improve test
coverage, we define interaction coverage that measures the inter-
actions among four types of methods in AspectJ programs (which
will be explained in Section 4.1): advised methods (defined in base
classes), advice, intertype methods, and public non-advice methods
(defined in aspects). These measurement results guide developers
to improve the base-class construction and test generation.

This paper makes the following main contributions with the pro-
posal of the Aspectra framework.

• We develop a wrapper-synthesis technique that prepares wo-
ven classes to be given to test-generation tools; The synthe-
sized wrapper classes provide a clean interface between the
program under test and test-generation tools.We implement
a tool to automate the wrapper synthesis.

• We leverage existing tools for testing Java programs to gen-
erate tests for AspectJ programs.

• We define and measure branch coverage within aspect code.
We also classify four types of methods in AspectJ programs
and measure the interactions among them. We implement
tools to automate these measurements. We provide guide-
lines for developers to use these measurement results to im-
prove test coverage.

• We describe our experience in applying Aspectra to 12 As-
pectJ programs from a variety of sources. The experience
shows that Aspectra provides effective tool supports to gen-
erate test inputs for increasing structural coverage of aspect
code.

The rest of the paper is organized as follows. Section 2 briefly
introduces AspectJ. Section 3 presents an example that we shall use
to illustrate our approach. Section 4 presents our Aspectra frame-
work. Section 5 describes our implementation for Aspectra. Sec-
tion 6 presents our experience in applying Aspectra on various As-
pectJ programs. Section 7 discusses related work and Section 8
concludes.

2. ASPECTJ
Aspectra generates test inputs for AspectJ programs. We next

introduce background information on AspectJ [1]. Although we
present Aspectra in the context of AspectJ’s ajc compiler [1,16], the
underlying ideas are applicable to other AspectJ compilers [2,7].

AspectJ adds to Java some new concepts and associated con-
structs including join points, pointcuts, advice, intertype declara-
tions, and aspects. Thejoin point in AspectJ is an essential con-
cept in the composition of an aspect with other classes. It is a
well-defined point in the execution of a program, such as a call
to a method, an access to an attribute, an object initialization, or

an exception handler. Apointcut is a set of joint points that op-
tionally expose some of the values in the execution of these joint
points. AspectJ defines several primitivepointcut designators that
can identify all types of join points. Pointcuts in AspectJ can be
composed and new pointcut designators can be defined according
to these combinations.

Advice is a method-like mechanism used to define certain code
that executesbefore, after, or around a pointcut. Thearound ad-
vice executesin place of the indicated pointcut, which allows the
aspect to replace a method. An aspect can also use anintertype
declaration to add a public or private method, field, or interface
implementation declaration into a class.

Aspects are modular units of crosscutting implementation. As-
pects are defined by aspect declarations, which have similar forms
of class declarations. Aspect declarations may include pointcut, ad-
vice, and intertype declarations, as well as method declarations that
are permitted in class declarations.

AspectJ compilers such as ajc [1,16] useaspect weaving to com-
pose the code of the base classes and the aspects to ensure that
applicable advice runs at the appropriate join points. After aspect
weaving, these base classes are then calledwoven classes.

During the weaving process, the ajc compiler [1, 16] compiles
each aspect into an aspect class and each piece of advice in the as-
pect into a public method (calledadvice method in short asadvice)
in the aspect class. The parameters of this public method are the
same as the parameters of the advice, possibly in addition to some
thisJoinPoint parameters. The body of this public method is
usually the same as the body of the advice. Then at appropriate lo-
cations of base classes, ajc inserts calls to compiled advice; meth-
ods (in base classes) that contain these call sites areadvised meth-
ods. At each site of these inserted calls, a singleton object of an
aspect class is first obtained by calling the static methodaspectOf
that is defined in the aspect class. Then a piece of advice is in-
voked on the aspect object. Note that the compilation of a piece
of around advice [16] is more complicated thanbefore or after
advice. A piece ofaround advice is also compiled into a public
method but it takes one additional argument: anAroundClosure
object. A call toproceed in the compliedaround advice body is
replaced with a call to arun method on theAroundClosure ob-
ject. However, when anAroundClosure object is not needed, the
around advice is inlined in methods of the base class; noaround
advice method is created in the aspect class for this case.

The ajc compiler compiles each intertype field declaration in an
aspect into a field in the base class and compiles each intertype
method declaration in an aspect into a public static method (called
intertype method) in the aspect class. The parameters of this pub-
lic method are the same as the parameters of the declared method
in the aspect except that the declared method’s receiver object is
inserted as the first parameter of the intertype method. A wrapper
method is inserted in the base class that invokes the actual method
implementation in the aspect class. Moreover, all accesses to the
fields inserted in the base class are through two public static wrap-
per methods in the aspect class for getting and setting field respec-
tively. An aspect can also declare a public method that is not any
type of advice. The ajc compiler also compiles it into a standard
public Java method (calledpublic non-advice method) in the aspect
class. For more information about AspectJ weaving, refer to [16].

3. EXAMPLE
We use a simple integer stack example (adapted from Rinardet

al. [28]) to illustrate our Aspectra framework throughout this pa-
per. The example shows some common language features of As-
pectJ. Figure 1 shows the implementation of the stack class. This

class Cell {
int data; Cell next;
Cell(Cell n, int i) {

next = n;
data = i;

}
}

public class Stack {
Cell head;
public Stack() {

head = null;
}
public boolean push(int i) {

if (i < 0) return false;
head = new Cell(head, i);
return true;

}
public int pop() {

if (head == null)
throw new RuntimeException("empty");

int result = head.data;
head = head.next;
return result;

}
Iterator iterator() {

return new StackItr(head);
}

}

Figure 1: Integer stack implementation

interface Iterator {
public boolean hasNext();
public int next();

}

public class StackItr implements Iterator {
private Cell cell;
public StackItr(Cell head) {

this.cell = head;
}
public boolean hasNext() {

return cell != null;
}
public int next() {

int result = cell.data;
cell = cell.next;
return result;

}
}

Figure 2: Stack iterator

class provides standard stack operations as public non-constructor
methods:push andpop. The class also has one package-private
method:iterator returns an iterator that can be used to traverse
the items in the stack. The implementation of the iterator class is
shown in Figure 2.

The stack implementation accommodates integers as stack items.
Figure 3 shows three aspects that enhance the stack implemen-
tation. TheNonNegativeArg aspect checks whether method ar-
guments are nonnegative integers. The aspect contains a piece of
advice that goes through all arguments of an about to be executed
method to check whether they are nonnegative integers. The advice
is executed before an execution of any method. TheNonNegative
aspect checks the property of nonnegative items: the aspect con-
tains a piece of advice that iterates through all items to check whether
they are nonnegative integers. The advice is executed before a call
of aStack method.

