
An Empirical Study of Java Dynamic Call Graph Extractors
Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington

Box 352350
Seattle, WA 98195-2350 USA

+1 206 616 1844

{taoxie, notkin}@cs.washington.edu

ABSTRACT
A dynamic call graph is the invocation relation that represents a
specific set of runtime executions of a program. Dynamic call
graph extraction is a typical application of dynamic analysis to aid
compiler optimization, performance analysis, program
understanding, etc. In this paper, we empirically compare the
results of nine Java dynamic call graph extractors quantitatively
and qualitatively. We investigate those differences among the
dynamic call graph extracted by different tools mainly caused by
different underlying Java program instrumentation techniques and
other design decisions. A comparison between static call graph
and dynamic call graph shows software engineering tools for
program understanding place a different requirement on dynamic
call graph from compilers or profilers whose main purpose is
optimization or performance tuning. Dynamic call graphs require
some complementary static information and an effective
representation to aid program understanding. Choosing an
appropriate instrumentation technique, integrating static and
dynamic information, and providing flexible user manipulation for
dynamic call graphs can better facilitate program understanding
task. In this paper, we discuss the study and sketch the design
considerations for an effective dynamic call graph tool to support
program understanding.

1. INTRODUCTION
A call graph is a binary relation over selected entities in a
program, such as methods, classes, subsystem, modules, files, etc.,
which represents invocations between those entities. A static call
graph is the relation describing those invocations that could be
made from one entity to another in any possible execution of the
program. Static call graphs are generally expected to be
conservative: that is, they are not expected to omit any
invocations that can take place in any execution. In practice, due
to computational complexity, static call graphs are imprecise,
including invocations that are never executed. A dynamic call
graph is the relation including invocations over one or more
actual executions of the program. Ideally a dynamic call graph is
the subset of the static call graph for the same program. A
dynamic call graph can be considered as one instance of the

corresponding static call graph.

Compilers sometimes compute static call graphs to aid
optimization. Many software engineering tools extract static call
graphs to assist program understanding tasks, for example,
subsystem classification, architecture recovery, architectural
evolution tracking [15], software reflexion models [9], etc.
Compared to static call graphs, dynamic call graphs tend to be
simpler because they focus only on the invocation relation in
certain executions of the program. In addition, a dynamic call
graph reflects the connection between the dynamic behavior,
which exhibits certain behavior of the program, and the program
structure, which represents the implementation of that exhibited
behavior. Dynamic call graphs can also be used to evaluate test
coverage thoroughness and help debugging. Dynamic calls are
popularly used in profiling tools to provide a framework for
performance analysis or profile-driven compiler optimizations.
They are especially useful in tuning the program parallelization
and tracing the multiple-thread or distributed applications.

Compilers generally need to compute conservative static call
graphs to ensure the correctness of optimizations over all possible
executions. Software engineering tools for program understanding
may impose a relaxed requirement on static call graphs [10]. For
example, some false negatives (mistakenly omitted invocations)
may be acceptable in static call graphs for some tasks. However,
in some ways, software engineering tools may place a different,
stricter in some sense, requirement on dynamic call graph than
compilers or profilers. To better understand the connection
between the program structure and dynamic behavior inferred by
dynamic call graphs, the dynamic call graph should be
supplemented with some static information. In addition, the
requirement of the dynamic information scope and representation
for program understanding task is also different from the one for
compiler optimization or performance tuning.

Java, an object-oriented (OO) and multithreaded language, has
been extensively adopted by the community of software
developers [6]. It shares many language features common to most
programming languages in use nowadays. To lay a better
foundation for understanding dynamic call graphs, in this paper
we empirically compare dynamic call graphs extracted from two
Java micro-benchmarks by nine dynamic call graph extractors,
comparing the static call graphs and dynamic call graphs extracted
from the same program.

This paper makes four contributions:

• It presents, quantitatively and qualitatively, the differences of
the extracted dynamic call graphs by nine different tools.

Dept. of Computer Science & Engineering
University of Washington
Technical Report 02-12-03
December 2002

3
 UW CSE Technical Report 02-12-0

• Based on an analysis of the differences among extracted
dynamic call graphs, it shows the capabilities and limitations
of different underlying instrumentation techniques adopted
by dynamic call graph extractors.

• Based on an analysis of the differences between static and
dynamic call graphs, it shows that the integration of static
and dynamic analysis can attack some problems faced by
static call graph and dynamic call graph respectively in
assisting program understanding.

• It discusses key design considerations for dynamic call graph
extractors.

2. TOOL CATEGORIES
Dynamic analysis in Java instruments code by adding instructions
to the Java source code, to the bytecode or to the Java Virtual
Machine (JVM). While executing the Java program, these
instrumented instructions export the required state information,
such as executed methods, resources consumed on methods, etc.
Instrumentation for dynamic analysis normally does not affect
program semantics or change a program’s functional behavior.
However, it generally induces some performance overhead,
perturbing the program to some degree. In this section, we take a
broad look at the instrumentation techniques adopted by various
Java dynamic analysis tools most of which can extract dynamic
call graphs or call trees. In Table 1, the first three categories are to
instrument the application program but the remaining three ones
are to instrument the runtime environment where the application
program is running.

Table 1. Instrumentation categories for tools

Instrumentation techniques Examples

Source-level Instrumentation Panorama for Java 1.0.5[13]

Static Bytecode Instrumentation Bytecode Instrumenting Tool [3]

Dynamic Bytecode
Instrumentation

Trace release 1 based on Byte
Code Engineering Library [17]

Profiler Agent Using Java Virtual
Machine Profiler Interface
(JVMPI)

Intel VTune 5.0 [20]
Rational Quantify 2001A [14]
Optimizeit 4.02 [12]
JProbe 3.0 [7]
TrueTime 2.1 [18]
IBM Jinsight 2.1 [16]

Statically Instrumented JVM IBM Jinsight 2.0 [16]

Dynamically Instrumented JVM ParaDyn-J [11]

Source-level instrumentation inserts instrumentation code at
specified locations in a given piece of source code. Bytecode
instrumentation inserts the instrumentation code by adapting the
bytecode. Static bytecode instrumentation instruments the
bytecode before it is loaded or executed in the runtime
environment. Dynamic bytecode instrumentation instruments the
bytecode after the class contained in the bytecode is loaded in the
runtime environment. The Java Virtual Machine Profiler Interface
(JVMPI) is a two-way method call interface between the Java
virtual machine and an in-process profiler agent [19]. A profiling
tool based on JVMPI can obtain a variety of information for a

comprehensive performance analysis task. Statically instrumented
JVM approaches instrument the JVM program in order to export
some state information available while it executes the bytecode.
The Dynamically Instrumented JVM approach generates and
inserts instrumentation code into the JVM, or removes it from the
JVM at runtime.

