
Relation Extraction for Inferring Access Control Rules

from Natural Language Artifacts
John Slankas, Xusheng Xiao, Laurie Williams

North Carolina State University
890 Oval Drive

Raleigh, North Carolina, 27695, USA
{john.slankas, xxiao2, laurie_williams}@ncsu.edu

Tao Xie
University of Illinois, Urbana-Champaign

201 N. Goodwin Ave
Urbana, Illinois, 61801, USA

taoxie@illinois.edu

ABSTRACT

With over forty years of use and refinement, access control, often

in the form of access control rules (ACRs), continues to be a

significant control mechanism for information security. However,

ACRs are typically either buried within existing natural language

(NL) artifacts or elicited from subject matter experts. To address

the first situation, our research goal is to aid developers who

implement ACRs by inferring ACRs from NL artifacts. To aid in

rule inference, we propose an approach that extracts relations (i.e.,

the relationship among two or more items) from NL artifacts such

as requirements documents. Unlike existing approaches, our

approach combines techniques from information extraction and

machine learning. We develop an iterative algorithm to discover

patterns that represent ACRs in sentences. We seed this algorithm

with frequently occurring nouns matching a subject–action–

resource pattern throughout a document. The algorithm then

searches for additional combinations of those nouns to discover

additional patterns. We evaluate our approach on documents from

three systems in three domains: conference management,

education, and healthcare. Our evaluation results show that ACRs

exist in 47% of the sentences, and our approach effectively

identifies those ACR sentences with a precision of 81% and recall

of 65%; our approach extracts ACRs from those identified ACR

sentences with an average precision of 76% and an average recall

of 49%.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:

Security and Protection

General Terms

Documentation, Reliability, Security, Verification.

Keywords

Security, access control, classification, natural language parsing

1. INTRODUCTION
With over forty years of use and refinement, access control, often
in the form of access control rules (ACRs), remains a significant
and widely-used control mechanism for information security.
ACRs regulate who can perform specific actions on specific
resources within a software-intensive system and are considered a
critical component to ensure both confidentiality and integrity
[26]. Despite access control’s widespread usage, systems continue

to have vulnerabilities of incorrectly implementing ACRs. In the
2011 CWE/SANS Top 25 Most Dangerous Software Errors [1],
30% of the errors directly relate to access control.

To meet security requirements, ACRs need to be complete,
consistent, and correct [37]. Analysts must manage ACRs such
that they can be evaluated against these three attributes. Existing
project artifacts for systems such as use cases, requirements
documents, and user manuals often capture the intended ACRs for
the systems. However, manually sifting through these existing
artifacts to extract the buried ACRs can be a tedious, time-
consuming, and error-prone endeavor.

To address this issue, various researchers have proposed
approaches for extracting ACRs from natural language (NL)
artifacts. These approaches leverage techniques such as controlled
natural languages (CNLs) [2, 14, 28, 29], manual analysis [6, 11],
and natural language processing (NLP) [30, 35]. Each of these
techniques has its own strengths and weaknesses. For example,
manual analysis typically produces the most accurate results, but
at the cost of requiring more skilled human evaluators and time.
Using CNLs produces comprehensive results as CNLs are
designed to minimize the inherent ambiguity and complexity of
NL [28]. However, using CNLs typically requires specialized
authoring tools and conversion of pre-existing documents [29].
NLP techniques often require less manual effort than other
techniques and can work on existing documents. However, NLP
techniques tend to produce less accurate results than other
techniques [15].

Our research goal is to aid developers who implement ACRs by

inferring ACRs from NL artifacts.

We propose a novel approach, Access Control Rule Extraction

(ACRE), to allow organizations to use existing, unconstrained NL

texts such as requirements documents for inferring ACRs. ACRE

combines NLP, information extraction (IE), and machine learning

(ML) techniques. Internally, ACRE represents NL sentences as a

type dependency parse graph [22] that shows words as vertices

and relationships between words as edges. Figure 1 shows the

graph for the sentence “The user enters a grade for each student”.

enter

grade

subject

preposition:
fordirect

object

user student

each

determiner

Figure 1. Type Dependency Graph

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Annual Computer Security Applications Conference ’14, December 8–
12, 2014, New Orleans, LA, USA.

Copyright 2014 ACM 1-58113-000-0/00/0010 …$15.00.

ACRE then searches these graphs for a basic pattern of noun

(subject)–verb–noun (direct object). ACRE creates a frequency

table of all of the discovered subjects and direct objects. Any

subject or direct object that occurs more times than the median

count is assumed to a legitimate subject or resource (direct object)

for the system that the requirements documents are for. ACRE

then searches all combinations of the discovered subjects and

resources within the graphs. For each found combination, the

approach extracts the minimal spanning tree (MST) and assumes

that any verb within the tree corresponds to the action. ACRE

adds the extracted MST to a set of valid ACR patterns. ACRE

then expands the pattern set by allowing a subject or resource

node within the pattern to match any word of the same part of

speech in other sentence graphs (i.e., “wildcarded”). ACRE then

searches all of the sentence graphs for instances of the ACR

patterns. The found instances are assumed to represent ACRs and

the elements of the ACR are then extracted. ACRE iterates these

steps, searching for additional patterns until no more patterns can

be found in the sentences. To minimize incorrect patterns from

being created and applied, ACRE constructs a naïve Bayes

classifier to accept or reject patterns based upon domain-

independent features found in other documents.

ACRE builds upon various concepts in the Text2Policy approach

proposed by Xiao et al. [35]. However, ACRE incorporates IE and

ML techniques to automatically learn new ACR patterns, whereas

Text2Policy is limited by a fixed set of manually predefined ACR

patterns.

This paper makes the following main contributions:

 Bootstrapping mechanism to seed and iteratively discover
ACR patterns in NL text.

 Approach and supporting tool (built upon the combination of
NLP, IE, and ML techniques) to extract ACRs.

 Labelled data set of identified ACRs and sentences1.

 Evaluation of ACRE against documents from systems in three
domains: conference management, education, and healthcare;
Evaluation results showing that ACRE effectively identifies
ACRs sentences with a precision of 81% and a recall of 65%,
and ACRE extracts ACRs from those identified ACR
sentences with an average precision of 76% and an average
recall of 49%.

2. Background
This section provides background with regards to NLP, IE, ML,
and the challenges faced by these techniques for extracting ACRs
from NL documents.

2.1 Natural Language Processing (NLP)
NLP originates from the 1950s with the emergence of artificial
intelligence research. Most notably, Chomsky’s seminal work [5]
demonstrated NLP’s difficulty. Over 50 years later, perfect
solutions do not exist for the vast majority of NLP tasks. NLP
research in the 1960s and 1970s largely followed a rationalist
approach with hand-built rules and grammars dominating the field
[15]. In the 1980s, researchers returned to an empirical approach
for NLP through the emergence of probabilistic techniques and
large scale sets of annotated text [15]. These probabilistic
techniques form the foundation of modern statistical parsers that
represent the current state of the art in NLP [31]. Modern parsers
include seven main tasks: tokenization, sentence segmentation,
part-of-speech (POS) tagging, lemmatization, named-entity
recognition, syntactic parsing, and coreference resolution.