The PushCount aspect counts the number of times aStack’s
push method is invoked on an object since its creation. The aspect

aspect NonNegativeArg {
before() : execution(* *.*(..)) {

Object args[] = thisJoinPoint.getArgs();
for(int i=0; i<args.length; i++) {

if ((args[i] instanceof Integer) &&
(((Integer)args[i]).intValue() < 0))
throw new RuntimeException("negative arg of " +
thisJoinPoint.getSignature().toShortString());

}
}

}

aspect NonNegative {
before(Stack stack) : call(* Stack.*(..)) &&

&& target(stack) && !within(NonNegative) {
Iterator it = stack.iterator();

while (it.hasNext()) {
int i = it.next();
if (i < 0) throw new RuntimeException("negative");

}
}

}

aspect PushCount {
int Stack.count = 0;
int allStackCount = 0;
public void Stack.increaseCount() {

count++;
}
boolean around(Stack stack):

execution(* Stack.push(int)) && target(stack) {
boolean ret = proceed(stack);
stack.increaseCount();
allStackCount++;
return ret;

}
public int getAllStackCount() {

return allStackCount;
}

}

Figure 3: NonNegativeArg, NonNegative, and PushCount as-
pects

declares an intertype fieldcount for the Stack class. The field
keeps the number of times aStack’s push method is invoked. The
aspect declares a public intertype methodincreaseCount for the
Stack class. The method increases thecount intertype field of
Stack. Note that we declare this intertype method as public for
illustration purpose. Then a client can invoke theincreaseCount
method to increasecount without invokingpush. The aspect also
contains a piece ofaround advice that invokes theStack’s inter-
type methodincreaseCount declared in the aspect. The advice
is executed around any execution ofStack’s push method. The
PushCount aspect also defines a fieldallStackCount to record
the number of times aStack’s push method is invoked on any ob-
ject. It defines a public methodgetAllStackCount for querying
the value ofallStackCount.

4. FRAMEWORK
We propose the Aspectra framework for generating test inputs to

test aspectual behavior. Aspectra classifies the executions of four
types of methods in an AspectJ program: advised methods defined
in base classes, advice, intertype methods, and public non-advice
methods defined in aspect classes (Section 4.1). Developers can
construct base classes and weave aspects into base classes to pro-
duce woven classes, which can be fed to existing test-generation
tools. To enable methods defined in aspects to be exercised during
test generation, Aspectra develops a wrapper mechanism to prepare
woven classes to be tested by existing test-generation tools (Sec-
tion 4.2). Then Aspectra leverages our test-generation tool for Java

programs [33] to generate test inputs for AspectJ programs (Sec-
tion 4.3). Because the initially generated tests may not be sufficient
to cover aspectual behavior in aspects, Aspectra defines and mea-
sures aspectual branch coverage and interaction coverage to guide
developers to improve the base-class construction and test genera-
tion (Section 4.4).

4.1 Method Executions of AspectJ Programs
Each execution of a test produces a sequence of method calls

on the objects of the class under test (either the woven class or
the aspect class). Each method call in the sequence can eventually
invoke some other methods, producing more method calls. Each
method call produces a method execution whose behavior depends
on the state of the receiver object and method arguments at the
beginning of the execution. We represent each method execution
with the actual method that was executed and a representation of
the state (reachable from the receiver object and method arguments)
at the beginning of the execution. In a state representation for an
object or multiple objects, we use the values of all the fields that
are transitively reachable from the object(s) [33].

We classify the executions of four types of methods during the
execution of an AspectJ program: the executions ofadvised meth-
ods defined in base classes,advice, intertype methods, andpublic
non-advice methods defined in aspect classes. An example of a
public non-advice method isgetAllStackCount defined in the
PushCount aspect (Figure 3). To test aspectual behavior, Aspectra
focuses on testing the behavior exhibited by the last three types of
methods defined in aspect classes. Note that when advised meth-
ods are executed, the last three types of methods defined in aspect
classes may not be necessarily executed or covered. Our Aspectra
framework helps increase the structural coverage of these methods
defined in aspect classes.

4.2 Wrapper Synthesis
Given aspects, developers can construct appropriate base classes

for the aspects and then use ajc to weave aspects into the con-
structed base classes to produce woven classes in the form of byte-
code. Several automatic test-generation tools generate test inputs
based on Java bytecode instead of source code. For example, both
Parasoft Jtest [26] and JCrasher [10] generate random method se-
quences for the class under test based on its bytecode. Based on
Java bytecode, our previous work developed Rostra [32, 33] and
Symstra [34] for generating only method sequences that produce
different inputs for methods under test. To generate test inputs for
AspectJ programs, developers may simply feed woven classes (in
the bytecode form) to these existing test-generation tools and use
these tools to generate test inputs for the woven classes.

However, we need to address at least three major issues when we
leverage these existing test-generation tools to generate test inputs
for AspectJ programs:

• When a piece of advice is related tocall join points, such
as the advice in theNonNegative aspect, the existing test-
generation tools cannot execute the advice during its test-
generation process, because the advice is to be woven in call
sites, which are not available before test generation.

• Although we can use ajc [1,16] to weave the generated tests
with the aspect classes in order to execute advice related to
call join points, the compilation can fail when the interfaces
of woven classes contain intertype methods and the gener-
ated test code invoke these intertype methods, such as the
intertype method in thePushCount aspect. The test code
cannot be compiled by ajc because ajc does not expect that
the base class source files refer to intertype methods before

the weaving process. In addition, weaving the generated test
classes with the aspect classes could introduce unwanted ad-
vice into the test classes. For example, weaving test classes
with the advice in theNonNegativeArg aspect introduces
unwanted argument checking for methods defined in the test
classes.

• Public non-advice methods in aspect classes cannot be exer-
cised by the test inputs generated for woven classes, because
woven classes do not have any call sites of these public non-
advice methods. For example, no generated test inputs for
the wovenStack class can exercise the public non-advice
getAllStackCount method defined inPushCount.

Although here we do not intend to make a complete list of is-
sues that can be encountered when testing full language features
of AspectJ, the preceding issues are major ones that are encoun-
tered when we applied existing test-generation tools to a number of
typical AspectJ programs. To address these major issues, Aspectra
automatically synthesizes a wrapper class for each constructed base
class for aspects and then the wrapper class is fed to existing test-
generation tools. In particular, there are six steps for generating test
inputs based on the wrapper mechanism (to simplify explanation,
we focus on only one base class below):

1. Compile and weave the base class and aspects into class byte-
code using ajc.

2. Synthesize a wrapper class for the base class based on the
woven class and aspect bytecode.

3. Compile and weave the base class, wrapper class, and aspects
into class bytecode using ajc.

4. Clean up unwanted woven code in the woven wrapper class.
5. Generate test inputs for the woven wrapper class using exist-

ing test-generation tools based on class bytecode.
6. Compile the generated test class into class bytecode using a

Java compiler [5].

In the second step, we synthesize a wrapper class for the base
class under test. Figure 4 shows the wrapper class synthesized for
theStack class (Figure 1) woven with the three aspects (Figure 3).
In this wrapper class, we synthesize a wrapper method for each
public method in the base class. This wrapper method invokes the
public method in the base class.

In this wrapper class, we also synthesize a wrapper method for
each public intertype method woven into the base class. This wrap-
per method uses Java reflection [5] to invoke the intertype method;
otherwise, the compilation in the third step can fail because inter-
type methods are not recognized by ajc before compilation. For
example, in thePushCount aspect, there is an intertype method
increaseCount and we synthesize a wrapper method for it. In a
similar way, we also synthesize a wrapper method for a public non-
advice method in aspect classes. For example, in thePushCount
aspect, there is a public non-advice methodgetAllStackCount
and we create a public wrapper method for it in the wrapper class.
These wrapper methods ensure that intertype methods or public
non-advice methods of aspect classes are tested by existing test-
generation tools.

In the third step, we use ajc to weave the wrapper class with the
base class and aspects. This step ensures that the advice related
to call join points is executed during test-generation process, be-
cause the invocations to the advice are woven into the call sites
(within the wrapper class) of public methods in the base class.