3. EMPIRICAL STUDY
In this empirical study, we gathered nine tools each of which
extracts a dynamic call graph or method call information from a
Java program and applied them to two micro-benchmarks. These
tools represent an exhaustive list of the tools that were available to
evaluate that met two criteria: the ability to produce or deduce a
list of dynamic invocation relations, and the ability to run on the
Intel Pentium platform running the Microsoft Windows 2000
operating systems. We found that among those tools that can
extract dynamic call information, most of them are profiler tools
intended for performance tuning. Furthermore, most commercial
profiler tools are based on profiler agents that use JVMPI.

Bytecode Instrumenting Tool’s ProfilerBuilder and ParaDyn-J are
not maintained or available. Therefore there is no tool based on
static bytecode instrumentation or dynamically instrumented JVM
techniques in this empirical study. We studied these two
techniques based on two related technical papers [3][11]. Among
these nine tools, six are commercial, and we downloaded their
trial versions to evaluate.

These nine tools we used in this empirical study were:

• Panorama for Java 1.0.5, a commercial tool family that
performs both code static analysis and code dynamic analysis
using source-level instrumentation [13].

• Trace release 1, an on-the-fly runtime method tracing tool
using Byte Code Engineering Library 4.2.3 [17].

• Intel VTune Performance Analyzer 5.0, a commercial tool
for performance tuning based on a profiling agent using the
JVMPI [20].

• Rational Quantify 2001A, a commercial performance
profiling tool based on a profiling agent using the JVMPI
[14].

• Optimizeit Profiler 4.02, a commercial profiling tool based
on a profiling agent using the JVMPI [12].

• JProbe Profiler 3.0, a commercial profiling tool based on a
profiling agent using the JVMPI [7].

• DevPartner TrueTime profiler 2.1, a commercial
performance profiler based on a profiling agent using the
JVMPI [18].

• IBM Jinsight 2.0, a tool for visualizing and analyzing the
execution of Java programs using instrumented Java VM
based on IBM JDK 1.1.8 [16].

• IBM Jinsight 2.1, a tool for visualizing and analyzing the
execution of Java programs using IBM Java 2 environments,
and provides instrumentation via a profiling agent which
uses the Java 2 JVMPI interface [16].

To provide the same inputs to these tools, we ran two micro-
benchmarks using these tools on Sun’s Java 2 runtime platform,
except for IBM Jinsight 2.0 and 2.1, which are run on IBM Java
1.1.8 and 2.0 platforms.

3.1 Micro-benchmarks
In this empirical study, we applied the extractors to an OO micro-
benchmark and a multi-threaded micro-benchmark. The OO
micro-benchmark comprises some typical object-oriented features,
like inheritance, virtual methods, etc. The Fibonacci micro-
benchmark was chosen to investigate the result for target
programs with multi-thread and parallelism [5]. The source code
appears in appendix. To compare dynamic call graphs extracted
by different tools, we lexically extracted the static call graph from
the source code without using any further program analysis
techniques (such as virtual method call resolution, etc). Therefore
the extracted static call graph is mapped very closely to the source
code.

We defined a set of notations for the representation of the static
call graph. Figure 1 and 2 show the static call graph for the OO
micro-benchmark and Fibonacci micro-benchmark. In the static
call graph, a round corner rectangle represents the method whose
name is marked inside the rectangle. The arrow represents the
method invocation whose starting method is caller and ending
method is callee. The vertical arrow beside the method rectangles
with a number near the arrow represents the repeated method calls
with times of that number, for instance, the notation for a method
call A.func() inside a loop statement in Figure 1. The arrow
pointing to the dotted rectangle enclosing the methods represents
conditional method calls, which corresponds to the method calls
inside “if… else…”. More notations would be needed to express
conditional method calls inside those multiple branching
statements. However, in this paper we only introduce those
notations needed to express the micro-benchmarks in this study.

3.2 Quantitative Results
To facilitate the comparison, we considered the common dynamic
calls extracted by more than half of those nine tools as the “true”
dynamic call graph, which was used as comparison baseline.
Generally this baseline dynamic call graph consists of all user
method calls and system method calls, which are sufficient to aid
the optimization, performance tuning or program understanding.

The program parameters for these two micro-benchmarks are 1
and 2 respectively during execution. Figures 3 and 4 show the
baseline dynamic call graph for the OO micro-benchmark and the
Fibonacci micro-benchmark respectively. The notations for the
dynamic call graphs are similar to those for static call graphs. The
conditional method calls in static call graph have been resolved to
actual method calls during execution. In the baseline dynamic call
graph, the dotted round cornered rectangle is used to highlight a
method callee that is not present in the static call graph but that
appears in the baseline dynamic call graph. The line with a dot on
one end connects the static callee name with the corresponding
dynamic callee name, if they are different.

