
SQLUnitGen: Test Case Generation for SQL Injection
Detection

Yonghee Shin, Laurie Williams, Tao Xie

North Carolina State University

Abstract

More than half of all of the vulnerabilities re-
ported can be classified as input manipulation,
such as SQL injection, cross site scripting, and
buffer overflows. Increasingly, automated static
analysis tools are being used to identify input ma-
nipulation vulnerabilities. However, these tools
cannot detect the presence or the effectiveness of
black or white list input filters and, therefore, may
have a high false positive rate. Our research ob-
jective is to facilitate the identification of true
input manipulation vulnerabilities via the combi-
nation of static analysis, runtime detection, and
automatic testing. We propose an approach for
SQL injection vulnerability detection, automated
by a prototype tool SQLUnitGen. We performed
case studies on two small web applications for the
evaluation of our approach compared to static
analysis for identifying true SQL injection vulner-
abilities. In our case study, SQLUnitGen had no
false positives, but had a small number of false
negatives while the static analysis tool had a false
positive for every vulnerability that was actually
protected by a white or black list. Future work
will focus on removing false negatives from
SQLUnitGen and at generalizing the approach for
other types of input manipulation vulnerabilities.

Copyright © 2006 Yonghee Shin, Laurie Williams, and
Tao Xie. Permission to copy is hereby granted provided
the original copyright notice is reproduced in copies
made.

1 Introduction
More than half of all of the vulnerabilities 1 re-
ported in 2003-4 [28] were input manipulation
vulnerabilities. Some examples of input manipu-
lation include SQL injection, cross site scripting
(XSS), and buffer overflows, according to the
Open Source Vulnerability Database2 classifica-
tion. Input manipulation vulnerabilities exploit
the fact that dynamic operations, such as SQL
queries, can be constructed with user input as
variables and that these dynamic operations are
not always safe. For example, if an attacker en-
ters SQL commands in a user input field, such as
user name field, the resulting dynamically-
generated SQL query may be altered from its in-
tended function in the application and may enable
the attacker to perform an unauthorized task.

By limiting user input such that only well-
formed strings are accepted into the application,
input manipulation vulnerabilities can be reduced.
To do this, applications can filter user input via
white lists3, black lists4, or a combination of the
two, prior to allowing the input to reach the logic
of the application. Validating input against a
white list filter has been shown to be more feasi-
ble than matching against a potentially infinite
black list [13, 15].

One means of detecting input manipulation
vulnerabilities is the use of automated static
analysis tools [6, 7]. However, these tools cannot

1 A vulnerability is a security flaw in the system that
represents a valid way for an adversary to realize an
adversary’s goals [26].
2 http://www.osvdb.com/
3 A white list represents valid input as specified by
requirements for a software system [13].
4 A black list represents any input not defined as valid
by the system requirements [13].

11

detect the presence or the effectiveness of black or
white list input filters. As a result, static analysis
tools may have a high false positive rate when
reporting input manipulation vulnerabilities in
applications with effective filters. Alternatively,
SQL injection attacks (SQLIA) can be automati-
cally detected at runtime and prevent malicious
SQL queries from being executed instead of rely-
ing on input validation functions in the program
[12, 25, 27] However, runtime detection does
not provide information that can be used to fix the
vulnerable code in the early development phase.

Our research objective is to facilitate the
identification of true input manipulation vulner-
abilities via the combination of static analysis,
runtime detection, and automatic testing. Specifi-
cally, this paper reports our first step in this re-
search objective, a prototype tool SQLUnitGen
v0.5 that can be used to identify SQL injection
vulnerabilities. As we refine SQLUnitGen, we
expect that the principles and techniques embod-
ied in this tool can be expanded for the identifica-
tion of other types of input manipulation
vulnerabilities.

To measure the effectiveness of SQLUnitGen
v0.5, we performed case studies on two small web
applications with the tool. We examined the abil-
ity of SQLUnitGen to detect SQLIAs for the ap-
plications with differing levels of input filtering.
We compare these results with the vulnerability
detection of FindBugs5, a static analysis tool.

The rest of this paper is organized as follows.
Section 2 provides background and Section 3 de-
scribes related work. Section 4 describes our ap-
proach. Section 5 describes our case studies and
evaluation results. Section 6 concludes and dis-
cusses the future work.

2 Background

This section describes SQL Injection attacks with
an example and describes the two tools,
AMNESIA [12] and JCrasher [11], that
SQLUnitGen is based on.

2.1 SQL Injection Attacks
Through a SQL query, a program can add, modify,
or retrieve data in a database. SQL injection en-
ables attackers to access, modify, or delete critical
information in a database without proper authori-

5 http://findbugs.sourceforge.net/

zation. Via SQL injection, attackers can also exe-
cute arbitrary commands with high system privi-
lege in the worst case [2]. SQL injection has
recently been one of the top issues in software
security [1].

In many cases, SQL queries are dynamically
constructed via user input. Despite there being
several safer ways to make SQL queries in sys-
tems such as using Java’s PreparedStatement,
queries are often dynamically generated in string
concatenations, an unsafe and poor programming
practice. For example, Figure 1 shows a sample
program including a SQL query to authenticate a
user via id and password. The query is dynami-
cally created via the program statement in bold.
In the query in Figure 1, id and password are
obtained via user input.

public boolean isRegistered(String id,
 String password) {
 String driver = “com.mysql.jdbc.Driver”;
 String to = “jdbc:mysql://cc.com/credit”;
 Class.forName(driver).newInstance();
 Connection dbConn =
 DriverManager.getConnection(to);
String sqlQuery =
 “SELECT userinfo FROM users
 WHERE id = ‘“ + id + “’
 AND password = ‘“ + password + “’”;
Statement stmt =
 dbConn.createStatement();
 ResultSet rs =
 stmt.executeQuery(sqlQuery);
 if(rs != null) return true;
 else return false;
}

Figure 1: An example of SQL query.