In the fourth step, we need to clean up unwanted woven code in
the woven wrapper class. For example, the wrapper method for the
push method ofStack is also advised by theexecution advice
defined in theNonNegativeArg aspect. The advice is unwanted

public class StackWrapper {
Stack s;
public StackWrapper() {

s = new Stack();
}
public boolean push(int i) {

return s.push(i);
}
public int pop() {

return s.pop();
}

public void increaseCount() throws Exception {
/* s.increaseCount(); */
Class cls = Class.forName("Stack");
Method meth = cls.getMethod("increaseCount", null);
meth.invoke(s, null);

}

public int getAllStackCountPushCount() throws Exception {
/* PushCount ret1 = PushCount.aspectOf(); */
/* return ret1.getAllStackCount(); */
Class cls = Class.forName("PushCount");
Method meth1 = cls.getMethod("aspectOf", null);
Object ret1 = (Object)meth1.invoke(null, null);
Method meth2 = cls.getMethod("getAllStackCount", null);
Integer ret2 = (Integer)meth2.invoke(ret1, null);
return ret2.intValue();

}
}

Figure 4: The wrapper class forStack

by the wrapper method; otherwise,push’s arguments are checked
twice during test generation, one time in the advised method and
the other time in the wrapper method1. We scan the bytecode of the
woven wrapper class and remove the woven code that are for advice
related toexecution join points. Note that we need to keep the
woven code that is for advice related tocall join points, because
the woven code there is needed for covering the advice related to
call join points.

In the fifth step, we feed the woven wrapper class to existing
test-generation tools based on bytecode, such as Parasoft Jtest [26],
JCrasher [10], Rostra [32,33], and Symstra [34]. These tools export
generated tests to test code, usually as a JUnit test class [17]. The
next section discusses how we use a combination of Jtest and Rostra
to generate test inputs for wrapper classes.

In the final step, we use a Java compiler [5] to compile the ex-
ported test class. We do not use ajc to weave the exported test class
with the wrapper class, base class, or aspects, because the weav-
ing process can introduce unwanted woven code into the test class.
For example, if we use ajc to weave the exported test class with
Stack and theNonNegativeArg aspect, some methods defined in
the test class are also advised by theexecution advice defined
in the NonNegativeArg aspect. The advice is unwanted by the
methods defined in the test class.

4.3 Test-Input Generation
Among the four types of methods, the wrapper mechanism pre-

sented in the preceding section enables advised methods, intertype
methods, and public non-advice methods to be directly exercised
by generated test inputs. However, advice is not directly exercised
but indirectly exercised through its advised method(s). We next il-
lustrate how we leverage existing test-generation tools to generate
test inputs to exercise wrapper methods (for advised methods, in-

1We can avoid unwanted woven code in the wovenStackWrapper
if we rewrite the pointcut forNonNegativeArg to narrow down the
scope to the methods ofStack rather than any method.

Set testgen(Set nonEqInitArgs, Set nonEqMethodArgs,
int maxIterNum) {

//generate object states after constructor calls
Set newTests = new Set();
foreach (args in nonEqInitArgs) {

Test newTest = makeTest(args);
newTests.add(newTest);

}
RuntimeInfo runtimeInfo = runAndCollect(newTests);
Set frontiers = runtimeInfo.getNewNonEqObjStates();
//combinatorial testing of object states and argument lists
for(int i=1;i<=maxIterNum && frontiers.size()>0;i++) {

Set newTestsForCurIter = new Set();
foreach (objState in frontiers) {

foreach (args in nonEqMethodArgs) {
Test newTest = makeTest(objState, args);
newTestsForCurIter.add(newTest);
newTests.add(newTest);

}
}
runtimeInfo = runAndCollect(newTestsForCurIter);
frontiers = runtimeInfo.getNewNonEqObjStates().

}
return newTests;

}

Figure 5: Pseudo-code of Rostra’s test-generation algorithm.

tertype methods, and public non-advice methods) in the interface
of a wrapper class.

We divide the test-generation problem for wrapper classes into
two sub-problems: receiver-object state setup and method argu-
ment generation. Receiver-object state setup puts an object of the
class under test into a particular state before invoking methods on
it. Method argument generation produces particular arguments for
a method to be invoked on the object state.

We use Parasoft Jtest 4.5 [26] to generate arguments for public
methods of wrapper classes. Jtest uses symbolic execution [19]
to generate method arguments to achieve structural coverage. By
default, it generates method arguments for public methods of the
class under test. Jtest exports its generated test inputs in the form
of JUnit [17] test classes. Then we feed the Jtest-generated test
classes to our Rostra tool [32,33], which uses method arguments to
explore receiver-object state space. We next illustrate the algorithm
of Rostra’s test generation.

Rostra represents the state of an object with the values of all the
fields that are transitively reachable from the object. A lineariza-
tion algorithm [33] is used to linearize these values into a represen-
tation string. Two states areequivalent iff their state-representation
strings are the same, and arenonequivalent otherwise. Rostra first
executes Jtest-generated test classes and collects the exercised method
arguments to formmethod argument lists, each of which is charac-
terized by the method name, method signature, and the argument
values for the method. Two argument lists areequivalent iff their
method names, signatures are the same and the argument values are
equivalent, and arenonequivalent otherwise.

Rostra’s test generation is a type of combinatorial testing. It
generates test inputs to exercise each possible combination of non-
equivalent receiver-object states and non-equivalent method argu-
ment lists. The pseudo-code of the test-generation algorithm is pre-
sented in Figure 5.

Before running the algorithm, we first collect a set of non-equivalent
constructor argument lists and method argument lists from the ex-
ecution of Jtest-generated test classes. Then we feed the collected
information as well as a (user-defined) maximum iteration number
to the algorithm. In the algorithm, we first make a set of tests, each
of which consists of a constructor call produced by using one of
the non-equivalent constructor argument lists. Then we run these

tests and collect the non-equivalent receiver-object states produced
by these constructor calls. We put these object states into a fron-
tier set. Then we iterate each object state in the frontier set and
each method argument list in the set of non-equivalent method ar-
gument lists. We make a test for each combination: the test invokes
a non-equivalent method argument list on an object state. After we
generate tests based on all combinations, we run all these generated
tests and collect runtime information. From the collected runtime
information, we extract the new non-equivalent object states that
are encountered at runtime. We set them as the new frontier set.
With this new frontier set, we start the subsequent iteration until
we have reached the maximum iteration number or the frontier set
has no object state. Then the algorithm returns the collected gener-
ated tests (in the form of JUnit [17] test classes) over all iterations.

For example, Parasoft Jtest 4.5 generates arguments for thepush
method ofStackWrapper as -1, 0, and 7. Jtest also generates
calls ofStackWrapper’s constructor,pop, increaseCount, and
getAllStackCountPushCount methods; these method calls do
not have arguments. Then Rostra collects the constructor call into
the set of non-equivalent constructor argument lists. Rostra also
collectspush(-1), push(0), push(7), pop(), increaseCount(),
andgetAllStackCountPushCount() into the set of non-equivalent
method argument lists. Before the first iteration, Rostra generates
one test, which simply includes the constructor call. This construc-
tor call produces an empty stack. Then in the first iteration, the
following six tests are generated forStackWrapper, correspond-
ing to the combinations of the empty stack and six non-equivalent
method argument lists:

Test 1:
StackWrapper s1 = new StackWrapper();
s1.push(-1);

Test 2:
StackWrapper s2 = new StackWrapper();
s2.push(0);

Test 3:
StackWrapper s3 = new StackWrapper();
s3.push(7);

Test 4:
StackWrapper s4 = new StackWrapper();
s4.pop();

Test 5:
StackWrapper s5 = new StackWrapper();
s5.increaseCount();

Test 6:
StackWrapper s6 = new StackWrapper();
s6.getAllStackCountPushCount();

After we execute the tests generated during the first iteration,
only 3 object states produced by Tests 1-3 are new. Then in the sec-
ond iteration, we generate 18 tests, which correspond to the combi-
nations of the 3 new object states and and 6 non-equivalent method
argument lists. Below we show only one test for the combination
of the new object state generated by Test 1 and thepush(-1) non-
equivalent method argument list:

Test 7:
StackWrapper s7 = new StackWrapper();
s7.push(-1);
s7.push(-1);

4.4 Aspectual Coverage Measurement
In this section, we have measured the branch coverage within

aspects. Because advice in aspects sometimes may not be woven
into initially constructed base classes, some branches in the aspects

might not be covered by the test inputs initially generated by test-
generation tools (such as the ones described in preceding section).
We additionally define and measure interaction coverage, whose
measurement results can guide developers to improve base classes
or test-generation tools, in order to cover those branches uncovered
by the initially generated tests.