B e nc h .m a in([S tr in g)

In te ge r . In itV a lue ()

A .A ()

B .B ()

C .C ()

A . func ()

B . func ()

C . func ()

A . func ()

C . fun c A ()

C .func A (in t)

S ys te m .o u t.p r in tlin
(S tr ing)

S ys te m .o u t.p r in tlin
(in t)

In te rge r .
In te ge r (S tr ing)

n

Fibonacc
([Strin

Figure 1. OO micro-benchmark static call graph
i.main
g)

Integer.InitValue()

Fibonacci.Fibonacci
(int)

Fibonacci.start()

Fibonacci.join()

Fibonacci.run()

InterruptedException.print
StackTrace()

Fibonacci.Fibonacci
(int)

Fibonacci.Fibonacci
(int)

Fibonacci.start
()

Fibonacci.start
()

Fibonacci.join
()

Fibonacci.join
()

Fibonacci.getFib
()

Fibonacci.getFib
()

InterruptedException.print
StackTrace()

System..out.println()

Interger.
Integer(String)

Fibonacci.getFib()

h
Figure 2. Fibonacci micro-benchmark static call grap

bench.main([String)

Integer.InitValue()

A.A()

B.B()

C.C()

A.func()

B.func()

C.func()

A.func()

C.funcA()

C.funcA(int)

System.out.printlin
(String)

System.out.printlin
(int)

Object.Object()

Object.Object()A.A()

B.B() Object.Object()

B.func()

B.func()

A.funcA()

A.funcA(int)

Execution: java bench 1

Interger.
Integer(String)

1

A.A()

Fibonacci.main
([String)

Integer.InitValue()

Fibonacci.Fibonacci
(int)

Fibonacci.start()

Fibonacci.join()

Fibonacci.run()

InterruptedException.pri
ntStackTrace()

Fibonacci.Fibonacci
(int)

Fibonacci.Fibonacci
(int)

Fibonacci.start
()

Fibonacci.start
()

Fibonacci.join
()

Fibonacci.join
()

Fibonacci.getFib
()

Fibonacci.getFib
()

InterruptedException.pri
ntStackTrace()

System..out.println()

Thread.start()

Thread.join()

StringBuffer.
StringBuffer()

StringBuffer.
append(String)

StringBuffer.
append(int)

StringBuffer.
toString()

Thread 1

Fibonacci.run()

Thread 2

Fibonacci.run()

Thread 3

Thread.start()

Thread.start()

Thread.join()

Thread.join()

Execution: java Fibonacci 2

Interger.
Integer(String)

StringBuffer.
append(String)

Fibonacci.getFib()

StringBuffer.
append(int)

In
m
c
m
m

The comparison between static call graph and baseline dynamic
call graph shows following results:

• Five method calls in the baseline dynamic call graph
extracted from OO micro-benchmark do not appear in its
static call graph. Neither do eight method calls extracted
from the Fibonacci micro-benchmark.

• The names of classes that four callees belong to in the static
call graph are different from those corresponding ones in the
dynamic call graph for the OO micro-benchmark. So are six
callees’ class names in the call graph for the Fibonacci
micro-benchmark.

The quantitative comparison between baseline dynamic call graph
and extracted dynamic call graph by nine tools is showed in
Figure 5 and Figure 6.

These figures point out that no two tools extracted the same set of
dynamic method calls for either micro-benchmark. To see the
detailed differences of those extracted method calls that are not
present in baseline dynamic call graph, Figures 7 and 8 show the
method calls by the main method that are not in the baseline
dynamic call graph. Each bar in these two figures reports the
number of the method calls whose caller is main method and
whose callee is specified in the leftmost of the row, extracted by
the tool whose name is specified in the bottom of the column.
These two figures show the result that all tools produce different
set of method calls that are not present in baseline dynamic call
graph except for Panorama, Trace and Jinsight 2.1. These three
tools do not extract method calls that are not present in baseline
dynamic call graph.

Panorama Trace VTune QuantifyOptimizeitJProbe TrueTimeJinsight

2.0

8

4

System
Method
Call

User
Method
Call

Other
Method
Call

5

8 8 8 8 8 8 8

4 4 4 4 4

1

8

2

3

6

Other
Method
Call

System
Method
Call
User

Method
Call

4

300

Calls in
Baseline
Dynamic
Call
Graph

Jinsight
2.1

 Figure 5. Quantitative comparison between baseline

Figure 4. Fibonacci benchmark baseline dynamic call graph

e

al
a
e

 Figure 3. OO benchmark baseline dynamic call Graph
the baseline dynamic call graph, OO micro-benchmark’s main
thod has 12 direct method calls, including eight user method
ls and four system method calls. Fibonacci micro-benchmark’s
in method has 13 direct method calls, including two user
thod calls and 11 system method calls.

dynamic call graph and extracted dynamic call graphs by

nine tools on OO micro-benchmark

Panorama Trace VTune Quantify Optimizeit JProbe TrueTime Jinsight
2.0

2

11

System
Method
Call

User
Method
Call

Other
Method
Call

1

2

1111 11 11 11

1

11

2

4

8

2 2

1

2 2 2

Other
Method
Call

System
Method
Call
User

Method
Call

327

11

Calls in
Baseline
Dynamic
Call
Graph

7

Jinsight
2.1

ClassLoader.
findNative(String)

ClassLoader.
checkPagedAccess

(Class, Protection
domain)

ClassLoader.
loadClassInternal

(String)

Thread.exit()

Integer.
<clinit>()

String.
String(int,
int, [char)

Panorama Trace VTune Quantify Optimizeit JProbe TrueTime Jinsight
2.0

1 1

1

4

3

3

33

3

Callee

Tool

1

Note:In TrueTime, main method calls 14 other methods, not shown in the figure 300 times totally.

Jinsight
2.1

ClassLoader.
FindNative
(String)

ClassLoader.
CheckPackageAccess
(Class, Protection

domain)

ClassLoader.
loadClassInternal

(String)

Thread.exit()

Integer.
<clinit>()

String.
String(int,
int, [char)

Panorama Trace VTune Quantify Optimizeit JProbe TrueTime Jinsight
2.0

1

1

1

1

4 4

44

5

1

Callee

Tool

Note:In TrueTime, main method calls 23 other methods, not shown in the figure 327 times totally.

Jinsight
2.1

3.3 Qualitative Results
3.3.1 Comparing Static and Dynamic Call Graph
Comparing the static call graph to baseline dynamic call graph
qualitatively can provide some insights into the relationship
between static and dynamic call graph.