A SQL injection attack occurs when an input
from a user includes SQL keywords so that the
dynamically-generated SQL query changes the
intended function of the SQL query in the applica-
tion. In the previous example, an attacker can
enter the following input through the user inter-
face for the values of id and password:

Username: ‘ OR ‘1’ = ‘1
Password: ‘ OR ‘1’ = ‘1

Which would generate the following query:

SELECT userinfo FROM users
WHERE id = ‘1’ OR ‘1’ = ‘1’
AND password = ‘1’ OR ‘1’ = ‘1’;

Because the given input makes the WHERE

clause in the SQL statement always true (a tautol-
ogy), the database returns all the user information

22

in the table. Therefore, the malicious user has
been authenticated without a valid login id and
password. The use of tautology is a well-known
SQL attack [2, 12, 25]. However, there are other
types of SQLIAs using multiple SQL statements
or stored procedures. SQL clauses such as
“UNION SELECT”, “ORDER BY”, and
“HAVING” are sometimes used to infer database
structure. The attackers also can infer database
structure by exploit error messages from SQL
command failure [2, 21] or simply by trial and
error [20].

2.2 AMNESIA
AMNESIA[12] is a runtime SQLIA detection tool.
AMNESIA consists of two parts; static analysis
and dynamic detection. During static analysis,
AMNESIA identifies hotspots where a hotspot is
defined as “points in the application code that
issue SQL queries to the underlying database.”
[12]. Then, AMNESIA builds a model of SQL
queries that could be generated by an application
for each hotspot. At runtime, AMNESIA checks
the dynamically-generated queries against the
statically-built query model. If they do not match,
the AMNESIA runtime monitor returns an error
and prevents the SQL query from being executed.
Otherwise, the query is sent to the database server.

The AMNESIA SQL query model is con-
structed based on Java String Analyzer (JSA) that
uses a static string analysis technique [9]. JSA
statically analyzes string data flow in Java pro-
grams and converts the flow graph to an approxi-
mated regular expression that can be easily
converted into a finite state automaton. Because
the approximation is conservative, the resulting
automaton represents all the possible strings that
can be represented at a particular location in a
program but also could include some impossible
strings.

AMNESIA converts the character-level
automata generated by JSA into SQL query auto-
mata, which groups a SQL keyword into a transi-
tion. The transitions in the automata consist of
SQL keywords, operators, constants, and a special
keyword representing SQL query variables such
as id in our example. Figure 2 shows the SQL

query model built from the example SQL query in
Figure 1. In Figure 2, β indicates a SQL query
variable that holds user input.

Our approach modifies SQL query models
generated by AMNESIA to trace the user input
that reaches a SQL query and to generate attack
input for the test cases. AMNESIA is also used as
a test oracle to detect the SQLIA during test exe-
cution. A test oracle is a program or function that
determines if a test execution passed or failed.

2.3 JCrasher
JCrasher automatically generates test cases

for the methods in a class with predefined input
values. For example, for integer types, JCrasher
uses 1, 0, and -1 as input values. To generate test
cases, JCrasher probes a type space, mapping a
type to a set of pre-defined values or to methods
returning the type, and constructs a parameter
graph that represents possible combination of
input values for parameters.

The reasons we chose JCrasher among other
tools are as follows. JCrasher generates concrete
input values for string types, which is crucial for
our approach. Secondly, JCrasher generates JUnit
test cases written in Java language. Thirdly, be-
cause its source code is available we could modify
JCrasher for our purpose. Finally, even though
JCrasher was not designed for high test coverage,
our experience showed that the test coverage pro-
vided by JCrasher was sufficient for our initial
prototype.

3 Related Work
There are existing tools and techniques that can be
used in development and testing time to detect or
prevent input manipulation vulnerabilities and to
improve programs so that input manipulation vul-
nerabilities can be reduced. This section discusses
those techniques and compares with our approach.

3.1 Manual Approaches
This section describes manual approaches to de-
tect and prevent input manipulation vulnerabilities.

3.1.1. Defensive programming Many input

Figure 2: SQL query model.

33

manipulation attacks can be prevented, by imple-
menting the application in a way that user input
cannot contain malicious characters or keywords.
Programmers can implement their own input fil-
ters by using white lists or black lists. Our ap-
proach helps to improve user input validation by
providing information on vulnerable method ar-
guments and malicious input. Programmers can
also use existing safe APIs that prevent malicious
input by strong type checking or converting mali-
cious input into safer input. SQL DOM [22], Safe
Query Objects [10], PreparedStatement in the
JDBC API, and special APIs provided by DBMSs
are in this category.

However, some of these approaches require
programmers to learn the usage of APIs. Because
learning new APIs takes time, programmers tend
to use the APIs they know when the time is lim-
ited or to reuse the existing source code. Addi-
tionally, legacy code can contain SQL injection
vulnerabilities. Furthermore, improper usage of
PreparedStatement still can allow SQLIAs.
Table names and column names cannot be used in
a safe way even with PreparedStatement.
Therefore, when a table name or a column name
is used as a variable, it should be validated in the
application [19].

3.1.2 Code review Code review is known to
be effective in detecting bugs with low cost [5].
However, code review is a time consuming task
compared to automated static analysis [7] and
may be skipped by software development teams
rushing to ship an application. In addition, the
reviewer must have deep knowledge about how
SQLIAs work. A strength of our approach is that
it provides fast and early detection of vulnerabili-
ties by non-security experts.