4.4.1 Aspectual Branch Coverage
A test adequacy criterion provides a stopping rule for testing and

a measurement of test-suite quality [39]. A test adequacy criterion
can be used to guide test selection. Because we do not have test
oracles for those generated test inputs of AspectJ programs and it
is not practical for developers to inspect a large number of gener-
ated tests, we can use test adequacy criteria to select generated test
inputs for inspection.Program-based criteria [39] specify testing
requirements based on whether all the identified features in a pro-
gram have been fully exercised. Identified features in a program
can be statements, branches, paths, or definition-use paths. In our
research, we focus on whether all the identified branches in the as-
pects of an AspectJ program have been fully exercised. We call the
coverage criteriaaspectual branch coverage.

Aspectual branch coverage can be measured at the source code
level or bytecode level. We decide to measure aspectual branch
coverage at the bytecode level because the same piece of source
code in aspects (e.g., source code inaround advice) can be woven
into multiple places in woven bytecode and covering these several
places are often necessary for assuring high quality of the woven
code. In principle, code coverage criteria defined at the bytecode
level are stronger than the same ones defined at the source code
level. In other words, if two test suites achieve the same coverage
at the bytecode level, then these two test suites also achieve the
same coverage at the source code level. However, if two test suites
achieve the same coverage at the source code level, these two test
suites may achieve different coverage at the bytecode level.

When measuring aspectual branch coverage at the bytecode level,
we face several complications in tool implementation. First, we
need to identify bytecode that is compiled from aspect source code.
One possible solution is to develop our tool based on an AspectJ
compiler such as ajc [1, 16] or abc [2, 7]. But the tool implemen-
tation based on an existing AspectJ compiler requires much devel-
opment effort; in addition, much maintenance effort is needed to
keep the tool implementation up to date when new versions of the
compiler are released. The alternative solution, which we adopt,
is to scan the woven bytecode based on some characteristics of the
woven bytecode produced by an AspectJ compiler. In our tool im-
plementation, we identify a class (in the bytecode form) produced
by ajc [1, 16] to be anaspect class if it has a method whose name
starts with “ajc$”. The methods in an aspect class areaspect meth-
ods. Because some new methods of a base class are also created by
ajc for advice such asaround advice, we identify a method in a
non-aspect class also to be an aspect method if its name ends with
“$advice”. Then the branches within an aspect method are instru-
mented automatically and their coverage is measured at runtime.
Note that in this research context, a method entry is considered as
one branch; therefore, measuring method coverage is part of mea-
suring branch coverage.

The second complication is that some methods woven in the
bytecode of an aspect class can be difficult or infeasible to be cov-
ered by tests generated for woven classes. For example, ajc cre-
ates ahasAspect method in the class bytecode ofNonNeagive
and no call site of this method is inserted in the base class. We
prefer to leave this type of methods out of scope when we mea-
sure branch coverage. We have inspected uncovered methods and

branches measured by our tool and determine whether these uncov-
ered methods or branches are infeasible or uninteresting to cover.
If so, we improve our tool to exclude them from measurement.

4.4.2 Interaction Coverage
One goal of our research is to generate tests to cover all feasible

branches in aspect methods. Often achieving this goal requires suf-
ficient tool supports. The measurement results of aspectual branch
coverage gives feedback to developers on what parts of aspect code
are to be exercised. To give further guidance to developers on how
to improve the aspectual branch coverage, we have defined and
measured interaction coverage. The next section (Section 4.4.3)
illustrates our methodology of using interaction coverage measure-
ments in improving test generation. This interaction coverage cri-
terion also indicates how well a test suite exercises the interactions
among advised methods, advice, and intertype methods.

Our interaction coverage criterion is defined on the granularity
of methods. Section 4.1 classifies four types of methods: advised
methods, advice, intertype methods, and public non-advice meth-
ods. We call advice, intertype methods, and public non-advice
methods asaspect methods. We particularly focus on the inter-
actions between advised methods and aspect methods, and the in-
teractions between aspect methods and aspect methods. We char-
acterize interactions with method invocations. In particular, an in-
teraction from methodm1 to methodm2 is characterized by a call
site inm1’s body and this call site invokesm2. We categorize in-
teractions into the following three types:

• from advised methods to aspect methods (in short asadvised-
aspect interaction). One example advised-aspect interaction
is the call site inStack’s insert method body that invokes
thearound advice defined inPushCount.

• from aspect methods to aspect methods (in short asaspect-
aspect interaction). One example aspect-aspect interaction
is the call site inPushCount’s around advice body that in-
vokesPushCount’s increaseCount method.

• from aspect methods to advised methods (in short asaspect-
advised interaction). One example aspect-advised interac-
tion is the call site inNonNegative’s before advice body
that invokesStack’s iterator method.

Note that we do not include interactions from advised methods
to advised methods because we focus on testing aspectual behav-
ior and aspectual composition behavior, rather than the interactions
between advised methods in general.

An interaction is covered if its corresponding call site is covered.
We measure interaction coverage as the number of covered inter-
actions divided by all the identified interactions; in our tool’s de-
fault configuration, we include only the advised-aspect and aspect-
aspect interactions in the measurement because the coverage infor-
mation of these two types of interactions can help us to improve
aspectual branch coverage, as is presented in the next section.

4.4.3 Guidelines of Using Measurement Results
To increase aspectual branch coverage, developers can first fo-

cus on the coverage of aspect methods, because in order to cover
branches within an aspect method, the aspect method needs to be
covered first. We next illustrate how developers can use measure-
ment results of interaction coverage to improve base-class con-
struction and test generation.

Figure 6 shows the pseudo-code of using measurement results to
improve base-class construction and test generation. Assume that
an uncovered aspect methodm is advice. If there exists no call site
of it in base classes (that is, there is no interaction from any advised

void process(Set unCoveredAspectMethods) {
foreach (m in unCoveredAspectMethods) {

if (!isAdvice(m)) {
Method n = getUpperMostNonPrivateCaller(m);
if (n == null) {

reportUnreachable();
return;

}
if (isCovered(n)) {

improveTestGen();
return;

}
m = n;

}
Method l = getAdvisedMethCallerWithUnCovCallSite(m);
if (l == null) {

improveBaseClass();
} else {

improveTestGen();
}

}
}

Figure 6: Pseudo-code of using measurement results to improve
base-class construction and test generation

method tom), developers may improve base classes to makem to
be woven into base classes. If there exists an uncovered call site
of it in base classes (that is, there is an uncovered interaction from
an advised method tom), developers may improve test generation
such as adding relevant arguments to augment Jtest-generated ar-
guments or increasing the user-defined maximum iteration number
for Rostra.

