
C++ Program Information Database for Analysis Tools1

Yuan Wanghong, Chen Xiangkui, Xie Tao, Mei Hong, Yang Fuqing
Department of Computer Science and Technology
Peking University, Beijing 100871, P. R. China

E-mail: yuanwh@163.net

Abstract
Program information extracted from source codes is valuable for research in many

software engineering fields. Many program analysis tools in these fields usually share some
common program information. To support multiple analysis tools based on common program
information, it is practical and feasible to store information into database. This paper describes
a C++ program information database, which is comprehensive enough to support many
analysis tools. To employ the idea of incremental paring, the C++ program information
database is linked by multiple incremental databases, which, in turn, are built by extracting
information from source codes according to a C++ program conceptual model.

Keyword C++, object orientation, program analysis, incremental parsing, program
information database

1. Introduction

Program source codes are usually the primary information source of existing software
systems, and are valuable for research in many software engineering fields, such as software
testing, software maintenance, reverse engineering, reengineering, and software reuse. To
support these research, many code analysis tools have been proposed and reported for different
requirements. The following are several actually implemented systems: PUNS[1], developed
by IBM Corporation, used to support understanding programs written in IBM370 assemble
language; XREF XREFDB[2], developed for C++, C and Pascal by Brown University,
aiming to support maintaining programs, especially object-oriented programs; OOTM[3],
developed by University of Texas at Arlington, mainly supporting object-oriented testing;
COBOL/SRE[4], a set of reengineering tools to support reusable component recovery process;
and GRASP/Ada[5], focusing on reverse engineering of control structure diagrams from Ada
PDL or source code. However, very few of them have been implemented in the context of a
tool kit to simultaneously support several research in above software engineering fields,
especially those of C++ programs.

Various code analysis tools in different fields usually need some common program
information, for example, information on class, inheritance, function and operator overload
and message link for C++ programs. Moreover, they even share some same program
information to keep presenting consistently and accurately. To support multiple analysis tools
based on common program information, it is practical and feasible to store program
information into database, thereby avoiding duplicating extraction process for each analysis

1 Sponsored by the Chinese National 9th Five-Year Plan and National 863 Hi-Tech Program.

tool.
We built a tool kit of code analysis for C++ programs, called JBPAS (JadeBird Program

Analysis System), which consists of three major components: a C++ front end, an information
manager, and a set of program analysis tools. The C++ front end extracts program information
from C++ source codes according to a conceptual model and stores it into incremental
database. The information manager constructs the program information database through
linking incremental databases and provides a database access interface to analysis toolset,
which includes various tools used for software testing, software maintenance, reverse
engineering, reengineering, and software reuse. All of these tools share the same program
information database through the information manager.

This paper describes the program information database and analysis tools based on it. The
rest of this paper is organized as follows. First, section 2 presents an overview of JBPAS.
Section 3 details JBPAS conceptual model. Section 4 discusses linking incremental databases.
Section 5 summaries related work. Finally, section 6 gives the current status and future work.

2. JBPAS Tool Kit

We initially employed the C++ program information database to support research in the
area of program understanding, and have implemented the prototype version of a C++ program
comprehension system: BDCom-C++[6]. BDCom-C++ consists of three major components: an
information extractor, an information manager and a user interface, as shown in figure 1:

Understanding Task

Version Controller

 C++
Programs

Parsing
Trees

Extractor

Parser

Lookaheader

Lexer

Database
 Server

 Info
Database

Database
 Linker

Incremental
 Database

Information Extractor Information Manager

…

 User
Interface

Info Viewer Info User

Figure 1. BDCom-C++ System Overview [6]
This system analyzes C++ programs statically in the way of incremental parsing, extracts

program information according to a conceptual model formed with Enhanced Entity
Relationship[7] model, and stores the information in a relational database. The user interface
loads information from the database and presents the program from different perspectives to
facilitate program understanding. As shown in figure 1, the center of the BDCom-C++ system
is the information manager, which interacts with both the information extractor and the user
interface. This approach conforms to the principle of separating the processes of information
extraction and presentation, thereby avoiding duplicating extraction process for each analysis
tool.

Later we saw several code analysis tools based on the program information database and

anticipate more would appear in the future. Therefore we design a tool kit, called JBPAS, to
support research software testing, software maintenance, reverse engineering, reengineering,
software reuse, and so on.