For the static call graph, we call the method call extracted
lexically from the source code the formal method call and the
method call extracted dynamically from the program execution as
the actual method call. There is an “actual method call
prediction” problem for the static call graph, because in some
cases the call graph extractor cannot decide exactly which callee
will be called during runtime because of conditional branches or
other language features; polymorphism is the most common cause
of this problem in OO languages such as Java. Similarly, for
dynamic call graphs there is a “formal method call backtracking”
problem, where the dynamic call graph extractor cannot precisely
recognize the caller in source-level terms; this is often due to
instrumentation below the source-level. Together, these two
problems complicate program analysis and understanding.

Some differences are shown between the static formal method
calls and dynamic actual method calls in our study:

• The actual method callee can be different from the formal
method call because of inheritance. For example, in the OO
micro-benchmark call graph, the formal method callee
C.funcA() becomes the actual method callee A.funcA() at
runtime, because class C’s funcA is inherited from class A.
In the Fibonacci micro-benchmark, the formal method callee
Fibonacci.Start() becomes the actual method callee
Thread.Start() for a similar reason.

Figure 7. Quantitative comparison of callees produced by
nine tools within main method that are not in the baseline

dynamic call graph on OO micro-benchmark

Figure 6. Quantitative comparison between baseline
dynamic call graph and extracted dynamic call graphs by

nine tools on Fibonacci micro-benchmark

Figure 8. Quantitative comparison of callees produced by
nine tools within main method that are not in the baseline

dynamic call graph on Fibonacci micro-benchmark

• The actual method callee cannot have a corresponding formal
method callee because of inheritance. For example, in the
OO micro-benchmark, the actual method callee A.A() by
B.B() or C.C() does not have a formal method callee in the
source code. In addition, implicit inheritance also produces
some system actual method callees, like the actual method
callee Object.Object() by A.A().

• The actual method callee can be different from the formal
method callee because of virtual methods. For example, in
the OO micro-benchmark, formal method callee A.func()
becomes actual method callee B.func().

• Implicit system actual method callees can not have a
corresponding formal method callee in the source code. For
example, in the Fibonacci micro-benchmark, the
StringBuffer.StringBuffer() does not have a explicit formal
method callee in the source code.

• All tools only show the method name in the dynamic call
graph with the format of CLASS.METHOD(), without
providing the complementary format of OBJECT.METHOD
(). However, in program understanding, sometimes the object
name for the method call is also helpful. Sometimes
distinguishing different object method calls is meaningful,
rather than representing them as the same class method calls.

3.3.2 Comparing Extracted Method Calls
Comparing the call graph extracted by each tool to the baseline
call graph quantitatively provides some insight into the nature of
the extracted dynamic call graph, but it does not tell us much
about the detailed similarities and differences and possible
reasons of these differences. To provide insight into this
information, we also performed the qualitative analysis on the
results.

First we designed a framework to categorize the method calls
extracted by each tool. Java program execution involves following
five categories of method calls:

• Explicit user method call is a call whose callee is a user
method and its implementation can be located in the user
program. This type of method calls in the OO micro-
benchmark include B.func(), A.funcA() and A.funcA(int).
This type of method call is generally required in program
understanding and other tasks.

• Implicit user method call is a call whose callee is a user
method and its implementation cannot be located in the user
program, for instance, the default constructor method in the
user program. This type of method calls in the OO micro-
benchmark includes A.A(), B.B() and C.C(). This type of
method call is generally required in program understanding
and other tasks.

• System method call by user method explicitly or implicitly is
the call whose caller is user method and callee is system
method. Explicit system method calls in the OO micro-
benchmark include Integer.Integer(String),
Integer.InitValue(), System.out.printlin(String) and
System.out.printlin(int). Implicit ones include
Integer.<clinit>(), String.String(int, int, [char]). When we
want to analyze the performance impact of the system

method calls, we may include this type of method calls in the
dynamic call graph. In program understanding, sometimes
some system method calls are required to understand the
program behavior, like Thread.start() and Thread.join(),
whose class Thread is inherited by a user class in the
Fibonacci micro-benchmark. But sometimes including some
unnecessary system method calls can complicate the call
graph and make users lose focus on other important method
calls; for example, including too many System.out.println()
system method calls may make program understanding more
difficult.

• System method call by system method is a call whose caller
and callee are both system methods. We do not show this
type of method calls in our study. Occasionally, this type of
method calls is considered in performance analysis.
Sometimes this type of method calls is useful in program
understanding when users want to investigate the behavior of
some system method calls; for example, some users may be
interested in the method calls among classes in the
underlying system framework.

• Environment method call is a call made in the runtime
environment in order to execute the Java program. This type
of method calls in the OO micro-benchmark include
ClassLoader.findNative(String),
ClassLoader.checkPagedAccess(Class, Protection domain),
ClassLoader.loadClassInternal(String), etc. This type of
method call is useful only when the users want to investigate
the runtime environment behavior or measure the program’s
actual performance, including the runtime environment
overhead.

Although omitting some method calls would compromise the
accuracy and completeness of the result, it would be misleading to
believe that extracting more calls is inherently better. The specific
task of the software engineer will drive the demands on the call
graph extractors in this (and other) dimensions.

To facilitate the qualitative analysis of the result, we consider the
call graphs in terms of false negatives and false positives. False
negatives are calls that are present in extracted dynamic call
graph, but which are omitted from the baseline dynamic call
graph. False positives are calls that are not present in extracted
dynamic call graph, but which are included in the baseline
dynamic call graph.

Our study showed that baseline dynamic call graph includes all
explicit and implicit user method calls, most system method calls
by user methods, but no environment method calls. System
method calls by system methods are not included since we only
investigated the direct callees of the user methods.

Some results related with false negatives and false positives in the
study are:

• Only Jinsight 2.1 can extract the same dynamic call graph as
the baseline one, yielding no false negatives nor false
positives.