Assume that an uncovered aspect methodm is not advice. Nor-
mally m is not an intertype method or public non-advice method,
because our wrapper mechanism assures that test-generation tools
generate test inputs to cover them. Thenm is likely to be a private
non-advice method. We statically construct call chains form with
call site information that we collect during interaction-coverage in-
strumentation. If developers find out none ofm’s (either direct
or indirect) callers is non-private (that is, none of them is advice,
intertype method, or public non-advice method),m is inherently
unreachable. Ifm’s upper most non-private callern is already cov-
ered, developers may improve test generation to generate test inputs
to coverm through the call chain fromn to m. If n is not covered,
then we go through the preceding procedure form whenm is ad-
vice.

After going through the uncovered aspect methods, developers
can focus on those uncovered branches within aspect methods. In
order to cover these branches, developers may improve either base-
class construction or test generation.

5. IMPLEMENTATION
Our implementation of Aspectra uses bytecode rewriting tech-

niques based on the Byte Code Engineering Library (BCEL) [11]
(instead of code instrumentation by using aspect-oriented paradigm).
We have automated the wrapper synthesis by adapting a package
in the Apache Avalon Framework [3] (also based on BCEL); this
package generates wrapper classes for Java containers. Given the
bytecode of a woven class as well as aspect classes, our tool auto-
matically synthesizes a wrapper class in the form of bytecode.

We leverage Jtest [26] and our previously developed Rostra tool [32,
33] to generate test inputs. Rostra uses Java reflection mecha-
nisms [5] to generate and execute new tests online. In the end of
test generation, Rostra exports the test inputs generated after each
iteration to a JUnit test class code [17]. More implementation de-

tails of Rostra can be found elsewhere [32,33].
We have also automated the measurement of aspectual branch

coverage and interaction coverage. Our tool reports the percentage
numbers for branch coverage or interaction coverage. In addition,
our tool reports the details of covered branches or call sites as well
as uncovered branches or call sites. The details of a branch include
the corresponding conditional, its line number in the source code,
and the true or false branch of the conditional. The details of a call
site include its line number in the source code and the correspond-
ing caller and callee method names in the woven bytecode. To
facilitate human inspection of these names, our future work plans
to keep the mapping between a method name in the woven byte-
code and the corresponding method name in the source code, and
present to developers also the method name in the source code.

During class loading time, our tool dynamically determines whether
a class is an aspect class by inspecting the names of its methods, be-
cause the ajc compiler [1, 16] gives special names for advice. We
also similarly detect inlinedaround advice in base classes based
on its method name. We scan bytecode to identify branches and
then insert probes at branching points for collecting branch cover-
age information. We also scan the bytecode to identify call sites
and classify them into different types of interactions, and then also
insert probes for collecting interaction coverage information.

6. EXPERIENCE
This section presents our experience in applying Aspectra on

12 AspectJ benchmarks collected from a variety of sources (Sec-
tion 6.1). We have applied Aspectra to generate test inputs for the
collected benchmarks (Section 6.2). Our results suggest that our
wrapper mechanism is necessary for testing several types of pro-
grams and our coverage measurement results are helpful for us to
improve aspectual branch coverage (Section 6.3). We also discuss
some issues of Aspectra (Section 6.4).

6.1 Benchmarks
Our benchmarks include most of the programs used by Rinardet

al. [28] in evaluating their classification system for aspect-oriented
programs. The benchmarks also include most of the programs2

used by Dufouret al. [12] in measuring performance behavior of
AspectJ programs. Our benchmarks also include one of the aspect-
oriented design pattern implementations3 by Hannemann and Kicza-
les [13].

Table 1 lists the benchmarks that we used. The first and sec-
ond columns show the benchmark names and their advice/pointcut
types, respectively. We measure the number of total branches in
aspect code and the number of total call sites for the interaction
coverage defined in Section 4.4.2, which are shown in the third
and fourth columns, respectively. The aspect examples in Fig-
ure 3 are listed as the first three benchmarks, beingNonNegative,
NonNegativeArg, andPushCount. TheInstrumentation bench-
mark is an aspect that counts the times ofpush calls. TheNullCheck
benchmark is an AspectJ program used by Asberry to detect whether
method calls return null [6]. Following Rinardet al. [28], we re-
fer to these first five benchmarks asbasic aspects. TheTelecom
benchmark is an example available with the AspectJ distribution [1].
It simulates a community of telephone users. TheBusinessRuleImpl
benchmark comprises two aspects of business rules for a banking
system, which were used as examples in Section 12.5 of [20]. The

2The AspectJ programs used by Dufouret al. [12] can be obtained
from http://www.sable.mcgill.ca/benchmarks/.
3Hannemann and Kiczales’s design pattern implementations can be
obtained fromhttp://www.cs.ubc.ca/∼jan/AODPs/.

StateDesignPattern benchmark had been implemented using
AspectJ by Hannemann and Kiczales [13]. TheDCM benchmark
was implemented using AspectJ by Hassounet al. [15] to vali-
date their proposed dynamic coupling metric (DCM) [14]. The
ProdLine benchmark was implemented using intertype declara-
tions by Lopez-Herrejon and Batory for product lines of graph al-
gorithms [24]. TheBean benchmark was used as an example by
the AspectJ primer onaspectj.org. It enhances a class with the
functionality of Java beans. TheLoD benchmark was implemented
by Lieberherret al. to check the Law of Demeter [21]. It includes
one checker for object form and the other one for class form. We
focus on testing the checker for object form. Because theDCM and
LoD benchmarks as well as the first five benchmarks do not come
with base classes, we use theStack class (shown in Figure 1) or
its adapted version as their base classes.

6.2 Procedures
In order to assess how our wrapper synthesis mechanism helps

test generation, we first generate test inputs without using wrapper
classes: we use the ajc compiler [1,16] to weave aspects with base
classes and then feed the resulting woven classes to Jtest 4.5 [26] to
generate method arguments. Then Jtest-generated test classes are
fed to our Rostra test-generation tool. We set Rostra’s maximum
iteration number as three. We measure the aspectual branch cover-
age and interaction coverage achieved by the generated tests. The
measurement results are presented in Columns 5 and 6 of Table 1.

Next we repeat the preceding procedure except that we feed syn-
thesized wrapper classes to Jtest and Rostra for test generation.
Columns 7 and 8 list the measurement results of aspectual branch
coverage and interaction coverage, respectively. We fill “–” in those
entries that achieve the same measurement results as those pro-
duced without using wrapper classes (shown in Columns 5 and 6).

Finally, given the measurement results, according to the guide-
lines presented in Section 4.4.3, we improve either base class con-
struction or test generation trying to get better coverage. Columns
9 and 10 list the measurement results of aspectual branch cover-
age and interaction coverage, respectively. Similarly we fill “–” in
those entries that achieve the same measurement results as those
produced by initially generated test inputs (shown in Columns 7
and 8).

6.3 Results
NonNegativeArghas anexecution join point and using wrap-

per classes does not offer further help in test generation. The gen-
erated test inputs achieved 75% aspectual branch coverage. Our
tool reported that the following call site is not covered: a call site
(in Stack’s iterator method) that invokes thebefore advice in
NonNegativeArg. We inspected theStack code and found that
iterator is not declared aspublic and Jtest or Rostra generates
test inputs only for public methods. We then declarediterator as
a public method and regenerated test inputs. The generated test in-
puts could achieve 100% interaction coverage. But our tool still re-
ported that the false branch of(args[i] instanceof Integer)
in NonNegativeArg (shown in Figure 3) was not covered. We in-
spected theStack code and found that we needed a method that
has at least one argument and this argument is not of the integer
type. We added a public methodpush(double d) to theStack
class. Then generated inputs can achieve 100% aspectual branch
coverage.