3.1.3 Manual penetration testing “Penetra-
tion testing is security testing in which evaluators
attempt to circumvent the security features of a
system based on their understanding of the sys-
tem design and implementation” 6 . Penetration
testing is usually performed at the end of devel-
opment life cycle within a limited amount of time
[3]. Therefore, the cost of removing the vulner-
abilities found during penetration testing is very
expensive. Penetration testing is usually per-
formed in a black-box approach. Thus, the testing
result does not directly inform the vulnerable lo-
cation in the application. On the other hand, our

6 http://www.atis.org/tg2k/_penetration_testing.html

approach tests applications during the unit testing
and integration testing periods. Therefore, SQL
injection vulnerabilities can be detected and fixed
earlier than with penetration testing. In addition,
our approach is a white-box approach and pro-
vides test results in a way programmers can easily
identify the vulnerable location in the application.

3.2 Automated Approaches
This section describes automated approaches to
detect and prevent input manipulation vulnerabili-
ties.

3.2.1 Static analysis FindBugs [14] is a static
analysis tool that detects various bugs in Java
programs, including SQLIAs. FindBugs gives a
warning when a SQL query is constructed from
variables instead of purely constant values. How-
ever, FindBugs does not assess whether the input
was validated properly before the input is used in
a SQL query or not and, therefore, may generate
many false positives. On the other hand, our ap-
proach provides more precise information about
SQLIAs based on test execution.

3.3.2 Web vulnerability scanning Web vul-
nerability scanners crawl and scan for web vul-
nerabilities by using software agents. These tools
perform attacks against web applications and de-
tect vulnerabilities by observing their behavior to
the attacks [4, 18]. WAVES [16], SecuBat [18],
AppScan, ScanDo, and WebInspect [4] are in this
category. However, without exact knowledge
about the internal structure of applications, it is
difficult to generate precise attack input that can
reveal input manipulation vulnerabilities. On the
other hand, our approach uses more precise attack
input based on static analysis on application
source code and identifies proper attack input for
method arguments.

4 Proposed Approach

User input might take a circuitous path from the
user interface through one or more methods that
may or may not be input filter methods, and ulti-
mately to the SQL command to be executed. Our
approach traces the flow of the input values that
are used for a SQL query by using the AMNESIA
SQL query model [12] and string argument in-
strumentation. Based on the input flow analysis,
we generate test attack input for the method ar-
guments used to construct a SQL query. We gen-
erate test cases with an existing JUnit test case

44

http://www.atis.org/tg2k/_system.html

generation tool, JCrasher, and modify the test
input with attack input. To help programmers to
easily identify vulnerable locations in the program,
our approach generates a colored call graph indi-
cating secure and vulnerable methods.

This section provides an overview of our ap-
proach that consists of three phases and describes
each phase in the following sections.

4.1 Overview
Our research objective is to facilitate the identifi-
cation of true input manipulation vulnerabilities
via the combination of static analysis, runtime
detection, and automated testing. Our objective is
based on the overarching goal of software security
in which security is an integral part of the devel-
opment process [23].

Our approach involves three phases. In the
first phase, test cases whose execution reaches
SQL query statements are generated. We call
these test cases hotspot-reaching test cases. Dur-
ing the second phase, the generated test cases are
refined so that the input values of test cases are
replaced with attack input. The attack input for
method arguments is determined from an aug-
mented SQL query model which has additional
input flow information than a standard SQL query
model. In the third phase, test cases are executed
to detect vulnerabilities and test result summaries
are generated. Programmers can then use the test
result summaries to improve the program. Figure
3 shows the overview of test case generation
process. The following sections describe each
phase in detail.

4.2 Phase 1: Generate Hotspot-
reaching Test Cases

Generating hotspot-reaching test cases is per-
formed in two steps. At first, initial test cases are
generated by JCrasher [11]. Then, hotspot-
reaching test cases are collected from the initial
test cases. To collect hotspot-reaching test cases,
SQLUnitGen finds a hotspot from the Java appli-
cation’s byte code7 and instruments (modifies) the
byte code so that an exception is raised right be-
fore the hotspot is executed using BCEL (Byte

7 Java byte code is the code the Java compiler produces
from Java source code. Java byte code is interpreted
(executed) by a Java Virtual Machine (JVM).

Code Engineering Library)8. BCEL provides the
APIs to analyze byte code and change programs
directly on the byte code level instead of modify-
ing the source code. Therefore, SQLUnitGen can
search the method signature defined as hotspots
using BCEL. Figure 4 shows an example of the
instrumented code. For ease of reading, we show
the instrumentation on the source code level, in-
stead of byte code level. In this example, right
before a hotspot executeQuery is executed,
HotspotException is raised.

public boolean isRegistered(String id,
 String password) {
 …
 throw new HotspotException();
 ResultSet rs =
 stmt.executeQuery(sqlQuery);
 if(rs != null) return true;
 else return false;
}

Figure 4: Hotspot instrumentation.

SQLUnitGen collects the test cases that raise

the instrumented exception as hotspot-reaching
test cases. The execution of these test cases is
guaranteed to reach hotspots. Therefore, if the
execution of these test cases with malicious/attack
input does not reach a hotspot, the program has
effectively blocked the malicious input. In Phase
2, these test cases are modified to include attack
input.

4.3 Phase 2: Generate Attack
Test Case

For attack test cases, we need to generate attack
input so that the attack input does not cause SQL
syntax or semantic errors unnecessarily. For ex-
ample, a column in a database table with character
data type must use single quotation marks prop-
erly so that a SQLIA will not generate a SQL syn-
tax error. We also need to identify the flow of
user input from methods to hotspots to identify
which arguments of which methods must have the
generated attack input. For these purposes, we
use a SQL query model and string argument in-
strumentation, as described in Section 4.3.1 and
Section 4.3.2.

8 http://jakarta.apache.org/bcel/

55

Figure 3: Test case generation process.

4.3.1 Building augmented SQL query model
To trace the flow of input values, SQLUnitGen
instruments the byte code so that, for each string
type argument, its method name and argument
index are added before and after the string argu-
ment value. Figure 5 shows an example of in-
strumentation. For ease of reading, we show the
instrumentation on the source code level, instead
of byte code level. The instrumentation is in bold.
In this figure, the argument id and password
are string types. Therefore, the argument id is
tagged with the method name isRegistered
and argument index 0 and the argument pass-
word is tagged with the method name isReg-
istered and argument index 1.