• Only the dynamic call graphs extracted by Panorama, Trace
and Truetime produce false positives for both micro-
benchmarks. Only Panorama produces user method call false
positives, most of which are implicit user method calls, such

as A.A(), B.B(), C.C() in OO micro-benchmark. All of
Panorama, Trace and Truetime produce system method call
false positives.

• Only the Panorama, Trace and Jinsight 2.1 do not produce
false negatives. The other tools produce false negatives, most
of which are environment method calls.

• Although it is reasonable to consider environment method
calls in some cases of performance analysis, no two tools
extract the same set of environment method calls; that is, no
two tools produce the same set of environment method call
false negatives.

• During performance analysis, some false negatives are shown
to consume a nontrivial portion of the time spent by the
caller. For example, Thread.exit() consumes 26% of the time
spent on the main method of the OO micro-benchmark
produced by Quantify but all other tools do not produce this
false negative.

There are two results that are abnormal, representing potential
bugs in the tools:

• In the Fibonacci micro-benchmark, Panorama does not even
produce Fibonacci.Fibonacci(), which is an explicit user
method call.

• OptimizeIt produces false negatives for the Fibonacci micro-
benchmark. It does not report four method calls related with
implicit String operations: StringBuffer.StringBuffer(
), StringBuffer.toString(), and two calls of
StringBuffer.append(int). Moreover, it does not report a user
method call, Fibonacci.getFib(), which is called to generate
the parameter value of another method.

In addition, all tools except for Panorama support thread analysis,
grouping the method calls of Fibonacci micro-benchmark by
thread.

3.3.3 Comparing Method Call Representations
In this paper, we have used the term call graph to represent the
invocation relation extracted from a program. Ammons etc. [1]
described three representations for displaying the dynamic
invocation relation: dynamic call graphs, dynamic call trees and
calling context trees. In a dynamic call graph, each method is
represented by only one vertex and each directed edge represents
one or more method invocations. Its compactness is gained by
sacrificing some context information. For example, a call chain
whose length is beyond two is difficult to be extracted from the
call graph when one method of that chain, which is neither the
head nor the tail of that chain, is called by another method besides
the call made by the caller in that chain. In a dynamic call tree,
each vertex except for the root vertex, which is usually the main
method, represents the callee for the corresponding method call.
If a method is called n times, there are n vertices in the dynamic
call tree. Its accuracy is gained at the cost of additional storage
space especially when there are too many repeated method calls,
for example, method calls inside a loop. There is a modified call
tree that compacts the same callee with multiple invocations by
the same caller as one vertex. It trades the ability to distinguish
different invocations of the same callee for space storage and
compactness. In the calling context tree, each vertex represents an

individual context, which is a method together with the call chain
that resulted in the invocation to that method. Repeated method
invocations are represented by the same vertex if their call stacks
are same. In addition, a back edge represents a recursive call.
Each vertex encodes a unique call path. It is more compact than
call tree, but still cannot distinguish different invocations of the
same callee inside a method.

The different tools we studied use variants of several of these
representations:

• Panorama represents the method calls as summary report
text. Trace represents the method calls as trace line text.

• Vtune represents the method calls as a local call graph,
which only displays the selected method, the method’s
parents (which are that method’s callers), and descendants
(which are that method’s callees).

• Quantify and JProb represent the method calls as a dynamic
call graph.

• OptimizeIt, Jinsight 2.0 and 2.1 represent the method calls as
a call tree.

• TrueTime represents the selected method, the method’s
parents and the method’s descendants in the form of table.
Quantify and JProb also provide this table as a
complementary method call representation.

• Vtune, Quantify, OptimizeIt and JProb provide some
mechanisms to expand or collapse descendants, focus or hide
the subtree. Jinsight 2.0 and 2.1 provides some mechanisms
to expand a call tree to a specified depth or to focus the
subtree.

Filtering is a good technique to remove false negatives or false
positives when trying to customize the default extracted dynamic
call graph to users’ need. Filtering of the method calls can be
performed before, during or after the execution of program.
Filtering before execution imposes the filtering on the method call
collection process. Filtering during execution can dynamically
turn on or off the data collection on the fly when the program is
running. This filtering is especially useful when users want to
extract method calls during certain periods of the program
execution. Filtering after execution imposes the filtering on the
display process. The filtering can be inclusion or exclusion
filtering. Some results of filtering are showed as below:

• Panorama and Vtune provide no filtering functionality.

• Trace, Quantify, OptimizeIt, and TrueTime provide filtering
after the program execution, including exclusion and
inclusion. Trace’s filtering is at the granularity of classes.
Quantify and OptimizeIt’s filtering is at the class and method
granularity. TrueTime’s filtering is at the package and class
granularity.

• Jinsight 2.0 and 2.1 provide filtering during program
execution, including exclusion or inclusion of all traces in
different time periods. It also provides exclusion filtering
after execution before loading the trace information at a
package and class granularity, or by limiting the call stack
depth.

• JProb provides filtering after program execution, including
exclusion and inclusion, at the class and method granularity.

Some other results of method call representation features are
shown below:

• No tools present the time order of the callees inside certain
methods, except for Trace tool. For example, in the OO
micro-benchmark, the tools generally do not report which
one of A.funcA() or A.funcA(int) is executed first.

• VTune, Quantify, JProb and TrueTime can highlight the
associated source code of a selected user method if its source
code is available.