NonNegativehas acall join point; therefore, without using
wrapper classes, no aspectual branch coverage was achieved by
generated test inputs (there were no interactions from the methods
of the base class to the aspect methods). Then we fed the gener-

ated wrapper class to test-generation tools and the generated test
inputs achieved 66% aspectual branch coverage and 100% inter-
action coverage. Our tool reported that the true branch of the fol-
lowing aspect code inNonNegative (shown in Figure 3) is not
covered:
if (i < 0) throw new RuntimeException("negative");
We inspected the generated test code and found that test code

contained method invocations ofpush(-1), which push negative
elements into the stack. Then we further inspected the method body
of push and found that the uncovered branch is due to the first line
of push:
if (i < 0) return false;
After we commented out this line, which prevents negative ele-

ments from being finally pushed into the stack, the generated test
inputs achieved 100% aspectual branch coverage.

PushCounthas a public non-advice method
getAllStackCount; therefore, without using wrapper classes, no
coverage ofgetAllStackCount can be achieved by generated test
inputs. After using the wrapper class, we achieve 100% aspectual
branch coverage.

Instrumentation has twocall join points and no aspectual branch
coverage was achieved by generated test inputs for the woven class
(without using a wrapper class). After we fed the generated wrap-
per class to test-generation tools, the generated test inputs achieved
100% aspectual branch coverage and 100% interaction coverage.

NullCheck hasaround advice for those methods whose returns
are not void and not of primitive types:

Object around(): execution(Object+ *.*(..)) {
Object lRetVal = proceed();
if (lRetVal == null) {

System.err.println(
"Detected null return value after calling " +
thisJoinPoint.getSignature().toShortString() +
" in file " +
thisJoinPoint.getSourceLocation().getFileName() +
" at line " +
thisJoinPoint.getSourceLocation().getLine());

}
return lRetVal;

}

To provide a base class forNullCheck, we adapt theStack
class in Figure 1 by changing theint type to Integer. Then
both thepop and iterator methods ofStack are advised by
NullCheck. Using wrapper classes does not offer further help
in test generation. The generated test inputs achieved 25% aspec-
tual branch coverage. Our tool reported that a call site (inStack’s
iteratormethod) of thearound advice inNullCheck is not cov-
ered. Similar to what we did forNonNegativeArg, we declared
iterator as a public method and then the generated test inputs
could achieve 100% interaction coverage and but 50% aspectual
branch coverage. We found that the false branch of(lRetVal
== null) is not covered, because return values of eitherpop or
iterator can never be null. We modifiedStack to be able to
store any object type instead of justInteger and thenpop can re-
turn an element that is null. Given the new base class, Jtest and
Rostra generated test inputs that achieved 75% aspectual branch
coverage. One remaining uncovered branch, the false branch of
(lRetVal == null) in the inlined around advice foriterator,
is infeasible to cover becauseiterator’s return value can never
be null.

Telecom has one key base classConnection. There are two
aspects:Timing andBilling. The Timing aspect records the
phone connection time and theBilling aspect uses the connection
time to bill the dialer. EitherTiming or Billing aspect declares
two pieces ofafter advice withcall join points. Both aspects
also declare intertype fields and methods. Without using a wrapper

class, branches within advice withcall join points cannot be cov-
ered. In addition, becauseTiming andBilling define three pub-
lic non-advice methods, before using wrapper classes, these three
methods were not covered. After using wrapper classes, generated
test inputs achieved 100% aspectual branch coverage and 100% in-
teraction coverage.

BusinessRuleImplhas a base class ofSavingsAccount and
two aspects:MinimumBalanceRuleAspect and
OverdraftProtectionRuleAspect. MinimumBalanceRuleAspect
defines a piece ofbefore advice for method execution and
OverdraftProtectionRuleAspect defines another piece ofbefore
advice for method execution. Our tool reported that generated test
inputs achieved only 50% aspectual branch coverage. We inspected
those uncovered branches and found that some arguments gener-
ated by Jtest are not sufficient. For example,MinimumBalanceRuleAspect
required the minimum balance to be 25 but the Jtest-generated ar-
guments forSavingsAccount’s credit method are only -1, 0, or
7; after they are invoked even for three iterations,SavingsAccount
still could not get sufficient funds for withdrawal. We improved
Jtest-generated method arguments by adding some new arguments
to improve the aspectual branch coverage to 80% but we could not
easily improve test generation to exercise two uncovered branches
because the complexity of necessary conditions for covering these
two branches is beyond our capability. A more sophisticated test-
generation tool is needed for generating tests to cover them.

StateDesignPatternhas aQueueStateAspect aspect that de-
clares three pieces ofafter advice for method calls. Because
these advised call sites already exist in the code base, using wrap-
per classes does not offer further help in test generation. Our tool
reported that generated test inputs achieved 88% aspectual branch
coverage, with one branch uncovered. We inspected the uncovered
branch, which indicated that the base classQueue has not reached
the full state yet. We therefore increased Rostra’s maximum iter-
ation number and when the number was four, we achieved 100%
aspectual branch coverage.

DCM has anMetrics aspect that usesaround andafter ad-
vice for method executions. Our tool reported 34% aspectual branch
coverage. We found that seven aspect methods are uncovered, two
of which are uncovered advice methods. By inspecting these advice
method’s join point definitions, we found they advisemain method
in the base class but our base class did not have amain method. We
constructed amain method for the base class and then six of these
seven originally uncovered methods were covered. The aspectual
branch coverage was increased from 34% to 52%. By inspecting
the remaining uncovered branches, many of them were due to that
the value ofMetrics’s static fielddumpinterval was never 1 but
its value is preset as -1 and could not be updated through code in-
terface (that is, these branches cannot be covered inherently unless
we modify the code under test). For other uncovered branches, we
could not easily improve test generation to cover them. A more
sophisticated test-generation tool is needed for generating tests to
cover them.

ProdLine has base classes that are a set of empty classes. Our
testing focuses on one of these classes:Vertex. The woven class
contains 10 intertype fields that are declared by seven aspects. It
also contains four methods that are declared by two aspects:DFS
andUndirected, which are developed for depth-first search and
undirected graph, respectively. Note that our coverage measure-
ment tool measures all aspect classes loaded at class loading time.
Many other loaded aspect classes thanDFS andUndirected were
loaded and thus measured. Our tool reported low aspectual branch
coverage (28%) and interaction coverage (13%). We inspected
these uncovered branches or call sites and found that many of them

AspectJ program advice type: branches callsites before wrapping after wrapping after guidance
pointcut type %branch %inter %branch %inter %branch %inter

NonNegativeArg before:exec 4 4 75% 50% – – 100% 100%
NonNegative before:call 3 3 0% 0% 66% 100% 100% –
PushCount around:exec;inter 4 3 75% 100% 100% – – –
Instrumentation after:call 2 1 0% 0% 100% 100% – –
NullCheck around:exec 4 2 25% 50% – – 75% 100%
Telecom after:call 14 10 85% 70% 100% 100% – –
BusinessRuleImpl before:exec 10 7 50% 100% – – 80% –
StateDesignPattern after:call 9 2 88% 100% – – 100% –
DCM around/after:exec 50 16 34% 38% – – 52% 87%
ProdLine inter 141 74 28% 13% – – – –
Bean around:exec;inter 10 10 100% 100% – – – –
LoD before:call/exec 22 70 45% 24% 59% 67% 68% 80%

Table 1: Results of applying Aspectra to generate test inputs for 11 subjects

are infeasible to be covered by those test inputs generated forVertex.
To achieve high coverage of all aspects, we would need to gener-
ate test inputs for all these base classes. When we focused on the
coverage ofDFS andUndirected, our generated test inputs got
reasonably sufficient coverage.