The SQL query model built on the instru-
mented byte code includes the tagged information
as if it is a part of the SQL query. We call the
SQL query model with tagged information the
augmented SQL query model. When the value of a
variable cannot be determined in the application
because it comes from user input, it is represented
as a special keyword, β, in the SQL query model.

The resulting augmented SQL query model is
shown in Figure 6. In Figure 6, id and pass-
word are represented in β, which represents user
input.

public boolean isRegistered(String id,
 String password) {
 id = “[isRegistered-0]” + id +
 “[isRegistered-0]”;

password = “[isRegistered-1]” +
 password +

 “[isRegistered-1]”;
 …
}

Figure 5: String argument instrumentation.

When an argument is passed through a chain

of method calls, the tag includes all the methods
involved in the method call chain. For example,
if method isRegistered is called by method
Login as Figure 7, the beginning tag of variable
id becomes [isRegistered-0][Login-0]
and the ending tag of variable id becomes
[Login-0][isRegistered-0] as a result of

Figure 6: Augmented SQL query model.

66

string analysis.

public boolean Login(String id,
 String password) {
 boolean result = isRegistered(id,
 password);
 …
}

Figure 7: Nested method call.

Figure 8 shows the augmented SQL query

model for the program segment in Figure 7. Fig-
ure 8 shows only a part of the augmented SQL
query model for the variable id. From this aug-
mented SQL query, we can trace the flow of ini-
tial input to a SQL query and identify method
arguments that are used to construct a SQL query.

4.3.2 Generating attack input For the suc-

cessful attack, attack input should not cause SQL
exceptions including SQL syntax errors or SQL
semantic errors unnecessarily. SQL semantic
errors occur when the attack input includes incor-
rect table names or column names. SQL syntax
error occurs when the dynamically constructed
SQL query from the attack input results in a syn-
tactically illegal form. For example, if we use
“1’ OR ‘1’=’1” as attack input for an integer
type column of a database table, the query will
generate a syntax error. In SQLUnitGen v0.5, we
reduce syntax errors via the syntactical informa-
tion we can obtain from the SQL query model.

However, some syntax errors are unavoidable.
For example, when attack input includes multiple
SQL statements, if a DBMS does not allow multi-
ple SQL statements in a query execution, the
DBMS generates a syntax error. When we count
successful SQLIAs from test cases, we only count
the test cases that were successful in SQL injec-
tion without causing SQL syntax errors.

As attack input, SQLUnitGen v0.5 includes
nine attack patterns gathered from various re-
sources [2, 17, 19, 21]. They are only a small
subset of possible attack patterns. The nine attack
patterns are described in Section 4.5 in detail. We
will include more attack patterns in the future
releases

4.3.3 Generating attack test cases From the
previous two steps, we obtain the attack input for

method arguments. To generate attack test cases
with SQLUnitGen, we modified JCrasher so that
JCrasher changes test input of hotspot-reaching
test cases to include the attack input identified in
the previous steps for corresponding method ar-
guments. Figure 9 shows a test case for method
isRegistered generated by JCrasher during
the first phase. Figure 10 shows a modified test
case containing attack input during the second
phase. The test case in Figure 10 tests if the vari-
able id in the example in Figure 1 is properly
validated or not.

public void test0() throws Throwable {
 java.lang.String s4 = “normal";
 java.lang.String s5 = “normal";
 SampleApp s2 = new SampleApp();
 boolean result =

Figure 8:Augmented SQL query model for nested
method calls.

 s2.isRegistered(s4, s5);
}

Figure 9: Test case before modification.

public void test0() throws Throwable {
 java.lang.String s4 = “1' OR '1'=’1";
 java.lang.String s5 = “normal";
 SampleApp s2 = new SampleApp();
 boolean result =
 s2.isRegistered(s4, s5);
}

Figure 10: Test case after modification.

4.4 Phase 3: Execute Test Cases
and Generate Test Result
Summary

To detect SQLIAs, SQLUnitGen instruments ap-
plication byte code with the AMNESIA runtime
monitor [12]. When the SQL query constructed
from a test case and the SQL query model built by
AMNESIA statically do not match, the
AMNESIA runtime monitor raises a SQLIAEx-
ception.

To help programmers to easily identify vul-
nerable locations in the program, SQLUnitGen
generates a textual test result summary and a
graphical test result summary. A textual test re-
sult summary shows the test cases that succeeded
or failed for each method. Test success in a test
case means that SQLIA was not detected from the
test case. Test failure in a test case means that
SQLIA was detected from the test case.

A graphical test result summary shows a col-
ored call graph indicating the flow of input be-

77

tween methods, and the demonstrated vulnerabil-
ity of each method. On the call graph, methods
are represented as ovals. A green oval indicates
that all the test cases for the method succeeded. A
red oval indicates that all the test cases for the
method failed. A yellow oval indicates that some
of the test cases for the method succeeded and
that some of them failed. A black oval indicates
there were no test cases for the method. From the
colored call graph, developers can identify how
vulnerable input flows through the system and
where to put input filters. Figure 11 shows an
example of colored call graph. For ease of read-
ing a printed document, the color has been
changed to black and white. The color mapping is
described in the Figure 11.

In the figure, the numbers after a method
name indicates the number of successful test cases
and failed test cases. For example, all the test
cases for Login succeeded, which means the
method is not vulnerable to the test input. All the
test cases for isRegistered failed, which
means the method was vulnerable to the test input.
Partial success can happen, as in getUserInfo,
when input filtering is performed only for some of
the arguments, or input filter does not check some
of vulnerable characters.