4. DESIGN CONSIDERATIONS

4.1 Instrumentation
Source-level instrumentation provides high flexibility for users to
specify what program point to instrument and what to instrument
at those points. Besides a dynamic call graph, it is capable of
supporting some other complex dynamic analysis tasks, such as
Daikon’s likely invariant detection [4]. It maps the dynamic
information directly to the high-level source code. It generally
needs a static analysis front-end to assist instrumentation.
However, such instrumentation cannot be done without access to
source code. Non-user callees including system library callees can
not be extracted because system library methods can not be
instrumented in the absence of their source code. Even implicit
user method calls cannot be extracted, since the callees’
implementation may not be located in source code.
Similar to source-level instrumentation, bytecode instrumentation
also provides good flexibility for users. At the same time, it does
not require that the source code be available. Bytecode contains
more symbolic data than the executable image, keeping object-
oriented information about the class, such as the names and type
signatures of all the classes, methods, fields, and constant values.
However, it loses access to some other useful information, such as
local variable names, parameter names and precise source-level
statement constructs, like loop constructs, which are available in
the source code. Therefore the dynamic information cannot be
represented in terms of the above lost entity names. If the
complete set of classes can be determined statically and their
bytecodes are available offline, a static bytecode instrumentor can
instrument the transitive closure of all classes offline and produce
a new set of instrumented bytecodes, including system method
callees. It does not need to modify the JVM. But sometimes the
complete set of classes cannot be determined statically and it can
not extract the implicit user method calls. Dynamic bytecode
instrumentation does not require a priori knowledge of the set of
classes loaded and saves some of the space needed to store
statically instrumented. This approach can solve the problems
encountered by static bytecode instrumentation. But online
instrumentation needs to modify the JVM and imposes extra
runtime overhead during loading phase.
The Java Virtual Machine Profiler Interface (JVMPI) provides
hooks into the JVM that can be used without modifying the user
program or the JVM itself. A profiler agent instructs the virtual
machine to send it the relevant JVMPI events, such as method
enter and exit, and processes the event data into profiling
information. Most call graph based Java profilers adopt this

approach. However, the tools using this approach are limited by
the events provided by JVMPI. It cannot perform some complex
dynamic analyses that can be performed by using source-level
instrumentation or bytecode instrumentation.
JVMPI supports two kinds of profiling: statistical CPU sampling
and code instrumentation [19]. In statistical CPU sampling, the
executed application has to be interrupted periodically to record
which methods are currently being executed. The accuracy of the
result is largely affected by the sampling frequency. Moreover it
cannot record the number of method calls. For example, when
using sampling mode with one millisecond frequency, which is
the minimum value in Optimizeit, no method calls are extracted
inside bench.main() of OO micro-benchmark and only
Thread.join(), StringBuffer.append(int) and
StringBuffer.append(string) are extracted inside Fibonacci.main()
in the Fibonacci micro-benchmark. In code instrumentation,
JVMPI allows the profiler agent to instrument every class file
before it is loaded by the virtual machine, which is similar to
dynamic bytecode instrumentation. This mode may cause larger
overhead and distort the performance result, but it usually does
not miss the method calls.
An instrumented JVM can provide more flexibility to users but
the development effort of this approach is much higher than using
JVMPI. In addition, the evolution of a supported JVM, or
supporting more JVMs, can induce a high maintenance cost.
Among those tools that adopt this approach, Javiz [8] intends to
use JVMPI to remove its dependence on a modified JVM. But its
tracing of client/server activity still needs to be done by modifying
the RMI library implementation, since JVMPI does not provide
this functionality. Jinsight 2.0’s subsequent version 2.1 supplies a
profiling agent using the JVMPI for Java 2 instead of using an
instrumented JVM.
Dynamic instrumentation inserts and deletes instrumentation in
Java method code and JVM code at any point during execution. It
can dynamically change the instrumentation with high flexibility
when necessary.

4.2 Instrumentation Design Considerations
Instrumentation involves two issues: what program point to
instrument and what to instrument at those points. Tool designers
must consider how these issues can be addressed by a candidate
instrumentation technique before choosing it.

4.2.1 Instrumentation Place
Tool designers should make sure the selected instrumentation
approach provides users enough flexibility to instrument the
required program points. In source-level instrumentation,
instrumentation points are limited in the program points between
source-level statements. Bytecode instrumentation allows the
instrumented program points to be between the bytecode
instructions, which can be inside a source-level statement. In
runtime environment instrumentation, tool designers should make
sure whether the required dynamic information can be extracted at
a given point of the JVM. Source-level instrumentation is not
appropriate for extracting dynamic call graphs since the system
method or implicit user method’s entry and exit points are not
available in the source code level. Neither is static bytecode
instrumentation, since it cannot extract the implicit user method
calls. Dynamic bytecode instrumentation and runtime

environment instrumentation are good candidate techniques for
dynamic call graph extraction.

4.2.2 Instrumentation Content
Generally the instrumentation instructions export the required
dynamic information to analysis tools indirectly or directly. The
dynamic information is generally reported in terms of source-level
program entity names, which is generally understandable to users.
In source-level instrumentation, there are no problems in mapping
the dynamic information to source-level program entity names. In
bytecode instrumentation and runtime environment
instrumentation, there are no problems in mapping the dynamic
information to some program entities, such as class, method and
field, etc., but it may be difficult to map it to some other program
entities, like the name of local variable or parameters, source-level
data constructs or control constructs, if there is no debugging
information produced by compiler available to help compute these
mappings. For dynamic call graph extraction, generally all of the
above instrumentation techniques fulfill the requirement of
exporting dynamic information in terms of class and method name.

4.2.3 Online vs. Offline Analysis
When the raw dynamic information is extracted from the
instrumented points, the tool can process it online to save the I/O
overhead to output the raw data. The online analysis results can be
used by later executed instrumented codes or even add or remove
the later instrumentation points online by using dynamic
instrumentation technique if this approach is adopted. Moreover,
when only the real time data is required and historical raw data do
not need to be stored, online analysis can also save the space to be
used to store those raw or intermediate data. In offline analysis,
the raw data are exported without being analyzed at runtime,
saving the process time but introducing the I/O overhead. The
tradeoff between process time and I/O exporting time need to be
considered in practice.

4.2.4 Performance Issues
Any type of instrumentation will perturb the application program
to some degree. If the task is performance-critical, such as
performance tuning or parallelism tracing, performance issues
need to be considered when choosing the instrumentation
technique. Many factors may affect the amount of overhead so an
empirical comparison study needs to be done to provide some
decision support information.