1 https://sites.google.com/site/AccessControlRuleExtraction

Tokenization involves detecting individual words, punctuation,
and other items from the text. In many situations, tokenization is
straightforward in the English language due to spaces and
punctuation marks; however, abbreviations, contractions, and
other structures exist to complicate tokenization. Furthermore,
technical documents may have structures (such as Java package
names) that generally-trained tokenizers (lexical analyzers) cannot
handle.

Sentence segmentation identifies sentence boundaries and then
splits the tokens found in tokenization into groups.

POS tagging identifies the part-of-speech tags (e.g., noun, verbs,
adjectives) for each token. The Penn Treebank [27] contains 36
different tags. The current state of the art achieves 97.3%
accuracy for individual tokens and a “modest” 57% for accuracy
for an entire sentence [21].

Lemmatization generates the common root word for a group of
related words. For instance, sang, sung, and sings are all forms of
a common lemma “sing”. This common root differs from a stem,
which is the root of a word after a suffix has been stripped [15].
Stems are produced through rule-drive techniques to derive base
forms of words without taking into account the word’s context or
part of speech. In contrast, lemmatization takes into account the
word’s part of speech and other information sources such as a
vocabulary to derive the base form of a word [20]. The state of the
art achieves around 99% accuracy for the English language [9].

Named-entity recognition (NER) seeks to classify phrases into
entity types (e.g., people, organizations, locations, times, vehicles,
events) from text [15]. Real-world NER architectures use a
combination of high-precision rules, probabilistic matching, and
machine learning techniques [15]. The state of the art for the NER
general task (the CoNLL-2003 shared task) has a F1 score of .89%
[18].

Syntactic parsing assigns a parse-tree structure to a sentence
[15]. The tree structure provides a basis for other tasks within
NLP such as question and answer, IE extraction, and translation.
The state of the art parsers have an F1 score of 90.4% [31].

Coreference resolution identifies whether or not two expressions
in a document refer to the same identity. A common subset of this
problem occurs within extracting ACRs from NL texts in that
pronouns must be resolved to their antecedents (the actual role or
resource). The state of the art has a 78% accuracy for the CoNLL-
2012 Shared Task [25]. Kennedy and Boguraev [16] introduced
an algorithm to resolve pronoun anaphora resolution (match the
correct noun to a pronoun) that does not require parsing and
achieves a 75% accuracy on their test set.

2.2 Information Extraction (IE)
IE creates structured data from text [15]. Common IE tasks
include named-entity recognition, reference resolution, relation
extraction (RE) and event extraction. A relation expresses the
relationship among two or more items. Common relation types
include “is-a” and “part-of”. For example, “a doctor is a licensed
healthcare practitioner (LHCP)” is represented by is_a(doctor,
LHCP) and “medical records contain family history” is
represented by contains(medical record, family history).
Similarly, we can have relation writes(doctor, prescription) to
indicate that a doctor can write a prescription. The IE field has
advanced largely due to the investments by the United States
government through challenges sponsored by DARPA [4] and
NIST2. State-of-the-art systems for RE in the sponsored
challenges typically have around 85% precision and 70% recall
[24]. In a task similar to ACR extraction, Zhu et al. [36] reported a

2 http://www.itl.nist.gov/iad/mig//tests/ace/

0.742 F1 score for extracting medical semantic relations
(problem,tests,treatments) from clinical texts.

ACR extraction is most similar to the RE task in that the relation
(action) between the subject and resource implies much of the
ACR within a sentence. However, ACR extraction differs from
most RE tasks in that it is not constrained by small, fixed sets of
binary relations [15]. Additionally, ACR extraction needs to infer
the appropriate permissions based upon the identified relation
(action). The permission may be further constrained by other
features within the sentences such as negativity or access
limitations to just a particular person or role.

Another IE technique is shallow parsing (semantic role labeling).
This technique involves identifying the different predicates
(phrases) in a sentence along with the appropriate role for each
phrase [3, 15]. The labelled roles then constitute the subject,
action, and resource for an ACR.

2.3 Machine Learning (ML)
ML allows us to employ an inductive technique for extracting
ACRs from NL rather than specifying specific extraction rules. To
decide whether or not a sentence contains an ACR, we construct a
k-nearest neighbor classifier (k-NN) [10], which is a supervised
learning algorithm. A k-NN classifier works by classifying a test
item based upon which items previously classified are closest to
the current test item. The classifier finds the k nearest “neighbors”
and returns a majority vote of those neighbors to classify the test
item. A distance metric determines the closeness between two
items. Euclidean distance often serves as a metric for numerical
attributes. For nominal values, the distance is binary – zero if the
values are the same or one if the values differ. k-NN classifiers
may use custom distance functions specific to the current
problem. Advantages of k-NN classifiers include the ability to
incrementally learn as new items are classified, to classify
multiple types of data, and to handle a large number of item
attributes. The primary drawback of k-NN classifiers involves
high algorithm runtime cost; if the classifiers have n items stored,
classification takes Ο(𝑛) time.

We also construct a naïve Bayes (NB) classifier to decide whether
or not a generated pattern is valid. These classifiers work by
selecting a class with the highest probability from a set of trained
data sets given a set of features [10]. Fundamentally, it assumes
that each feature of a class exists independently of other features
and the probabilities are derived from the counts of features
occurring in each class. Despite the simplification, the technique
performs effectively in real-world problems.

We selected both classifiers after evaluating multiple types of
classifiers with different features. The classification performance
on the test data was used as the selection criteria. As aside, we
found that a tree classifier had the highest performance for the
training data in classifying patterns, but a lower performance
score for the test data as the tree classifier overfits the training
data.

2.4 Challenges
Many significant, complex problems exist for NLP, IE, and ML;
these problems carry forward into ACR extraction.

Ambiguity issues appear in many contexts, including what
meaning words have. For example, the sentence “the bank
collapsed yesterday” creates confusion as one does not know
whether the “bank” was a financial institution or the side of levee.
Systems must disambiguate such terms based upon the context –
within the sentence itself or other sentences in the document.
Similarly, the same word can create issues for ACR extraction.
For example, “the patient enters his zip code to find the closest
physician” and “the administrator enters a new patient” have
separate permissions implied for the verb “enter”. In the first case,

the patient searches for physicians based upon a zip code so a read
permission is necessary. In the second case, the administrator
effectively creates a new patient in the system and, hence, some
form of a create permission is necessary.

Synonyms for the same term are another frequent source of
ambiguity in NL texts. For example, “professor” and “instructor”
may refer to the same role in sentences S2 and S4 in Figure 2.

Negativity, denying users access to a specific action and/or
resource, is a critical problem for access control. In certain cases,
users may be granted access to part of a record, but then explicitly
denied from reading other parts of that record. Negativity can
appear in multiple ways within sentences: negative determiners
(e.g., no, zero, neither), adjectives (e.g., unable), nouns (e.g.,
none, nothing), verbs with negative connotation (e.g., stop,
prohibit), and adverbs (e.g., never) [12]. All such possibilities
should be considered, and the identified negativity should be tied
back to the appropriate subject, action, or resource.