Figure 2 shows the architecture of JBPAS:

C++ Front End

PUS RET OOTS CEX CToC++ C++ToOLE

Information Manager

Analysis Toolset

Figure 2. JBPAS Architecture

• PUS: Program Understanding System. PUS facilitates understanding of the function
and structure of C++ programs. It loads information from the program database, then
organizes and shows the information according to the abstract views needed, and at
the same time, switches between the abstract views to represent the program from
different perspectives.

• RET: Reverse Engineering Tool. Reverse engineering is the process of analyzing a
subject system to identify the system’s components and their relationship and create
representations of the system in another form or at a higher level of abstraction[8].
RET helps users use the information extracted from the program to recover C++
program’s object-oriented design[9] documents, which can be used by forward
engineering tools.

• OOTS: Object-Oriented Test Supporter. Traditional testing tools are inadequate for
object-oriented programs, because of their new features, such as encapsulation,
inheritance, and dynamic binding. OOTS helps to determine test cases based on the
program information, and supports C++ program testing, either using white-box or
black-box method.

• CEX: Component Extractor. Software reuse, of which an important part is
component-based reuse, is considered as a practical and feasible approach to solving
the software crisis[10]. Based on program understanding, the component extractor
identifies and extracts reusable component through implementing reengineering on
the class or class cluster acquired from existing software.

• CToC++: C to C++ Translator. To translate non-object-oriented programs to object-
oriented programs is an important way to reuse existing non-object-oriented
software. Because C++ is the superset of C, the C++ front end and database server
can also apply to C programs. C to C++ translator helps user restructure C programs,
locates data structure and its relevant functions, and translates into functionally
equivalent C++ program.

• C++ToOLE: C++ to OLE Translator. OLE (Object Linking and Embedding)
provides a way to integrate and inter-operate between applications[11]. With the
help of the C++ to OLE translator, programmers can encapsulate C++ applications
to OLE components conforming to OLE interface standards.

All the above analysis tools share the same program information database through the
information manager. And the information manager provides database access interface for
other tools, which facilitates the integration of external analysis tools.

3. The JBPAS Conceptual Model

JBPAS forms conceptual model for C++ programs employing Enhanced Entity
Relationship (EER) model. According to EER model, C++ programs is viewed as a set of
entities and relationships between them, both of which may have a set of attributes. The
entities, relationships and attributes of them are just the primary information needed for
program analysis in different research.

To support various program analysis tools for different requirements, the conceptual
model should be comprehensive and well defined. The EER model of JBPAS is shown in
figure 3, in which the rectangle stands for entity and the rhombus means relationship.

Macro

 Refer

Sup

Sub

SupSub

d

File

Loc_in

 Include

Loc_in

Loc_in

Class

Object

Inst_of Attr _of

Attribute

Variable

 Inherit FriendC

Statement

Function

 Contain

Fct_bdy

Call Overload

 Meth_of

FriendM

 Var_of

SupSub SupSub

SupSub

SupSubLoc_in

Figure 3. JBPAS Conceptual Model

3.1 Entities

JBPAS EER model defines six kinds of entities: Macro, File, Class, Function, Object, and
Statement, among which entity Object can be divided into two kinds of sub-entities based on
its declaration location: Attribute and Variable. Macro name is unique in C++ language,
therefore, entity Macro is strong entity (an entity that has a key) and name is its key. So are
entity File and entity Class. Entity Statement stands for statements in C++ language and its
attribute SID is its key, therefore, entity Statement is also strong entity. On the other hand, in
C++ language, functions can have same name due to function overload and they are not unique.
Because of scope, attributes and variables can be same and not unique. Therefore, entity
Function, entity Attribute and entity Variable have no keys, which means that they are weak
entities (an entity that has no key). In EER model, a strong entity is illustrated as a single-line
rectangle, while a weak entity is illustrated as a double-line rectangle.