Even though isRegistered failed in all
the test cases, isRegistered can be consid-
ered not to be vulnerable because the caller
method Login is the only path to isRegis-
tered, and Login filtered all the vulner-
able input successfully. If isRegistered can
be called with user input without passing through
Login, a programmer should consider putting
input filters between isRegistered and the
hotspot.

A textual test result summary also provides
the query used for each test case. Therefore, pro-
grammers can easily identify why the test case
failed and which user input is vulnerable using the
textual test result summary and attack test cases
with concrete attack input values. Based on the
information, programmers can add input filters in
a proper location in a program or use safer APIs,
or combine the two approaches.

4.5 Attack Patterns
Our initial set of nine attack patterns included in
SQLUnitGen v0.5 were collected from published
black lists [2, 17, 19, 21]. These initial nine are
only a small set of commonly-referenced attacks.
To generate attack inputs, we used the following
attack patterns for character type variables that
require a single quotation mark:

AP1: 1’ OR ‘1’=’1
AP2: 1’OR‘1’=’1
AP3: 1'; exec master..xp_cmdshell
 'dir';--
AP4: 1'; drop table sqliatest; create
 table sqliatest (name varchar(10))--
AP5: 1'; delete from sqliatest;--

AP2 is similar to AP1, but AP2 does not have

a space between 1’ and OR. This attack pattern
was added to test if the program tries to detect
SQL injection attack based on a wrong regular
expression, for example, “’ OR”. In some cases,
the application cannot just block a single quota-
tion mark, because a single quotation mark in a
name (e.g. O’Reilly) is legitimate data. Even
though the regular expression “’ OR” can detect
AP1, this regular expression will fail to detect
AP2. In MySQL and PostgreSQL, ‘-- ' makes

Figure 11: Call graph with test result.

88

remaining content in a SQL query a comment so
that the remaining content is ignored.

We used the following attack patterns for in-
teger type variables:

AP6: 1 OR 1=1--
AP7: 1;exec master..xp_cmdshell 'dir'; --
AP8: 1; drop table sqliatest; create
 table sqliatest (name varchar(10)) --
AP9: 1; delete from sqliatest;--

User input from web interface is transmitted

as string data types. Even though the input is for
an integer type column in a database table, the
string type user input can be used to construct a
valid SQL query as long as the user input consists
of numerical digits. Therefore, AP6-9 can be
used as attack input value for an integer type col-
umn if an application does not convert the user
input into the integer type.

AP1, AP2, AP6 are intended to detect attacks
based on tautology as explained in Section 2.1.
Some DBMSs allow multiple SQL statements in
one query execution by default or by option. AP3,
AP4, AP5, AP7, AP8, and AP9 are intended to
detect attacks involving multiple SQL statements.
AP4, AP5, AP8, and AP9 show that attackers can
arbitrarily manipulate data in a database. With
AP3, attackers can execute system commands
using built-in stored procedure. Microsoft SQL
Server is known to be vulnerable to AP3 [2]. For
repeatable test, AP8 creates table sqliatest
after the table is dropped.

4.6 Limitations
Although our approach is useful to test SQL injec-
tion vulnerabilities, the current implementation
has limitations as follows.
1. Attack patterns in the test cases

The ability to detect vulnerabilities in our ap-
proach is limited by the quality of attack patterns.
Therefore, false negatives can happen when the
attack patterns included in SQLUnitGen are not
sufficient, as is the case with the nine current at-
tack patterns. Due to the ever-evolving attack
patterns, it is difficult to include all the attack
patterns in the current implementation. Therefore,
an extendible interface to easily add new attack
patterns must be provided.
2. False negatives

False negatives also can happen in the fol-
lowing cases. First, false negatives can be gener-

ated when a SQL query model does not precisely
reflect the possible SQL queries in an application
and considers a SQL query constructed from at-
tack input as legal user input [12]. Second, false
negatives can occur when the execution of ini-
tially-generated test cases do not reach hotspots
through every possible path due to the lack of
proper input. In this case, the necessary attack
test cases are not generated. Therefore, the col-
ored call graph also may not include all the possi-
ble paths to hotspots. Third, false negatives also
can happen when a SQL query fails and the test
case exits without executing the remaining SQL
queries that can reveal SQLIA.
3. User input APIs

Our approach only can test user input passed
as method arguments. If a user input API and a
hotspot that uses the input reside in the same
method, test case cannot be generated properly.
One way to solve this problem is to give warning
to programmers when the user input is used at a
hotspot without being passed as a method argu-
ment. Such user input can be identified when an
augmented SQL query model has no tagged in-
formation for a variable in a SQL query.
4. Underlying techniques

Our approach is limited by the ability of
query-model building of AMNESIA and its un-
derlying string analyzer, JSA. SQLUnitGen in-
herits the possibility of false negatives and false
positives of AMNESIA due to the over-
approximation of underlying string analysis [12].
In addition, the current implementation of JSA
does not support the analysis of the string in a
class field as it does for local string variables for
its own purpose [8]. Therefore, when a method
argument is a class and a member field of the
class is used to construct a SQL query, our ap-
proach does not trace user input precisely.
SQLUnitGen is also limited by the scalability of
AMNESIA and JSA due to the possible large
number of states and transitions in the generated
automata [12].

5 Evaluation
To investigate the effectiveness of our approach,
we performed case studies on two small web ap-
plications. This is a preliminary study to examine
and understand the possibility of using this ap-
proach as an improvement to current vulnerability
detection methods, and to see what we can learn
about improving this approach. The following

99

subsections describe our evaluation setup and the
results.

5.1 Evaluation Setup
As test subjects, we used two small web applica-
tions, called Cabinet and Bookstore with
SQLUnitGen v0.5. Cabinet was developed as a
class project by the first author and her team
members in Fall 2004. Cabinet has approximately
2000 lines of code in 14 classes. Cabinet allows
users to register, login, and order cabinets. Book-
store, approximately 20000 lines of code in 28
classes, is publicly available from an open source
web site 9 . Bookstore was also used for the
evaluation of AMNESIA [12]. For both of the
applications, we used only the login modules as
initial test.