Resolution issues also appear in ACR extraction. One common
situation is the appearance of pronouns in place of the actual
subjects or resources. A specific case, anaphora resolution, exists
when a pronoun or other phrase (e.g., that, there) refers back to a
previously occurring noun or entity (the antecedent). A similar
resolution situation occurs when generic terms such as “data”,
“entries”, and “records” appear in text. Another situation occurs
when the system appears to be the subject (S3 in Figure 1) when
the actual actor can be identified from a prior sentence.

3. Access Control Rule Extraction (ACRE)
This section details ACRE – our approach to extracting ACRs

from NL text.

3.1 ACR Representation
Internally, ACRE represents sentences with a dependency graph
[22] as depicted in Figure 3 for the sentence “a nurse can order a
lab procedure for a patient.” In Section 3.2.2, we discuss how
these graphs are produced. Each vertex represents a word from the
sentence along with the word’s part of speech. In the figure, “NN”
represents a noun, “VB” represents a verb, and “MD” represents a
modal verb. Edges represent the grammatical relationship between
two words. For instance, “nurse” functions as the nominal subject
(nsubj) for “order”, and “lab procedure” is the direct object (dobj)
to be ordered. The indicators correspond to the subject(“S”),
action(“A”), resource(“R”) typically defined within an ACR.
Dependency graphs can be considered as trees in most situations
and are typically rooted by the sentence’s main verb. When
conjunctions are present, vertices may have multiple parents, and
thus the structure needs to be treated as a graph.

Figure 3. ACRE Sentence Representation

To represent an ACR, we use the pattern presented in Figure 4. 𝐴
defines the overall ACR. s contains an order set of vertices that
comprise the subject of a rule. Similarly, 𝑎 and 𝑟 represent the

S1: The system displays a list of courses taught by the professor.
S2: The professor selects a course.
S3: The system displays a list of enrolled students for the course.
S4: The instructor can enter a grade for each student.

Figure 2. Sample ACP Sentences

action and resource, respectively. 𝑛 contains the vertex
representing negativity if required for the rule. If the rule should
be limited to a particular subject 𝑠, 𝑙 contains the indicating
vertex. 𝑐 contains additional vertices required to provide context
to a given action for a set of permissions. 𝐻 represents the
subgraph of a sentence’s dependency graph that contains the
vertices and necessary edges to connect all of the vertices listed in
𝑠, 𝑎, 𝑟, 𝑛, 𝑙, 𝑐. 𝑝 represents the permissions typically associated
with an action. We limit permissions to have the values of
“create”, “retrieve”, “update”, and “delete” as we are primarily
concerned with controlling the ability to view and manipulate data
in systems. We do use “execute” for permissions that do not map
to one or more of the four preceding permissions. From the
example in Figure 3, we define the two rules in Figure 5.

𝐴({𝑠}, {𝑎}, {𝑟}, [𝑛], [𝑙], {𝑐}, 𝐻, 𝑝)

Figure 4. ACR Representation

𝐴((𝑛𝑢𝑟𝑠𝑒), (𝑜𝑟𝑑𝑒𝑟), (𝑙𝑎𝑏 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒), (), (), (𝑉: 𝑛𝑢𝑟𝑠𝑒, 𝑜𝑟𝑑𝑒𝑟, 𝑙𝑎𝑏 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒;

 𝐸: (𝑜𝑟𝑑𝑒𝑟, 𝑛𝑢𝑟𝑠𝑒, 𝑛𝑠𝑢𝑏𝑗); (𝑜𝑟𝑑𝑒𝑟, 𝑙𝑎𝑏 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒, 𝑑𝑜𝑏𝑗)), 𝑐𝑟𝑒𝑎𝑡𝑒)

 𝐴((𝑛𝑢𝑟𝑠𝑒), (𝑜𝑟𝑑𝑒𝑟), (𝑝𝑎𝑡𝑖𝑒𝑛𝑡), (), (), (𝑉: 𝑛𝑢𝑟𝑠𝑒, 𝑜𝑟𝑑𝑒𝑟, 𝑝𝑎𝑡𝑖𝑒𝑛𝑡;

 𝐸: (𝑜𝑟𝑑𝑒𝑟, 𝑛𝑢𝑟𝑠𝑒, 𝑛𝑠𝑢𝑏𝑗); (𝑜𝑟𝑑𝑒𝑟, 𝑝𝑎𝑡𝑖𝑒𝑛𝑡, 𝑝𝑟𝑒𝑝_𝑓𝑜𝑟)), 𝑟𝑒𝑎𝑑)

Figure 5. Extracted ACRs

Situations exist in which not all of the ACR elements may be
present within a single sentence. ACRE allows for only subjects
to be missing. While users may manually identify ACRs with
missing resources, ACRE has no support to find such patterns.
Developers would be pointed to the surrounding sentences to
finish defining the ACRs outside of the automated process.

3.2 ACRE Approach Details
The ACRE approach consists of five main steps:

1. Preprocess text documents
2. Produce dependency graphs
3. Classify each sentence as access control or not
4. Extract access control elements
5. Validate access control rules

3.2.1 Step 1: Preprocess Text Documents
In the approach, we first read the entire text into the tool built to
support the approach. We separate the input into lines by either a
carriage return or by periods at the end of sentences. Next, we
apply a concise grammar [30] to label each token to a specific
type (title, list element, list start, normal). By identifying specific
types of sentences, we can increase the classification performance.
Specifically, we found that section titles typically do not contain
ACRs, and we design the mechanism of scoring sentence
similarity to compare titles with only other titles within the
document. We also found that list items require more context than
just the specific item itself and process each list item combined
with the start of the list.

3.2.2 Step 2: Produce Dependency Graphs
In our approach, after identifying the different sentence types, we
parse each line (sentence) using the Stanford Natural Language
Parser3 and output a graph in the Stanford Type Dependency
Representation (STDR) [22]. While the Stanford Parser has
several output formats available, we choose the STDR because it
incorporates the sentence’s syntactic information in a concise and
usable format and captures the grammatical relationship between
words. Dependency parse trees have become a critical component
for many semantic role labeling systems as the NLP community
evolved in the early 2000s from a strict constituent-based (i.e.,

3 http://www-nlp.stanford.edu/software/corenlp.shtml

shallow parsing) systems [33]. From the STDR generated by the
parser, we create the sentence representation (SR) since we need
to track additional attributes for the sentence and for each word.

3.2.3 Step 3: Classify Each Sentence as Access
Control or Not
Next, a 𝑘-NN classifier classifies whether a sentence contains an
ACR. If the sentence does not express an ACR, we perform no
further analysis on it. The 𝑘-NN classifier works by taking a
majority vote of the existing classifications of the k nearest
neighbors to the item under consideration. The classifier uses an
adapted version of the Levenshtein distance [19] as the distance
metric. Rather than using the resulting number of edits to
transform one string into another as the Levenshtein distance
does, our adapted distance metric computes based on the number
of word transformations to change one sentence into another.