4.3 Scalability Considerations
Scalability problems appears to be more serious for dynamic
analysis tools than for static analysis tools in some sense. Even in
our limited study, the size of the trace file generated by running
small micro-benchmarks is still relatively large. Theoretically its
size is O(METHOD NUMBER * EXECUTION TIMES),
because during each execution, the methods may be called
multiple times, even infinite times if the methods are inside an
infinite loop. In static call graph extraction, or other static
analyses, the time complexity is generally the major factor to
make it unscalable (or highly imprecise). However, for dynamic
call graph extraction or other dynamic analyses, the space
complexity is generally more of a concern. There are some design
decisions to be made to attack this problem.

The first one is trace information filtering. The filtering can be
imposed in method, class, file, package or directory granularity.
But the more fine-grained the instrumentation granularity is, the
more burden imposed on users. Filtering before or during program
execution can reduce the runtime instrumentation overhead and
the size of trace file. If filtering is changed, the program will have
to be run again, imposing the new filter on the next execution.
However, filtering after execution can allow user to change the
filtering requirement without rerunning the program. Because we
get the complete trace information during one execution, we only
need to specify and impose a new filtering before loading or
representing the dynamic information.
The second approach is to represent the trace information by
loading on demand and caching frequently used traces.
Persistently caching frequently used representations that are small
but relatively expensive to compute can be effective [2].

4.4 Usability Considerations
There are many issues related to usability. One of them is to
provide users with a way to easily manipulate information in the
call graph. The key principle is to provide both coarse-grained
and fine-grained manipulation of the information. The coarse-
grained one is for the novice users, without imposing much
burden. The fine-grained one is for experienced users, who want
to gain more control of the information and can tolerate relatively
complicated manipulation of the information. During tool design,
the designer might not make an arbitrary decision between these
two approaches. Providing both granularities of manipulation to
users will attract both types of users, leaving the choice to future
users; this is not especially easy, however. In dynamic call graph
extraction, the tool shall provide the basic information to users,
for example, without time order or object method call, clustering
all invocations of the same callee inside the caller to one node,
etc. It is reasonable to do so in order to control the complexity of
the dynamic call graph to be manageable. But if users want to, the
tool shall let them choose to show the detailed information to
assist the program understanding, like time order, object method
call associated source code, etc. In addition, it is good to provide
expanding or collapsing, subtree focusing or hiding, for users to
control the complexity of the focused information.
Incremental manipulation is a good feature for users. The tool
shall provide certain functionality to let user save their
manipulation results or the browsing history on the information.
Then they can load them later and continue to work on them.
Jinsight’s slicing and workspace techniques are good in this
dimension [16]. In addition, a static call graph shall be shown
together with the dynamic call graph to attack the “actual method
call prediction” and “formal method call backtracking” problems.
For example, it is good to provide users to view the formal
method calls that have no corresponding actual method calls, etc.

5. DISCUSSION
A lot of research work has been done to use the static analysis
techniques to address the “actual method call prediction”
problem; to some extent, for example, pointer alias analysis,
virtual method call resolution, etc. However, the “formal method
call backtracking” problem has not been paid much direct
attention by researchers, tool designers and practitioners. Static
information is generally ignored in dynamic analysis tasks, which

makes program understanding difficult. The integration of static
analysis and dynamic analysis can attack these problems.
A dynamic call graph extractor can resolve the “actual method call
prediction” problem that frustrates the static call graph extractor,
such as method pointers, virtual methods, etc. A dynamic call
graph extractor also narrows down the scope complexity of user
concerns by only collecting the information related with certain
execution.
When we map the dynamic call graphs on the static call graph, the
invocation relations in dynamic call graphs should be a subset of
the invocation relations in the static call graph. With the
integration of the static and dynamic call graph, we can analyze
code coverage at the method level. Program profiles only show
the times the callee is called and the accumulative time spent on
it. However, by integrating static and dynamic call graphs, we can
show those potential callees in the static call graph that have not
been called during the past executions but can possibly be called
in future executions.
Generally dynamic analysis captures the dynamic behaviors of the
run time entities, which are named in the low level binary code or
machine language space. Sometimes this low level information is
hard for users to understand. For example, an object created in
runtime is identified as the object ID in running environment,
losing the high level object name’s label. In addition, because of
some languages features, like inherited methods, virtual methods,
etc, the dynamic call information only shows the original class
this callee method belongs to, losing the formal name information
of the class that this callee is attached to in the high level source
code. The integration of static analysis and dynamic analysis can
address these issues. For example, the static information produced
by the compiler can be used to find out the entity mapping
between the low-level code and high-level code, attacking the first
problem. Other static information can also assist in attacking the
second problem.

6. CONCLUSIONS
Our empirical study shows that the extracted Java dynamic call
graphs by nine tools are quite different because of the underlying
instrumentation techniques and other design decisions made by
tool designers.
Our study also shows the differences between static call graphs
and dynamic call graphs. To analyze these differences, we
propose the concepts of static formal method calls and dynamic
actual method calls. The static call graph has the “actual method
call predication” problem caused by many factors, including the
branching statements and dynamic binding OO features. The
dynamic call graph has the “formal method call backtracking”
problem mainly caused by the differences between high-level
program space and low level byte code space. The integration of
static analysis and dynamic analysis can attack these two
problems.
By analyzing the differences between the dynamic call graphs
extracted by nine tools quantitatively and qualitatively, we found
that few tools under study can extract the satisfactory set of
method calls and related information to aid program
understanding. And these tools can be improved in different
aspects to support program understanding. Finally we enumerated
some design considerations for dynamic call graph extractors,
including instrumentation, scalability and usability considerations.

Although this paper only considers the Java dynamic call graph
extraction, many of the observations on the design decisions still
apply to other Java dynamic analysis tools.

7. ACKNOWLEDGMENTS
We wish to thank the authors and companies of all the call graph
extractor tools used in this study for making their tools available
to us.

8. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. In Proceeding of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI-97), volume 32, 5 of ACM SIGPLAN Notices, page
85-96, New York, June 1997. ACM Press.