Due to Limitations 3 and Limitation 4 de-
scribed in Section 4.6, we modified a part of the
subjects. Because SQLUnitGen requires user
input to be passed to a hotspot through a method
call, we added a wrapper method for a hotpot
when the input API and the hotspot reside in the
same method. Because underlying tool JSA does
not analyze the fields as it does for local variables,
we also modified the subjects so that the method
arguments whose value is used for a hotspot are
passed as string types rather than as a field in a
class.

In addition, to evaluate the effectiveness of
generated test cases, we performed controlled
fault injection. For the fault injection, we modi-
fied the applications so that the applications have
different levels of input filtering. For each subject,
Version 1 has no input filtering function. Version
2 has input filtering for a part of input arguments.
Version 3 was intended to have exhaustive input
filtering for every input from users. The modified
subjects are available online10. Cabinet initially
had no input filtering in the server-side code. All
input validation was implemented in the client
side via Javascript.

5.2 Evaluation Results
We compared our results with the results of a
static analysis tool, FindBugs [14]. FindBugs is a
tool that detects various bug patterns in Java pro-

9 http://www.gotocode.com
10
http://www4.ncsu.edu/~yshin2/sqlunitgen/examples.zip

grams, including SQLIAs. FindBugs gives a
warning when a SQL query is constructed from
variables, not purely from constant values. We
used MySQL11 v5.0.21 for the evaluation.

Table 1 shows the comparison summary at
the hotspot level. Table 2, in the Appendix, pro-
vides a summary from a test case perspective and
additional explanatory details. In Table 1, the
numbers beside the subject name are the version
numbers indicating different levels of input filters,
as described in Section 5.1. A limitation of the
evaluation is the small sample size of hotspots. In
our future work we will evaluate larger programs.

For the comparison, we measured the number
of false positives and false negatives. False posi-
tives are vulnerabilities found when the vulner-
abilities do not exist. False negatives are
vulnerabilities that were not found when the vul-
nerabilities actually exist. The false positives and
false negatives are measured by counting the
number of actual vulnerable hotspots in each ap-
plication and the number of errors or warnings
from SQLUnitGen and FindBugs. A vulnerable
hotspot is a hotspot where a SQLIA can occur
from the attack patterns defined in Section 4.5 via
the execution through all possible paths starting
from the top level of method call chain. There-
fore, for SQLUnitGen, a vulnerable hotspot is a
hotspot whose top level caller is not a green color
in the colored call graph. However, due to the
Limitation 2 in Section 4.6, we manually in-
spected the vulnerable hotspots. When a syntacti-
cally-correct SQL query at a hotspot cannot be
created successfully from any method call, we did
not count the hotspot vulnerable. For example, in
Bookstore, one method includes only a part of a
SQL query that is impossible to execute the query
without a syntax error from any method call in the
class we tested.

Bookstore Version 1 and Cabinet Version 1
had one and five vulnerable hotspots, respectively.
Bookstore Version 3 and Cabinet Version 3 had
no vulnerable statements because all of the input
was properly filtered. FindBugs had no false
negatives for all vulnerable hotspots. However,
FindBugs had high percentage of false positives
in Cabinet Version 2 and Cabinet Version 3. The
reason FindBugs has false positives is because
FindBugs only analyze the hotspots without con-
sidering the execution flow of the methods that
call the hotpots and, therefore, cannot find the

11 http://www.mysql.com

1010

filter. SQLUnitGen had no false positives for all
the vulnerable hotspots. However, SQLUnitGen
had two false negatives in Cabinet 1. The false
negative was caused because two vulnerable SQL
statements were in the same method and the
method returned after the first SQL statement was
executed without executing the second statement.
We will address this limitation in our future work.

6 Conclusions and Future
Work

We presented an automatic test case generation
technique to identify SQL injection vulnerability.
We used a combined approach of static analysis,
runtime detection and automatic testing. Static
analysis using AMNESIA and string argument
instrumentation is used to trace the user input to a
vulnerable location (hotspot) in an application. In
our evaluation, the prototype tool SQLUnitGen
v0.5 had no false positives and small number of
false negatives. Many of the SQLIA vulnerabili-
ties that can be identified with SQLUnitGen can
be addressed via the use of PreparedState-
ments. Since many legacy applications were not
written using PreparedStatements, SQLUnit-
Gen can be particularly helpful in finding and
addressing SQLIA vulnerabilities in legacy code
as well as new code written that does not take
advantage of newer, safer techniques.

Due to the limitations that we described in
Section 4.6, we could not perform large scale
evaluation. However, the result of preliminary

study shows that our technique is promising in
detecting vulnerabilities with less false positives
than static analysis tools. However, due to the
possible false negatives of our tool, the two ap-
proaches can be used in a complementary way.
That is, after detecting vulnerabilities with a static
analysis tool such as FindBugs, we can check the
real vulnerabilities with our tool.

Our future work includes the following: First,
we plan to investigate a new test case generation
technique with high path coverage. We can adapt
symbolic execution approach combined with con-
crete execution [24] or infer the input values from
existing manually-created test cases to reduce
false negatives. Second, we plan to apply our
approach for other types of security vulnerabilities.
Our approach can be applied to the vulnerabilities
with known hotspots where string type user input
is used. Third, we plan to provide test coverage
information to give high confidence on the testing
results. Fourth, we plan to construct attack pat-
tern database with more thorough attack input in a
way new attack pattern can be easily added and
used to generate test cases.