Although other machine learning algorithms can provide similar
performance to a 𝑘-NN classifier, the 𝑘-NN classifier provides
easier interpretation of the results for analysts since they can see a
ranked list of similar sentences and associated classifications.

Once we determine that the sentence contains an ACR, the user
may review the determination and correct it if necessary within
the tool. Figure 6 shows a screenshot of the tool’s user interface.
The top table contains the document with individual columns to
display the line number, sentence type, assigned classification,
and completion status, assigned cluster (groups of similar
sentences, optional functionality), and the sentence themselves.
The dialog in the lower left allows users to review and manually
enter or correct ACRs (discussed in the next section). The area in
the lower right displays the SR.

3.2.4 Step 4: Extract Access Control Elements
Next, we need to extract the subject, action, and resource elements
from the SR. We construct a relation extraction algorithm for the
identification of ACR elements and subsequent extraction of the
ACR. The algorithm follows a well-known bootstrapping
technique [7], but has been adapted specifically for ACR
extraction. The basic concept is to start with a small, well-known
set of ACR patterns and then expand those patterns to find other,
closely related patterns.

To initialize the algorithm (presented in Figure 8), we seed a set
of ten basic ACR patterns with each pattern consisting of just
three vertices as shown in Figure 7. Each pattern is the same,

except a different verb
4
 is used for a “Specific Action”. Wildcards

are used to match any noun in sentences containing the pattern.
We initially chose the words “create”, “retrieve”, “update”, and
“delete” because the words are commonly associated with
viewing and manipulating data. We then examined the
frequencies of all verbs within the test documentation and chose
to add more verbs associated with data and appearing with high
frequencies within the document. Based upon the application
domain or other documents, users may choose a different set of
starting actions. From these patterns, we match all occurrences of
the subjects and resources within the document along with their
associated frequency counts. From the counts, we compute the
median values for the subjects and resources. We then assume any
word that occurs more than the median belongs to the application
domain. Without a threshold, the potential for misidentified
subjects and resources is much greater as any word matching the
pattern would be accepted.

The subjects and resources are then stored in a list of known
subjects and resources. From this listing, we then search the
documents to see whether any subject exists along with any

4 create, retrieve, update, delete, edit, view, modify, enter, select

resource. For each sentence that does match the condition, we
extract the dependency pattern between subject and resource
vertices. We then assume that any verbs existing in that pattern
are the actions. If more than one verb exists in the shortest path
from the subject to the object, we combine the verbs, but use the
last appearing verb when defining permissions. In the sentence,
“the administrator chooses to create a new patient”, we combine
“choose” and “create” to “choose create” for the action. The
subject would be “administrator” and the object would be
“patient”. We derive permissions for each pattern by finding the
closest synonym (via WordNet5) that has an already defined
permission.

Once we extract the pattern, we apply a series of transformations
to extract additional patterns that may locate additional ACRs.
Specifically, we transform patterns that have an active voice into
passive voice and vice versa. We also transform the patterns to
assume conjunctions may exist for two or more subjects, two or
more actions, and two or more resources. To find additional
subjects and resources, we apply wildcards to the identified
subject or resource vertices. Only the subject or the resource
vertex is wildcarded to minimize semantic drift in bringing in
unrelated sentences or patterns to access control.

Furthermore, to ensure that the patterns are appropriate, we apply
a naïve Bayes classifier to judge whether an identified pattern is
appropriate. To detect the features used by the classifier, we use a
forward, stepwise selection model [10]. From this model, we
found the pattern itself (the POS tags and relationships between
vertices) to have the biggest influence. After that, the relationships
to the resources and subjects had the next largest influence. After
that, the identified parts of speech for the resources and subjects
improved classification performance slightly. We did not use any
further features (size, specific words, use of wildcards) since we
found those features began to decrease the classifier’s
performance.

5 http://wordnet.princeton.edu/

From the pattern set, we then search the documents for sentences
matching one or more patterns. Once we find any match, we
check to see whether other patterns match the same sentence. If
more than one pattern matches, and one pattern is contained
within another pattern, we discard the former as the latter pattern
provides a more specific match. Additionally, we check the
matched sentences for any children vertices (of the matched
pattern) that imply negativity or subject limitation (i.e., we check
whether a relevant indicator exists just outside of the matched
pattern).

The extracted ACR is then stored in a list for validation and
output to the user. Any new subjects or resources are then added
to the list of known subjects and resources. If newly discovered
subjects or resources exist, then the algorithm iterates until no
new items or patterns are discovered. Once the algorithm
converges, the user may inject two additional patterns into the
process to find more ACRs. Similar to the Basic ACR Seed
Pattern in Figure 7, the first injected pattern allows any pronoun to
be a subject within an ACR pattern. The second pattern searches
for only actions and resources, leaving resolution of the subjects
to another algorithm. The injection occurs after the algorithm
initially converges to avoid spurious matches that would occur if
the patterns were injected at the start of the algorithm.
Additionally, the user may manually identify ACR patterns
through identifying ACRs in the sentences. The information from
these patterns is fed into the algorithm to search for additional
extracted elements.

Match Subject
and Resources

Known
Subjects &
Resources

Subject &
Resource

Search

Pattern
Extraction and
Transformation

Pattern
Set

Pattern
Search

Extracted Access
Control Patterns

Generate
Seed Patterns

Manually
Identified
Patterns

Inject
Additional
Patterns

Figure 8. ACR Extraction Overview

Figure 6. Tool Screenshot of Access Control Rule Extraction (ACRE)

Specific Action
nsubj dobjVBA

NNS
*

NNR*
*

Figure 7. Basic ACR Seed Pattern

3.2.5 Step 5: Validate Access Control Rules
In this step, the tool checks for coverage and conflicts within the
extracted ACRs. Coverage is reported as the measurement for
each subject as to the number of identified resources that it has
ACRs identified. As we assume a default of no-access, 100%
coverage is not required. However, low coverage values may
indicate a need for further ACRs. Conflicts occur within ACRE
when a specific subject has been both granted permission to a
specific resource and restricted for the same permission on the
same resource. Such conflicts may arise due to rule extraction in
multiple locations or the use of a limiter to restrict access to a
specific subject.

4. Study Methodology
This section presents the methodology for collecting the study
documents, creating the study oracle, and running the analysis.

4.1 Study Documents
As access control widely exists in numerous domains for software
systems, we chose multiple domains for the evaluation. We
selected documents from the electronic healthcare, educational,
and conference management domains. Additionally, to compare
results to prior work, we included Xiao et al.’s study documents
[35]. Table 1 lists the study documents.