Beanhas a base classPoint. TheBoundPoint aspect declares
five intertype methods. Then the aspect usesaround advice for
method execution. Without using wrapper classes, Jtest and Rostra
generated test inputs that achieved 100% aspectual branch coverage
and 100% interaction coverage.

LoD has aCheck aspect that declares two pieces ofafter ad-
vice for checking the method calls. There are two other aspects
Percflow andPertarget for collecting calling context through
the use ofpercflow, pertarget, andcflow. Our tool reported
that generated test inputs achieved 45% aspectual branch coverage.
After we used a wrapper class, the aspectual branch coverage was
increased to 59%; the increase is due to the increase of call depths
affecting LoD’s behavior, rather than our original intention of the
wrapper mechanism. We further inspected uncovered advice and
found a piece of uncovered advice advises amain method and an-
other piece advises Java library method calls. We constructed a
main method in the base class and put some call sites of Java li-
brary methods in themain method. Then the generated test inputs
achieved 68% aspectual branch coverage. We could not easily im-
prove base-class construction or test generation for the remaining
uncovered branches. Besides a more sophisticated test-generation
tool, a sophisticated base-class construction tool is needed for help-
ing further improve the aspectual branch coverage.

6.4 Discussion
Although we applied Aspectra on only 12 AspectJ benchmarks,

we expect that Aspectra can be applied to a wide range of AspectJ
programs. In our experience, the wrapper mechanism is useful in
test generation when advice iscall advice and there are no call
sites of its advised methods in the code base. In addition, the wrap-
per mechanism is useful in test generation for public non-advice
methods of aspect classes. From our experience with testing these
12 benchmarks, constructing appropriate base classes turned out
to be more important than we originally thought, especially for
complex aspects. As we discussed in Section 6.1, we simply used
Stack for those aspects that were not equipped with base classes.
It turned out thatStackmay not be sufficient for some aspects such
asDCM andLoD. The measurement results of both interaction cov-
erage and aspectual branch coverage are helpful for guiding us in
improving base classes as well as test generation. But at the same
time, we also noticed that it is sometimes not trivial to manually fig-

ure out how to improve test coverage, especially when we were not
familiar with the code base under test. This observation suggests
the need of developing tools to automatically construct appropriate
base classes given aspects. We plan to pursue this research direc-
tion in our future work.

The runtime overhead of applying Aspectra is low. Because
our coverage measurement is focused on aspects or interactions
between aspects and base classes, the runtime overhead of mea-
surement is negligible. Although running Rostra with a large num-
ber of iterations could be expensive, all 12 benchmarks except for
StateDesignPattern require no more than three iterations to
achieve optimal aspectual branch coverage with Jtest-generated ar-
guments.

Sometimes Jtest-generated arguments are not sufficient (such as
those forBusinessRuleImpl). We expect that using a more pow-
erful tool with symbolic execution [31, 34] could generate better
arguments to cover some branches and thus reduce manual efforts
in producing relevant method arguments based on coverage mea-
surement results.

Aspectra focuses on testing aspectual behavior. Although As-
pectra also measures interaction coverage and tries to cover the in-
teractions between aspects and base classes, testing aspectual com-
position behavior may require developments of new techniques.

Aspectra tests aspectual behavior of an aspect by weaving the
aspect with one or several constructed base classes (including only
several representative base classes if the total number of base classes
is too large). Then it leverages the existing test-generation tools to
generate test inputs on a per-class basis. Indeed, in the context of
AOP, an aspect typically impacts more than one class and the as-
pect is usually executed in a broader context than what Aspectra
has tested. However, as was argued by Lopes and Ngo [23], testing
aspectual behavior individually can be cost-effective in diagnos-
ing failures and detecting faults in aspectual implementations. In
addition, they found that the majority of existing aspects are gen-
eral purpose such as logging, tracing, persistence, profiling, and de-
sign patterns. Testing these aspects woven with some representative
base classes can often be effective in detecting faults in aspectual
implementations before integration testing is done.

7. RELATED WORK
Souteret al. [29] developed a test selection technique based on

concerns. A concern is the code associated with a particular main-
tenance task. An aspect in AspectJ programs can be seen as a
concern. To reduce the space and time cost of running tests on
instrumented code, they proposed to instrument only the concerns
for collecting runtime information. They also proposed to select or

prioritize tests for the selected concerns. In particular, they select
a test if the test covers a concern that has not been been exercised
by previously selected tests. Zhouet al. [38] also used the same
technique for selecting tests for an aspect. These two test selection
approaches assume that there already exist a set of tests for an As-
pectJ program (or just for the base classes in the AspectJ program),
whereas Aspectra focuses on automatically generating test inputs
for an AspectJ program and using coverage measurement results to
guide developers to improve test coverage. Our aspectual branch
coverage or interaction coverage can also be used to select tests: if
a test input covers at least one new aspectual branch or interaction,
the test input is selected for inspection when there are no test or-
acles for generated test inputs. Our aspectual branch coverage or
interaction coverage defines coverage in the granularity of branches
or call sites, whereas Souteret al. or Zhouet al. define coverage in
a coarser granularity of whole aspects.

Xu et al. [35] presented a specification-based testing approach
for aspect-oriented programs. The approach creates aspectual state
models by extending the existing FREE (Flattened Regular Expres-
sion) state model, which was originally proposed for testing object-
oriented programs. Based on the model, they developed two tech-
niques for testing aspect-oriented programs. The first technique
transforms an aspectual state model to a transition tree and gener-
ates tests based on the tree. The second technique constructs and
searches an aspect flow graph for achieving statement coverage and
branch coverage. Their work focuses on testing aspect-oriented
programs based on abstract state models, whereas Aspectra focuses
mainly on automatically generating test inputs based on implemen-
tations.

Alexanderet al. [4] developed a fault model for aspect-oriented
programming, including six types of faults that may occur in aspect-
oriented systems. Their fault model provides useful guidance in de-
veloping testing coverage tools for aspect-oriented programs, whereas
Aspectra proposes an automated approach for generating tests to
achieve structural coverage. Recently, Nathan and Alexander [25]
proposed another fault model that results from maintenance prob-
lems for aspect-oriented programs. They also reported their evalu-
ation of AspectJ’s ability to distribute class files containing woven
concerns and to reweave them later. Although their fault model
may lead to a better understanding of maintenance issues inherent
in aspect-oriented software, it still does not provide a testing solu-
tion for aspect-oriented programs.

Zhao [36, 37] proposed a data-flow-based unit testing approach
for aspect-oriented programs. For each aspect or class, the ap-
proach performs three levels of testing: intra-module, inter-module,
and intra-aspect or intra-class testing. His work focused on unit
testing of aspect-oriented programs based on data flow, whereas
Aspectra focuses on automatically generating test inputs for As-
pectJ programs.

Rajan and Sullivan [27] presented an approach to expressing and
automating test adequacy criteria relative to crosscutting concerns
using aspect-oriented languages. Their approach represents tester
intentions within source code in an explicit and abstract way. They
also provided a white-box join point model and a generalized action
framework to support white-box testing tools. Their work focuses
on using aspect-oriented languages to support general and auto-
mated test adequacy analysis, whereas Aspectra focuses on gener-
ating test inputs for AspectJ programs and using structural coverage
measurement results to guide how to improve test coverage.