Acknowledgements

This work is supported in part by the National
Science Foundation under CAREER Grant No.
0346903. Any opinions expressed in this material
are those of the author(s) and do not necessarily
reflect the views of the National Science Founda-
tion. Alessandro Orso and William Halfond pro-
vided us with an implementation of their

Applications Tools Vulnerable
hotspots

Vulner-
abilities
found

False positives False negatives

SQLUnitGen 1 1 0 (0%) 0 Bookstore 1
 FindBugs 1 1 0 (0%) 0

SQLUnitGen 1 1 0 (0%) 0 Bookstore 2
 FindBugs 1 1 0 (0%) 0

SQLUnitGen 0 0 0 (0%) 0 Bookstore 3
 FindBugs 0 1 1 (100%) 0

SQLUnitGen 5 3 0 (0%) 2 Cabinet 1
 FindBugs 5 5 0 (0%) 0

SQLUnitGen 1 1 0 (0%) 0 Cabinet 2
 FindBugs 1 5 4 (80%) 0

SQLUnitGen 0 0 0 (0%) 0 Cabinet 3
 FindBugs 0 5 5 (100%) 0

Table 1: Comparison with static analysis tool.

1111

AMNESIA tool and heartfelt support to configure
it in our system. Zhendong Su and Gary Wasser-
mann, Koushik Sen, and Christoph Csallner, An-
ders Møller provided prompt and thorough
answers to queries about their tools. We would
like to thank the NCSU Software Engineering
Realsearch group for their careful review of and
helpful suggestions for the paper.

About the Author

Yonghee Shin is a Ph.D. student in North Caro-
lina State University. Her research interest is in
software reliability and software security testing.
Her e-mail address is yonghee.shin@ncsu.edu.

Dr. Laurie Williams is an assistant professor
in North Carolina State University. Her research
area is software reliability, software security test-
ing, pair programming, and extreme programming.
Her e-mail address is williams@csc.ncsu.edu.

Dr. Tao Xie is an assistant professor in North
Carolina State University. His research area is in
automatic software testing. His e-mail address is
xie@csc.ncsu.edu.

References

[1] "OWASPD – Open Web Application Security
Project. Top ten most critical web application vul-
nerabilities," 2005.

[2] C. Anley, Advanced SQL Injection In SQL Server
Applications. White Paper, Next Generation Secu-
rity Software Ltd., 2000.
http://www.ngssoftware.com/papers/advanced_sql
_injection.pdf.

[3] B. Arkin, S. Stender, and G. McGraw, "Software
Penetration Testing," IEEE Security and Privacy,
vol. 3, no. 1, pp. 84 - 87, 2005.

[4] L. Auronen, "Tool-Based Approach to Assessing
Web Application Security," Helsinki University of
Technology, November, 2002.

[5] R. A. Baker, "Code Reviews Enhance Software
Quality," In Proceedings of the 19th international
conference on Software engineering (ICSE'97) pp.
570 - 571, Boston, MA, USA. 1997.

[6] P. Chandra, B. Chess, and J. Steven, "Putting the
Tools to Work: How to Succeed with Source
Code Analysis," IEEE Security and Privacy, vol. 4,
no. 3, pp. 80-83, 2006.

[7] B. Chess and G. McGraw, "Static analysis for
security," IEEE Security and Privacy, vol. 2, no. 6,
pp. 76 - 79, 2004.

[8] A. S. Christensen, A. Mller, and M. I. Schwartz-
bach, "Extending Java for high-level Web service
construction," ACM Transactions on Program-

ming Languages and Systems, vol. 25, no. 6, pp.
814--875, 2003.

[9] A. S. Christensen, A. Møller, and M. I. Schwartz-
bach, "Precise Analysis of String Expressions," In
Proceedings of the 10th International Static
Analysis Symposium(SAS 03), pp. 1–18, June.
2003.

[10] W. R. Cook and S. Rai, "Safe Query Objects:
Statically Typed Objects as Remotely Executable
Queries," In Proceedings of the 27th international
conference on Software engineering (ICSE'05), St.
Louis, Missouri, USA, May 15–21. 2005.

[11] C. Csallner and Y. Smaragdakis, "JCrasher: An
automatic robustness tester for Java," Software --
Practice and Experience, vol. 34, no. 11, pp.
1025-1050, 2004.

[12] W. G. J. Halfond and A. Orso, "AMNESIA:
Analysis and Monitoring for NEutralizing SQL-
Injection Attacks," In Proceedings of 20th ACM
International Conference on Automated Software
Engineering (ASE), pp. 174 - 183, Long Beach,
CA, USA, November. 2005.

[13] G. Hoglund and G. McGraw, Exploiting Software:
How to Break Code: Addison Wesley, 2004.

[14] D. Hovemeyer and W. Pugh, "Finding Bugs is
Easy," In Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications,
pp. 132-136, October. 2004.

[15] M. Howard and D. LeBlanc, Writing Secure Code.
Redmond, WA: Microsoft Press, 2003.

[16] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H.
Tsai, "Web application security assessment by
fault injection and behavior monitoring," In Pro-
ceedings of the 12th international conference on
World Wide Web, pp. 148 - 159, Budapest, Hun-
gary. 2003.

[17] S. Joshi, SQL Injection Attack and Defense, 2005.
http://www.securitydocs.com/library/3587.

[18] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic,
"SecuBat: A Web Vulnerability Scanner," The
15th World Wide Web Conference (WWW'06), Ed-
inburgh, Scotland, May 23–26. 2006.

[19] S. Kost, "Introduction to SQL Injection Attacks
for Oracle Developers," Integrity Corporation,
January, 2004.

[20] O. Maor and A. Shulman, Blindfolded SQL Injec-
tion, Imperva inc., 2003.
http://www.imperva.com/application_defense_cen
ter/white_papers/blind_sql_server_injection.html.

[21] O. Maor and A. Shulman, SQL Injection Signa-
tures Evasion: An overview of why SQL Injection
signature protection is just not enough, 2004.
http://www.imperva.com/application_defense_cen
ter/white_papers/sql_injection_signatures_evasion.
html.