For the electronic health care domain, we selected iTrust6 [23].
The requirements consist of 40 use cases plus additional non-
functional requirements, constraints, and a glossary. We used two
versions of this document. The first (iTrust for ACRE) was
extracted directly from the project’s wiki7 while the second
(iTrust for Text2Policy) was taken from the documentation8 used
by Xiao et al. [35]. The first version more closely matches
specifications used in industrial settings in that it has separate
sections for introduction, glossary, non-functional requirements,
and other materials. The second version includes only the use
cases themselves and simplifies complex sentences to be more
consistent with the rules of their parser [35]. For the educational
domain, we took the eight use cases from the IBM Course
Registration System [13] used in a prior research study [34]. For
the conference management system, we used documents from
CyberChair9 [32], which has been used by over 475 different
conferences and workshops. We also included a combined
document of 114 sentences with ACRs that Xiao et al. [35]
collected.

4.2 Study Oracle
To train the classifiers used within ACRE and to evaluate its
performance, we developed a study oracle. To create the oracle,
the first author followed the following steps:

1. Convert the document into a “text-only” format.
2. Correct the resulting text file to account for improper

line breaks and other formatting issues.
3. Import the document into the ACRE tool.

6 http://agile.csc.ncsu.edu/iTrust/
7 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=requirements
8 https://sites.google.com/site/text2policy/
9 http://www.borbala.com/cyberchair/

4. Mark each sentence as to whether or not it is an ACR
sentence.

After the classification was complete, we validated the
classification through multiple ways. First, we created clusters of
related sentences. We then compared the classifications within
each cluster and investigated further those sentences that did not
have the same classification as other sentences in the group.
Additionally, as we classified each sentence, we had access to the
neighbors contained within the k-NN classifier. This way allowed
for more rapid manual classification by suggesting initial
classification that we could then verify or correct as deemed
necessary. Additionally, any discrepancies in the predicted
classification could be easily traced back to the source sentences.

We then had two other researchers manually classify each
document. We then computed the Fleiss’ kappa [7] for each
document (see Table 1). From Landis’ and Koch’s guidelines
[17], scores between 0.41 and 0.60 indicate moderate agreement,
while those between 0.61 and 0.80 indicate substantial agreement.
0.81 to 1.00 is considered almost perfect agreement. The three
individuals then discussed the differences and collectively choose
the appropriate classification for each sentence with
disagreements.

The first author then manually identified each ACR within the
documents. Once those rules were identified, another researcher
then validated a random sampling of 20% of the ACRs from the
document “iTrust for ACRE”. To ensure that the reviewer
diligently examined each set of tuples, we injected five
“mistakes”. The reviewer made 29 corrections out of the 359
ACRs and found 80% of the injected “mistakes”.

To create the initial classifications of the five documents, the first
author spent six hours to classify the 2,477 sentences as access
control or not. Identifying the specific access tuples took
additional 62 hours for the five documents.

4.3 Study Procedure
Once the oracle has been created, we ran the ACRE Tool to
produce several reports to pull out details to examine properties of
sentences with access control. To evaluate how well we identify
sentences with ACRs, we ran the 𝑘-NN classifier on a combined
document of the iTrust ACRE requirements, IBM Course
Management, and CyberChair. We also report results on each of
the five documents being individually classified. Each document
was tested with stratified n-fold cross-validation and computed the
precision, recall, and 𝐹1 measure. With the n-fold cross-validation,
data is randomly partitioned into n folds based upon each fold of
approximately equal size and equal response classification. For
each fold, the classifier is trained on the remaining folds and then

10 Xiao et al. [35] reported 448 sentences with 117 containing

access control for the same document evaluated from their web

site (https://sites.google.com/site/text2policy/). In this work, we

marked a sentence as containing an access control rule(s) when

an actor performed an action with regards to some resource

within the sentence. In the prior work [35], sentences with

access control had to follow one of four patterns (Table 6).

Table 1. Study Documents

Document Abbreviation Domain
Number of
Sentences

Number of ACR
Sentences Number of ACRs

Fleiss’
Kappa

iTrust for ACRE iTrust_acre Healthcare 1160 550 2274 0.58

iTrust for Text2Policy iTrust_t2p Healthcare 471 41810 1070 0.73

IBM Course Management IBM_cm Education 401 169 375 0.82

CyberChair Cyberchair Conference Mgmt 303 139 386 0.71

Collected ACP Documents Collected Multiple 142 114 258 n/a

http://agile.csc.ncsu.edu/iTrust/

the contents of the fold are used to test the classifier. The n results
are then averaged to produce a single result. We follow Han et
al.’s recommendation [10] and use 10 as the value for n as this
value helps produce relatively low bias and variance. The cross-
validation ensures that all sentences are used for training and that
each sentence is tested just once. We also report the results of
using the individual documents as folds within the combined
document. As it is not necessarily feasible to have a trained
classifier readily available, we also evaluate the amount of work
necessary to classify a document from scratch in terms of the
performance when classifying the rest of the document.

In the final phase of the study, we created the naïve Bayes
classifier using a document-fold way (i.e., training the classifier
with all of the documents being evaluated except for one and then
repeating the experiment until all documents have been tested).
We then ran the ACRE process to extract the ACRs. The extracted
ACRs were compared against the study oracle to determine the
accuracy of the results.

4.4 Evaluation Criteria
To evaluate results, we use recall, precision, and the F1 measure.
Recall measures how many of the ACR sentences we identified
from all of the sentences. Precision measures how well we
identified the ACR sentences in looking at classification mistakes.
To compute these values, we categorize the classifier’s
predictions into four categories. True positives (TP) are correct
predictions. True negatives (TN) are cases where we correctly
predicted that a sentence was not an ACR sentence. False
positives (FP) are cases where we mistakenly identify a sentence
as an ACR sentence when it is not. False negatives (FN) occur
when we fail to correctly predict an actual ACR sentence. From
these values, we define precision (P) as the proportion of correctly
predicted classifications against all predictions against the
classification under test: 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). We define recall
as the proportion of classifications found for the current
classification under test: R = TP/(TP+FN). The 𝐹1measure is the
harmonic mean of precision and recall, giving an equal weight to

both elements: 𝐹1 = 2 ×
𝑃×𝑅

𝑃+𝑅
. From an access control perspective,

high values for both precision and recall are desired. Lower
precision implies that the approach could more likely identify
non-ACR sentences as ACR sentences. Lower recall implies that
the approach could more likely miss ACR sentences.

5. Evaluation
We present and answer our research questions in this section.

5.1 Access Control Sentence Analysis
RQ1: What patterns exist among ACR sentences?
For this research question, we explore different patterns that ACR
sentences have. Xiao et al. reported four common sentence
patterns for sentences with ACRs (see Table 6). In Table 2, we
present the number of times we found these sentence patterns
within our study documents. As we did not have access to their

tool, we identified how often ACR sentences met one of their four
patterns based upon when certain conditions were met. For their
“Modal Verb in Main Verb Group” pattern, we checked whether a
modal verb existed in an ACR sentence. For the “Passive Voice”
pattern, we checked whether the sentence was in passive voice
with “allow” and “to” appearing in the sentence. For the “access
expression” pattern, we checked whether an ACR sentence had
some form of “access” within it. Finally, for the “Ability
Expression” pattern, we whether there existed some form of
“access” within the sentence. Xiao et al. found that 85% of the
ACRs followed these patterns in the document of iTrust for
Text2Policy. The updated results derived by us showed that these
patterns cover only 57% of the ACR sentences that we identified.