Rinard et al. [28] proposed a classification system for aspect-
oriented programs and developed a static analysis to support au-
tomatic classification. Their system characterizes the interactions
between advice and advised methods based on field accesses. De-

velopers can use the classification system and analysis to structure
their understanding of the aspect-oriented programs. Aspectra de-
fines and measures the coverage of interactions between advised
methods and aspect methods in the granularity of methods.

8. CONCLUSION
We proposed Aspectra, a novel framework for automatically gen-

erating test inputs for AspectJ programs. To test aspects in an As-
pectJ program, developers can construct base classes, which can
be woven with aspects to produce woven classes. Aspectra synthe-
sizes a wrapper class for each woven class. The wrapper mecha-
nism allows test-generation tools to indirectly exercise advice re-
lated tocall join points and public non-advice methods in aspects
during test generation. At the same time, the mechanism prevents
the methods in generated test classes from being advised by un-
wanted advice. Given wrapper classes, Aspectra leverages existing
test-generation tools for generating test inputs. But sometimes be-
havior in aspects may not be sufficiently exercised by test inputs
initially generated by these tools for base classes constructed by
developers. To assess the quality of generated test inputs, we de-
fine and measure aspectual branch coverage and interaction cover-
age based on four types of methods in AspectJ programs: advised
methods, advice, intertype methods, and public non-advice meth-
ods. We provide guidelines for developers to use measurement re-
sults to improve base-class construction or test generation. Our ex-
perience shows that our wrapper mechanism is necessary for some
important types of AspectJ programs and our measurement results
provide useful guidance for improving test coverage.

In future work, we plan to adapt our framework implementation
to accommodate AspectJ code compiled by other compilers such
as abc [2, 7]. We plan to provide tool supports for automatic con-
struction of base classes given aspects. We also plan to extend our
framework to address testing of other important behavior such as
aspectual composition behavior, including not only interactions be-
tween base classes and aspects but also interactions among multiple
aspects.

Acknowledgments
We thank Darko Marinov for discussion on this work and com-
ments on a previous draft of this paper. We thank Parasoft Co. for
providing the Jtest tool to us.

9. REFERENCES
[1] AspectJ compiler 1.2, May 2004.

http://eclipse.org/aspectj/.
[2] abc: The AspectBench Compiler for AspectJ, version 1.0.2,

Feburary 2005.http://aspectbench.org/.
[3] Apache Avalon Framework, August 2005.

http://excalibur.apache.org/.
[4] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards

the systematic testing of aspect-oriented programs. Technical
Report CS-4-105, Department of Computer Science,
Colorado State University, Fort Collins, Colorado, 2004.

[5] K. Arnold, J. Gosling, and D. Holmes.The Java
Programming Language. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[6] R. D. Asberry. Aspect oriented programming (AOP): Using
AspectJ to implement and enforce coding standards. Draft
manuscript, 2002.

[7] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhot́ak, O. Lhot́ak, O. de Moor, D. Sereni,

G. Sittampalam, and J. Tibble. abc: an extensible AspectJ
compiler. InProc. 4th International Conference on
Aspect-Oriented Software Development, pages 87–98, 2005.

[8] B. Beizer.Software Testing Techniques. International
Thomson Computer Press, 1990.

[9] L. Bergmans and M. Aksits. Composing crosscutting
concerns using composition filters.Commun. ACM,
44(10):51–57, 2001.

[10] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java.Software: Practice and
Experience, 34:1025–1050, 2004.

[11] M. Dahm and J. van Zyl. Byte Code Engineering Library,
April 2003.http://jakarta.apache.org/bcel/.

[12] B. Dufour, C. Goard, L. Hendren, O. de Moor,
G. Sittampalam, and C. Verbrugge. Measuring the dynamic
behaviour of AspectJ programs. InProc. 19th annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 150–169,
2004.

[13] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. InProc. 17th ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 161–173,
2002.

[14] Y. Hassoun, R. Johnson, and S. Counsell. A dynamic runtime
coupling metric for meta-level architectures. InProc. 8th
European Conference on Software Maintenance and
Reengineering, pages 339–346, 2004.

[15] Y. Hassoun, R. Johnson, and S. Counsell. Emprical
validation of a dynamic coupling metric. Technical Report
BBKCS-04-03, Birbeck College London, March 2004.

[16] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proc. 3rd International Conference on Aspect-Oriented
Software Development, pages 26–35, 2004.

[17] JUnit, 2003.http://www.junit.org.
[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InProc. 11th European Conference on
Object-Oriented Programming, pages 220–242. 1997.

[19] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

[20] R. Laddad.AspectJ in Action. Manning, 2003.
[21] K. Lieberherr, D. H. Lorenz, and P. Wu. A case for statically

executable advice: checking the law of demeter with aspectj.
In Proc. 2nd International Conference on Aspect-Oriented
Software Development, pages 40–49, 2003.

[22] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methods.Commun. ACM,
44(10):39–41, 2001.

[23] C. V. Lopes and T. Ngo. Unit testing aspectual behavior. In
Proc. AOSD 05 Workshop on Testing Aspect-Oriented
Programs, March 2005.

[24] R. E. Lopez-Herrejon and D. Batory. Using AspectJ to
implement product-lines: A case study. Technical report,
University of Texis at Austin, September 2002.

[25] N. McEachen and R. Alexander. Distributing classes with
woven concerns - a look into potential fault scenarios. In
Proc. 4th International Conference on Aspect-Oriented
Software Development, pages 192–200, March 2005.

[26] Parasoft. Jtest manuals version 4.5. Online manual, April
2003.http://www.parasoft.com/.

[27] H. Rajan and K. Sullivan. Aspect language features for
concern coverage profiling. InProc. 4th International
Conference on Aspect-Oriented Software Development,
pages 181–191, March 2005.

[28] M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs. InProc.
12th International Symposium on the Foundations of
Software Engineering, pages 147–158, 2004.

[29] A. L. Souter, D. Shepherd, and L. L. Pollock. Testing with
respect to concerns. InProc. International Conference on
Software Maintenance, page 54, 2003.

[30] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of
concerns. InProc. 21st International Conference on Software
Engineering, pages 107–119, 1999.

[31] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. InProc. 2004 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pages 97–107, 2004.

[32] T. Xie, D. Marinov, and D. Notkin. Improving generation of
object-oriented test suites by avoiding redundant tests.
Technical Report UW-CSE-04-01-05, University of
Washington Department of Computer Science and
Engineering, Seattle, WA, Jan. 2004.

[33] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InProc. 19th
IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[34] T. Xie, D. Marinov, W. Schulte, and D. Noktin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. InProc. the International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2005), April 2005.

[35] D. Xu, W. Xu, and K. Nygard. A state-based approach to
testing aspect-oriented programs. InProc. 17th International
Conference on Software Engineering and Knowledge
Engineering, July 2005.

[36] J. Zhao. Tool support for unit testing of aspect-oriented
software. InProc. OOPSLA’2002 Workshop on Tools for
Aspect-Oriented Software Development, Nov. 2002.

[37] J. Zhao. Data-flow-based unit testing of aspect-oriented
programs. InProc. 27th IEEE International Computer
Software and Applications Conference, pages 188–197, Nov.
2003.

[38] Y. Zhou, D. Richardson, and H. Ziv. Towards a practical
approach to test aspect-oriented software. InProc. 2004
Workshop on Testing Component-based Systems (TECOS
2004), Net.ObjectiveDays, Sept. 2004.

[39] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy.ACM Comput. Surv., 29(4):366–427,
1997.