[22] R. A. McClure and I. H. Krüger, "SQL DOM:
Compile Time Checking of Dynamic SQL State-
ments," In Proceedings of the 27th international

1212

http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.securitydocs.com/library/3587
http://www.imperva.com/application_defense_center/white_papers/blind_sql_server_injection.html
http://www.imperva.com/application_defense_center/white_papers/blind_sql_server_injection.html
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html

conference on Software engineering (ICSE'05), pp.
88 - 96, St. Louis, Missouri, USA., May 15–21.
2005.

[23] G. McGraw, Software Security: Building Security
In: Addison-Wesley Software Security Series,
2006.

[24] K. Sen, D. Marinov, and G. Agha, "CUTE: A
Concolic Unit Testing Engine for C," 5th joint
meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering
(ESEC/FSE'05), pp. 263-272, Lisbon, Portugal,
September. 2005.

[25] Z. Su and G. Wassermann, "The essence of com-
mand injection attacks in web applications," Con-
ference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages (POPL’06), pp. 372 - 382, Charleston,
South Carolina, USA, January 11-13. 2006.

[26] F. Swiderski and W. Synder, Threat Modeling:
Microsoft, 2004.

[27] F. Valeur, D. Mutz, and G. Vigna, "A Learning-
Based Approach to the Detection of SQL Attacks,"
In Proceedings of the Conference on Detection of
Intrusions and Malware Vulnerability Assess-
ment(DIMVA), July. 2005.

[28] W. D. Yu, P. Supthaweesuk, and S. Aravind,
"Trustworthy Web Services Based on Testing,"
IEEE International Workshop on Service-Oriented
System Engineering (SOSE), pp. 167 - 177,
Shanghai, China. 2005.

1313

Appendix
In this appendix, we present additional evaluation
results to the evaluation results described in Sec-
tion 5.2. Table 2 describes the number of hotspots
(H), the number of initially generated test cases
(IT), hotspot-reaching test cases (HT), and gener-
ated attack test cases (AT) for each application. In
addition, Table 2 includes the number of success-
ful SQLIAs and SQL exceptions.

Because different DBMSs and database driv-
ers behave differently for the SQL query or for
the same database interface APIs in some cases,
we tested with two DBMSs, MySQL 12 v5.0.21
and PostgreSQL13 v8.1.3. For example, MySQL
does not allow multiple SQL statements in an
SQL execute command by default, but Post-
greSQL allows multiple SQL statements for cer-
tain APIs. To test the effects of multiple SQL
statements, we modified SQL APIs used in the
applications so that the APIs allow multiple SQL
statements. For that purpose, executeQuery
was changed to execute.

In Table 2, SI indicates the number of test
cases with successful SQL injections without SQL
syntax or semantic errors. FSI, full path SQLIA,
indicates the number of test cases with successful
SQL injections from the top level method in the
method call chain. SI counted the number of suc-
cessful SQLIA in terms of each method not con-
sidering the flow of input. FSI considered the
flow of input. For example in Figure 11, even
though isRegistered failed in all the test
cases, isRegistered can be considered not to
be vulnerable because the caller method Login

12 http://www.mysql.com

is the only path to isRegistered, and
Login filters all the vulnerable input success-
fully.

SQ indicates the number of test cases with
SQL syntax and semantic errors. SQL syntax er-
rors occur when attack input includes syntacti-
cally illegal input. SQL syntax error depends on
the DBMS used in some cases. For example, mul-
tiple SQL statements cause a syntax error for
MySQL, but not for PostgreSQL. For Post-
greSQL, using a non-boolean expression in
WHERE clause is a syntax error. However,
MySQL allows non-boolean expressions in
WHERE clause such as “WHERE 1”. A SQL se-
mantic error occurs when a generated SQL query
uses incorrect table name or column name.

In Bookstore, PostgresSQL has more full
path SQLIAs than MySQL because PostgreSQL
allows multiple SQL statements and the attack
patterns we used include multiple SQL statements.
In Cabinet, MySQL has more full path SQLIAs
than PostgreSQL because PostgreSQL treated
some SQL statements as illegal statements, when
MySQL considered them legal, as described pre-
viously. Due to the different level of input filter-
ing, Bookstore 1 and Cabinet 1 had more
successful SQLIAs than Bookstore 2 and Cabinet
2, respectively. In Bookstore 3 and Cabinet 3, all
of the SQLIA prevented in terms of FSI due to the
input filtering.

13 http://www.postgresql.org

 Test case information MySQL PostgreSQL
Subject H IT HT AT SI SQ FSI SI SQ FSI

Bookstore 1 1 52 9 99 18 77 9 40 55 13
Bookstore 2 1 52 9 99 14 76 6 36 54 9
Bookstore 3 1 52 10 105 12 73 0 30 55 0
Cabinet 1 5 348 142 60 24 24 21 23 25 20
Cabinet 2 5 348 142 60 15 15 12 14 16 11
Cabinet 3 5 348 142 60 0 0 0 0 0 0

Table 2: Test result.

H: Number of hotspots. IT: Number of initially generated test cases in the phase 1. HT: Number of hotspot-
reaching test cases. AT: Number of attack test cases. SI: Number of successful attacks. SQ: Number of
SQL syntax or semantic errors. FSI: Number of full path SQLIA.

1414

	Abstract(
	1 Introduction
	2 Background
	2.1 SQL Injection Attacks
	2.2 AMNESIA
	2.3 JCrasher

	3 Related Work
	3.1 Manual Approaches
	3.2 Automated Approaches

	4 Proposed Approach
	4.1 Overview
	4.2 Phase 1: Generate Hotspot-reaching Test Cases
	4.3 Phase 2: Generate Attack Test Case
	4.4 Phase 3: Execute Test Cases and Generate Test Result Summary
	4.5 Attack Patterns
	4.6 Limitations

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation Results

	6 Conclusions and Future Work
	Acknowledgements
	About the Author
	References
	 Appendix