We also examined how frequently extracted ACRs pattern appear.
Table 2 shows the top ACR patterns for all documents. The most
common pattern (equivalent to ACRE’s basic seed pattern) occurs
approximately 14% for all ACRs. We also found a high
occurrence of ACR patterns with a preposition in them.

Table 2. Top ACR Patterns

Pattern Num. of Occurrences
(VB root(NN nsubj)(NN dobj)) 465 (14.1%)
(VB root(NN nsubjpass)) 122 (3.7%)
(VB root(NN nsubj)(NN prep)) 116 (3.5%)
(VB root(NN dobj)) 72 (2.2%)
(VB root(NN prep_%)) 63 (1.9%)

We then examined how frequently multiple types of ACRs could
occur in one sentence. For example, S3 in Figure 2 has multiple
forms of ACRs to be extracted. We found multiple ACRs in
approximately 33% of all ACR sentences. Multiple forms of
access being tied to the same action can also cause issues with
permissions since different permissions may be necessary.

RQ2: How frequently do different forms of ambiguity occur in
ACR sentences?
We also examined how frequently different forms of ambiguity
(i.e., when a subject or object is not clearly defined in an extracted
ACR), occur within the documents. We found that pronouns
occurred as subjects in only 3.2% of the identified ACRs.
“System” and “user” occurred as subjects in 11% of all ACRs. We
also found that a subject could not be explicitly identified as a
subject in 17.3% of the ACRs. We found very few instances of
pronouns as objects. However, we did find that ambiguous terms
(e.g., “list”, “name”, “record”) occurred 21.5% in all of the ACRs.
From these observations, a strong need exists to track actors from
one sentence to another sentence to complete blank subjects or
replace “system” and “user” occurrences. Similarly, an effective
approach needs to be able to resolve ambiguity issues with
objects. In most cases, this ambiguity resolution can be done by
examining prepositions that relate directly to the ambiguous word.
We also found that missing objects within ACRs only occurred in
four times in all of the documents.

Table 3. Metrics by Document

 iTrust_acre iTrust_t2p IBM CM CyberChair Collected

Text2Policy Pattern – Modal Verb 210 130 46 71 93

Text2Policy Pattern – Passive voice w/ to Infinitive 66 21 10 39 9

Text2Policy Pattern – Access Expression 32 7 5 1 18

Text2Policy Pattern – Ability Expression 45 21 14 11 3

Number of sentences with multiple types of ACRs 383 146 77 105 36

Number of patterns appearing once or twice 680 173 162 184 97

ACRs with ambiguous subjects (e.g. “system”, “user”, etc.) 193 119 139 1 13

ACRs with blank subjects 557 206 29 187 5

ACRs with pronouns as subjects 109 28 5 11 11

ACRs with ambiguous objects (e.g., entry, list, name,etc.) 422 228 45 47 34

5.2 Identification of ACR Sentences
RQ3: How effectively does ACRE detect ACR sentences in terms
of precision and recall?
Table 4 presents the results of running the classifier against each
document individually with a ten-fold cross validation. We then
evaluate the documents of iTrust for ACRE, IBM Course
Management, CyberChair, and Collected ACP using both a 10-
fold cross validation and a document-fold validation. For general
use, the document-fold validation would most represent the
performance as the user would use an existing classifier against a
new document. For this result, ACRE had a precision of 81% and
a recall of 65%. The scores for the documents of iTrust for
Text2Policy and Collected ACP were abnormally high due to the
high concentration of ACR sentences.

We also evaluated how ACRE would perform classifying
sentences in which the user did not have a pre-trained classifier
available. Figure 9 shows the classification performance for the
documents based upon what percentage of the sentences in a
document has been correctly classified by a user. For the
document of iTrust for ACRE, the F1 score is already above 80%
after just 25% of the sentences in the document have been
classified as having ACRs or not. For the sentences in the
document of IBM Course Management, the performance shows
two irregularities where performance decreases (at 10% and 35%
completion). Based on examining the document, the first situation
contains the glossary. The sentences contained here tend to have
high similarity to other sentences later in the document, but do not
have any corresponding user-based actions. As such, they do
contain ACRs. They then cause false negatives as later sentences
are parsed. In the second situation, the User Login Use Case was
evaluated. As these sentences deal primarily with authentication,
they do not contain ACRs. The documents for iTrust for
Text2Policy and Collected ACP were not placed into the graph
since the overall percentages of ACR sentences are so high that
there is no practical change to the classification performance.

5.3 Access Control Rule (ACR) Extraction
RQ4: How effectively can the subject, action, and resources
elements of ACRs be extracted from ACR sentences?
Table 5 presents the results of the bootstrapping algorithm on each
of the documents. We train the naïve Bayes classifier by using the
identified patterns in the other documents. The document of iTrust
for Text2Policy is not used for training. Also, neither of the iTrust
documents are used in the training set when evaluating one of
those documents.

Table 5. ACR Extraction

 Precision Recall F1

iTrust for Text2Policy 80% 75% 77%

iTrust for ACRE 75% 60% 67%

IBM Course Management 81% 62% 70%

CyberChair 75% 30% 43%

Collected ACP 68% 18% 29%

ACRE performed best on document of iTrust for Text2Policy.
This document contained a number of subjects and resources
repeated throughout the document. As complex sentences were

split into multiple, simpler sentences, there were less complex
patterns to discover. ACRE performed worst on the document of
Collected ACP. This document contains ACR sentences extracted
from 19 sources. As little repetition exists in sentence structure,
subjects, and resources, ACRE performs poorly in finding the
initial set of known subjects and resources as well as in expanding
the patterns. For the document of Collected ACP, if we start the
algorithm with a known list of resources and subjects (which can
be easily obtained from a glossary or similar section), ACRE has a
precision of 85%, a recall of 70%, and a F1 of 77%. The document
of CyberChair also demonstrated a very low recall. As this
document was a combination of an introductory page as well as a
conference paper, little repetition exists in the sentence structure.
Bootstrapping from a known list of subjects and resources only
slightly improves the recall to 39% as 117 of the missing 240
ACRs were covered by patterns with more than three nodes
containing missing subjects.

When examining which features to use for the naïve Bayes
classifier, we found that the patterns themselves produced 80% of
the possible performance. The relationships to the subjects and the
objects then made the next most noteworthy performance
improvements. After these three features, adding more features
into the classifier reduced the classifier’s performance.

Figure 9. Classification Performance (F1) by Completion %

6. Discussion and Future Work
Since our ACRE approach uses NLP techniques, ACRE and its
supporting tool cannot extract information contained in images.
With regards to ACRs, the bootstrapping mechanism does not
take into account the presence of contextual information or
conditions that may affect the generated ACRs. But the user can
manually enter such information. The ACRE approach also
requires that subjects and resources be identified as nouns and
actions as verbs unless the user manually enters a rule. The
approach also assumes that all necessary information for an ACR
is contained within the same sentence. But it is feasible for
elements of an ACR to exist in surrounding sentences of the
corresponding ACR sentence.