[2] D. C. Atkinson and W. G. Griswold, The Design of Whole-
Program Analysis Tools, Proceedings of the 18th
International Conference on Software Engineering, March,
1996.

[3] B. F. Cooper, H. B. Lee, and B. G. Zorn. ProfBuilder: A
Package for Rapidly Building Java Execution Profilers.
Technical report, University of Colorado, April 1998.
Bytecode Instrumenting Tool is available at
http://www.cs.colorado.edu/~hanlee/BIT/

[4] M. D. Ernst, Dynamically Detecting Likely Program
Invariants, PhD Dissertation, University of Washington,
Department of Computer Science and Engineering, August
2000. Daikon is available at
http://sdg.lcs.mit.edu/~mernst//daikon/

[5] Fibonacci benchmark is available at
http://www.eb.uah.edu/~crash/javanauts/benchmarks/

[6] J. Gosling, B. Joy, and G. Steele, Java Language
Specification. Addison-Wesley, August 1996

[7] JProbe 3.0, Sitraka Software Inc (2001), Ontario, Canada,
available at http://www.sitraka.com/software/jprobe/

[8] I. H. Kazi, D. P. Jose, B. Ben-Hamida, C. J. Hescott, C.
Kwok, J. Konstan, D. J. Lilja, and P. Yew, JaViz: A
Client/Server Java Profiling Tool, IBM Systems Journal,
Volume 39, Number 1, 2000, pp. 96-117. Javiz 0.3 is
available at http://www.cs.umn.edu/Research/JaViz/

[9] G. C. Murphy, D. Notkin, and K. Sullivan, Software
Reflexion Models: Bridging the Gap Between Source and
High-Level Models, In the Proceedings of the Third ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, October 1995, ACM, New York, NY, p. 18-28.

[10] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S.-C. Lan.
An empirical study of static call graph extractors. ACM
Transactions on Software Engineering and Methodology,
7(2):158--191, April 1998.

[11] T. Newhall and B. P. Miller. Performance measurement of
dynamically compiled java executions. In Proceedings of the
ACM 1999 conference on Java Grande, pages 42--50, New
York, 1999. ACM Press.

[12] Optimizeit 4.02, VMGEAR Inc. (2001), available at
http://www.intuisys.com/

[13] Panorama for Java 1.0.5, International Software Automation,
Inc., San Mateo, CA (2001), available at
http://www.softwareautomation.com/java/

[14] Rational Quantify for Windows v2001A, Rational Software
Corporation (2001), available at
http://www.rational.com/products/quantify_nt/

[15] T. Richner, Using Recovered Views to Track Architectural
Evolution, ECOOP '99 Workshop on Object-Oriented
Architectural Evolution, June 1999

[16] G. Sevitsky, W. De Pauw, R. Konuru. An Information
Exploration Tool for Performance Analysis of Java
Programs, TOOLS Europe 2001, Zurich, Switzerland, March
2001. Jinsight 2.0 and 2.1 are available at
http://www.research.ibm.com/jinsight/

[17] Method tracing tool release 1 is available at
http://www.geocities.com/mcphailmj/Trace/. Byte Code
Engineering Library is available at
http://bcel.sourceforge.net/

[18] NuMega DevPartner TrueTime Java Edition 2.1, Compuware
Corp. (2001), Farmington Hills, MI, available at
http://www.numega.com/products/java.shtml

[19] D. Viswanathan, S. Liang, Java Virtual Machine Profiler
Interface, IBM System Journal, Vol 39, No 1, 2000, pp. 82-
95.

[20] Intel VTune Performance Analyzer 5.0, Intel Co.(2001),
available at
http://developer.intel.com/software/products/vtune/

Appendix A: OO Micro-benchmark:

class A {
 int count = 0;
 public void func() {
 count = count +1;
 }

 public void funcA() {
 count = count + 2;
 }

 public void funcA(int i) {
 count = count + i;
 }
}

class B extends A {
 public void func() {
 count = count + 10;
 }
}

class C extends A {
 public void func() {
 count = count + 100;
 }
}

public class bench
{
 public static void main (String arg[])
 {
 A a;
 B b;
 C c;

 int n = new Integer(arg[0]).intValue();
 a = new A();
 b = new B();
 c = new C();
 if (n != 0)
 a = b;
 a.func();
 if (n != 0)
 b.func();
 else
 c.func();
 for (int i =0; i < n; i++)
 a.func();
 c.funcA();

c.funcA(n);
System.out.println("a.count =");
System.out.println(a.count);

 }
}

Appendix B: Fibonacci Micro-benchmark:
 public class Fibonacci extends Thread
{
 int fib;
 Fibonacci(int n) {
 fib = n;
 }
 /* Called by start() */
 public void run() {
 if (fib == 0 || fib == 1)

fib = 1;
 else {
 Fibonacci thread1 = new Fibonacci(fib-1);
 Fibonacci thread2 = new Fibonacci(fib-2);
 thread1.start();
 thread2.start();
 try {

thread1.join();
 thread2.join();

fib = thread1.getFib() + thread2.getFib();
 }
 catch(InterruptedException e) {

e.printStackTrace();
 }
 }
 }

 public final int getFib() {
 return fib;
 }

 public static void main(String arg[]) {
 Fibonacci fib;
 int n = new Integer(arg[0]).intValue();

 fib = new Fibonacci(n);
 fib.start();
 try {
 fib.join();
 System.out.println("The Fibonacci for " +
 n + " is: "+ fib.getFib());
 }
 catch(InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

	INTRODUCTION
	TOOL CATEGORIES
	EMPIRICAL STUDY
	Micro-benchmarks
	Quantitative Results
	Qualitative Results
	Comparing Static and Dynamic Call Graph
	Comparing Extracted Method Calls
	Comparing Method Call Representations

	DESIGN CONSIDERATIONS
	Instrumentation
	Instrumentation Design Considerations
	Instrumentation Place
	Instrumentation Content
	Online vs. Offline Analysis
	Performance Issues

	Scalability Considerations
	Usability Considerations

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