Our approach currently does not handle resolution issues. These
issues occur when a pronoun or generic term such as “system” or
“data” is used in place of a descriptive term. In future work, we
plan to incorporate resolution techniques to address such issues.
We also plan to investigate how to search for larger ACR patterns
in which the subject is missing.

The threat to external validity is mainly due to the
representativeness of the subjects. To reduce the threat, we

Table 4. Identification of ACR Sentences

Document Precision Recall F1

iTrust for Text2Policy 96% 99% 98%

iTrust for ACRE 90% 86% 88%

IBM Course Management 83% 92% 87%

CyberChair 63% 64% 64%

Collected ACP 83% 96% 89%

10-fold validation 81% 84% 83%

Document-fold validation 81% 65% 72%

evaluate our approach on documents from three domains.
However, to further reduce the threat, additional evaluation needs
to occur across multiple domains and applications. We surmise
that the approach can work for other narrative-based texts, but
“task/step-oriented” documents such as test scripts and user
manuals would be less effective as the subject is often assumed
throughout a series of steps. For such documents, we would need
to study the use of “action–resource” pairs to generate patterns.

ACRE does require manual effort to setup the classifiers. We
were able to identify whether or not a sentence contained an ACR
at an average rate around one sentence per 9 seconds. However,
this identification process is just making a simple yes or no
decision and we had optimized an interface such that the user only
had to press a single button per sentence. Considerably more
effort is required to identify each ACR within a sentence. We
identified the ACRs at an average rate of one ACR per 50
seconds. However, we found that the naïve-Bayes classifier for
patterns could be used effectively across our documents and
domains. In future work, we plan to study ways to reduce the
workload in human annotation for NL classification tasks.

7. Related Work
This section presents related work in regards to controlled NLs
and extraction of ACRs from NL artifacts.

7.1 Controlled Natural Language (CNL)
Approaches of controlled natural language (CNL) were proposed
to convert NL to and from ACRs. Schwitter [28] defined a CNL
as “an engineered subset of a natural language whose grammar
and vocabulary have been restricted in a systematic way in order
to reduce both ambiguity and complexity of full natural
language.” While a CNL provides consistent, semantic
interpretations, a CNL limits authors to the defined grammar and
typically requirse language-specific tools to stay within the
language constraints. Previously created project documents cannot
be used as inputs without pre-processing the documents into
CNL-specific tools. Rules authored outside of the tools must
conform to strictly limited grammars to be automatically parsed.
Brodie et al. [2] used such approach in the SPARCLE Policy
Workbench. By using their own NL parser and a controlled
grammar, they effectively translated from NL into the formal
rules. Inglesant et al. [14] demonstrated similar success with their
tool, PERMIS, which used a role-based authorization model.
However, they reported issues with users not comprehending the
predefined “building blocks” imposed by using a CNL. Recently,
Shi and Chadwick [29] presented their approach to authoring
ACRs using a CNL. While they showed the improved usability of
CNL interface, their approach was limited in the complexity of
the rules that could be created since their supporting tool did not
support conditions such as previous actions that must be taken
before a user could access data. ACRE removes the CNL
constraints, working against original, unconstrained texts.

7.2 Natural Language and Access Control
NL sources have been analyzed to infer and generate ACRs.
Fernandez and Hawkins [6] presented a basic overview of

extracting RBAC from use cases in 1997. Fontaine [8] proposed
an approach based upon goal-based requirements engineering to
extract authorization and obligation rules from NL texts into a
policy language. He and Antón [11] proposed an approach to
generate ACRs from NL based upon available project documents,
database design, and existing rules. Using a series of heuristics,
developers manually analyze the documents to find ACRs
whereas our approach seeks to automatically extract ACRs.

7.3 Text2Policy
Xiao et al. proposed Text2Policy [35], for automated extraction of
ACRs. Text2Policy accepts use cases in NL text as input and
outputs the extracted ACRs in the eXtensible Access Control
Markup Language (XACML) format. Text2Policy first uses
shallow parsing techniques with finite state transducers to
annotate sentences with “phrases, clauses, and grammatical
functions of phrases such as subject, main verb, and object.” From
those annotations, Text2Policy matches a sentence into one of
four possible access control patterns (Table 6). If such a match
can be made, Text2Policy classifies the sentence as an ACR.

Once Text2Policy classifies sentences as ACRs, Text2Policy uses
the annotated portions of the sentences to extract the subject,
action, and object from the sentence. Text2Policy uses a pre-
defined domain dictionary to associate the action with specific
semantic classes such as “UPDATE” and “DELETE” to
determine appropriate permissions for the ACR.

While ACRE and Text2Policy both target the problem of ACR
extraction from NL, they differ in their basic approaches.
Fundamentally, the differences between ACRE and Text2Policy
can be summarized by an inductive versus a deductive approach.
ACRE applies inductive reasoning to find and extract ACRs.
Text2Policy applies deductive reasoning based upon existing rules
(sentence patterns) to find and extract ACRs.

ACRE identifies sentences containing ACRs through a supervised
learning approach. As such, the approach requires a labelled
dataset similar in structure and content to the document being
analyzed. Text2Policy identifies sentences containing ACRs
based upon whether or not the shallow parser can parse the
sentence into one of its four required patterns. In this regard,
Text2Policy has an advantage since Text2Policy does not require
a labelled data set to train a classifier. However, Text2Policy can
miss ACRs that do not follow one of its four patterns. In our
analysis of the documents, we found that only 34.4% of the
identified ACR sentences followed one of Text2Policy’s patterns.
Additionally, Text2Policy’s NL parser required splitting longer
sentences as the parser could not handle complicated sentence
structures.

Text2Policy can extract only one ACR per sentence. For example,
ACRE would extract two rules from S4 in Figure 2 (instructor,
entercreate, grade) and (instructor, enterread, student). Text2Policy
would find only the former ACR. From our evaluation in Section
5.3, we found that sentences containing multiple ACRs account
for 33% of the examined sentences.

Table 6. Text2Policy - Semantic Role Patterns in Access Control Sentences [35]

Semantic Pattern Examples

Model Verb in Main Verb Group An LHCP[subject] can view[action] the patient’s account[resource].
An admin[subject] should not update[action] the patient’s account[resource].

Passive Voice followed by
To-infinitive Phrase

An LHCP[subject] is disallowed to update[action] the patient’s account[resource].
An LHCP[subject] is allowed to view[action] the patient’s account[resource].

Access Expression An LHCP[subject] has read[action] access to the patient’s account[resource].
A patient’s account[resource] is accessible[action] to an LHCP[subject].

Ability Expression An LHCP[subject] is able to read[action] patient’s account[resource].
An LHCP[subject] has the ability to read[action] access to the patient’s account[resource].

8. Conclusion
In this paper, we have presented an approach, ACRE, to assist
developers in automatically extracting ACRs from NL documents.
ACRE provides a way for developers to quickly generate an initial
set of ACRs with traceability back to the originating sentences.
Developers can apply the approach to detect conflicts in generated
rules as well as evaluating the coverage of the generated rules to
the identified subjects and resources. We demonstrated how
effectively a bootstrapping algorithm can extract rules from a very
small initial set of patterns.

We found that ACRs exist in 47% of the examined sentences. Our
ACRE approach correctly identifies ACR sentences with a
precision of 81% and recall of 65%. The approach extracts ACRs
from those identified ACR sentences with an average precision of
76% and an average recall of 49%. Due to the bootstrapping
mechanism, the approach works better with a longer document
with similar sentences structures, subjects, and resources repeated
throughout the document.

9. ACKNOWLEDGMENTS
This work is supported by the USA National Security Agency
(NSA) Science of Security Lablet. Any opinions expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the NSA. We would like to thank the NCSU
Realsearch group for their helpful comments on the paper.

10. REFERENCES
[1] 2011 CWE/SANS Top 25 Most Dangerous Software Errors:

2011. http://cwe.mitre.org/top25/. Accessed: 2011-11-14.
[2] Brodie, C. a. et al. 2006. An Empirical Study of Natural

Language Parsing of Privacy Policy Rules Using the
SPARCLE Policy Workbench. In Proc. SOUPS. (2006), 8–
19.

[3] Carreras, X. and Màrquez, L. 2005. Introduction to the
CoNLL-2005 Shared Task: Semantic Role Labeling. In Proc.
CoNLL (2005), 152–164.

[4] Chinchor, N. and Sundheim, B. 1996. Message
Understanding Conference - 6: A Brief History. In Proc.
Coling (1996), 466–471.

[5] Chomsky, N. 1956. Three models for the description of
language. Information Theory, IRE Transactions on. 2, 3
(1956), 113–124.

[6] Fernandez, E.B. et al. 1997. Determining Role Rights from
Use Cases. In Proc. ACM Workshop on RBAC (1997), 121 –
125.

[7] Fleiss, J.L. 1971. Measuring nominal scale agreement among
many raters. Psychological Bulletin. 76, 5 (1971), 378–382.

[8] Fontaine, P.J. 2001. Goal-Oriented Elaboration of Security
Requirements. Université catholique de Louvain.

[9] Gesmundo, A. and Samardžić, T. 2012. Lemmatisation as a
Tagging Task. In Proce. ACL. (2012), 368–372.

[10] Han, J. et al. 2011. Data Mining: Concepts and Techniques.
Morgan Kaufmann.

[11] He, Q. and Antón, A.I. 2009. Requirements-based Access
Control Analysis and Policy Specification (ReCAPS).
Information and Software Technology. 51, 6 (Jun. 2009),
993–1009.

[12] Huddleston, R. and Pullman, G. 2002. The Cambridge
Grammar of the English Language. Cambridge University
Press.

[13] IBM 2004. Course Registration Requirements.
[14] Inglesant, P. et al. 2008. Expressions of Expertness: The

Virtuous Circle of Natural Language for Access Control
Policy Specification. In Proc. SOUPS (2008), 77–88.

[15] Jurafsky, D. and Martin, J. 2009. Speech and Language
Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech
Recognition. Pearson.

[16] Kennedy, C. and Boguraev, B. 1996. Anaphora for everyone:
pronominal anaphora resoluation without a parser. In Proc.
Coling (1996), 113–118.

[17] Landis, J.R. and Koch, G.G. 1977. The Measurement of
Observer Agreement for Categorical Data Data for
Categorical of Observer Agreement The Measurement.
Biometrics. 33, 1 (1977), 159–174.

[18] Language-Independent Named Entity Recognition: 2003.
http://www.cnts.ua.ac.be/conll2003/ner/.

[19] Levenshtein, V.I. 1966. Binary Codes Capable of Correcting
Deletions, Insertions, and Reversals. Soviet Physics Doklady.
10, 8 (1966), 707–710.

[20] Manning, C. et al. 2008. Introduction to Information
Retrieval. Cambridge University Press.

[21] Manning, C. 2011. Part-of-speech tagging from 97% to
100%: is it time for some linguistics? In Proc. CICLing
(2011), 171–189.

[22] De Marneffe, M.-C. et al. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In Proc.
LREC (2006), 449–454.

[23] Meneely, A. et al. 2011. iTrust Electronic Health Care
System: A Case Study. Software System Traceability.

[24] Piskorski, J. and Yangarber, R. 2013. Information Extraction:
Past, Present, and Future. Multi-source, Multilingual
Information Extraction and Summarization. T. Poibeau et al.,
eds. Springer Berlin Heidelberg. 23–50.

[25] Potts, C. and Recasens, M. 2012. The Life and Death of
Discourse Entities : Identifying Singleton Mentions. 0, Table
1 (2012).

[26] Samarati, P. and Vimercati, S. de 2001. Access control:
Policies, models, and mechanisms. Foundations of Security
Analysis and Design. (2001), 137–196.

[27] Santorini, B. 1995. Part-of-Speech Tagging Guidelines for
the Penn Treebank Project (3rd Revision, 2nd printing). June
1990 (1995).

[28] Schwitter, R. 2010. Controlled Natural Languages for
Knowledge Representation. In Proc. CICLing (2010), 1113–
1121.

[29] Shi, L. and Chadwick, D. 2011. A Controlled Natural
Language Interface for Authoring Access Control Policies. In
Proc. SAC (2011), 1524–1530.

[30] Slankas, J. and Williams, L. 2013. Access Control Policy
Extraction from Unconstrained Natural Language Text. In
Proc. PASSAT (2013), 435–440.

[31] Socher, R. et al. 2013. Parsing with Compositional Vector
Grammars. In Proc. ACL. (2013).

[32] Stadt, R. Van De 2012. Cyberchair: A web-based groupware
application to facilitate the paper reviewing process. arXiv
arXiv:1206.1833. (2012).

[33] Surdeanu, M. and Johansson, R. 2008. The CoNLL-2008
Shared Task on Joint Parsing of Syntactic and Semantic
Dependencies. In Proc. CoNLL (2008), 159–177.

[34] Vidya Sagar, V.B.R. and Abirami, S. 2014. Conceptual
modeling of natural language functional requirements.
Journal of Systems and Software. 88, (Feb. 2014), 25–41.

[35] Xiao, X. et al. 2012. Automated Extraction of Security
Policies from Natural-Language Software Documents. In
Proc. FSE (2012).

[36] Zhu, X. et al. 2013. Detecting concept relations in clinical
text: insights from a state-of-the-art model. Journal of
biomedical informatics. 46, 2 (May 2013), 275–85.

[37] Zowghi, D. and Gervasi, V. 2003. On the interplay between
consistency, completeness, and correctness in requirements
evolution. Information and Software Technology. 45, 14
(Nov. 2003), 993–1009.