3.2 Relationships

In the JBPAS conceptual model, relationships exist between entities according to their
lexical and semantic relation. In C++ language, classes are always defined in a specific source
file, and classes and files have lexical position relation. Therefore, relationship Loc_in exists
between entity Class and entity File and its coordination is one-to-many. Similarly, there are
semantic relations between classes: inheritance and friend class (We currently ignore nested
relation between classes). Because C++ support multi-inheritance, the coordination of
relationship Inherit is many-to-many. In EER model, relationship is illustrated as a rhombus,
which is connected to two corresponding entities by two lines. Since a weak entity has no key,
it must depend on another entity to exist and there is a kind of so-called dependence-
relationship between the two entities. The dependence-relationship is represented by a double-
line rhombus in EER model.

3.3 Attributes

Each entity has a set of attributes to describe it more completely, and each relationship
may also have some supportive attributes. In EER model an attribute is illustrated as an ellipse.
Following are attributes of entity Class and relationship Inherit respectively:

Class

Name IsUnion AnnotationIDIsAbstract

Figure 4. Attributes of Entity Class

 Inherit InheritMode

Figure 5. Attributes of Relationship Inherit

4. Incremental Parsing

Since a C++ project may consist of many source files, and when changes are made to
some depending source files, it is necessary to reparse those changed files. To avoid reparsing
all files, incremental parsing is a practical and feasible approach, which makes it possible to
parse only the modified portion. A typical compiler usually creates a .OBJ file for each
compiling unit, i.e. a .CPP file in C++ language, while parsing. And then links all .OBJ files to
create an executable program or a dynamic-link library. Similarly, JBPAS creates a .IDB file,
an incremental database, for each .CPP file in target project to store information on that .CPP
file and its included files, and then links all incremental database to construct the large
program information database. While reparsing, the version controller locates all files making
up of the target project, checks the timestamp of each file, and forwards only those files, which
have been modified since the creation of the latest incremental database, to parse. Finally, the
database linker relinks all incremental databases to construct the information database.

Apparently, the database linker works in the same way as a compiler’s linker, which
resolves all external references. However, a code analyzer and a compiler employ different

strategies to generate and use different program information, especially information on
declarations. It is common that several .CPP files include same .H files and therefore share
same declarations. For example, file COURSE.H has class CCourse’s declaration, and is
included by file TEACHER.CPP and file STUDENT.CPP, both of which define an object of
class CCourse, as shown in figure 6.

// COURSE.H

class CCourse{
FKDU PBV1DPH>��@�

LQW PBQ&UHGLW�

…

};

…

// TEACHER.CPP

#include “COURSE.H”

CCourse teaching;

…

// STUDENT.CPP

#include “COURSE.H”

CCourse studying;

…

File COURSE.H File TEACHER.CPP File STUDENT.CPP

Figure 6. Example of Shared Declaration

While compiling each .CPP file, a compiler analyzes declarations and stores their
information in the symbol table. The information is used during compiling only the
current .CPP file and needn’t to store into .OBJ file. After the compiling session, what are
unresolved in .OBJ files are external references, and it is just the work of the compiler’s linker.
However, for each .CPP file, a code analyzer extracts declarations’ information and stores it
into database permanently for later program analysis. As to the above example, an analyzer
stores information on declaration and reference of class CCourse into TEACHER.IDB, the
incremental databases of file TEACHER.CPP, and STUDENT.IDB, the incremental databases
of file STUDENT.CPP. The two incremental databases may have information similar to figure
7:

Table Class: ID: 20 Name: CCourse …

TEACHER.IDB Table Inst_of: ClassID: 20 ObjectID: 200 …

Table Object: ID: 200 Name: teaching …

Table Class: ID: 30 Name: CCourse …

STUDENT.IDB Table Inst_of: ClassID: 30 ObjectID: 300 …

Table Object: ID: 300 Name: studying …

Figure 7. Incremental Databases TEACHER.IDB and STUDENT.IDB

After linking session, the two incremental databases TEACHER.IDB and STUDENT.IDB
are linked into one information database. To keep the final information database succinct, the
program information database should keep only one copy of information on shared declaration

(We currently ignore the case in which same declarations included by various files are
processed differently because of conditional compiling.). Because shared declarations may be
refereed by others, the database linker must also update corresponding reference to the shared
declaration. For example, after linking TEACHER.IDB and STUDENT.IDB together, the
program information may have something like figure 8:

Table Class: ID: 20 Name: CCourse …

Program

Information Table Inst_of: ClassID: 20 ObjectID: 200 …

Database ClassID: 20 ObjectID: 300 …

Table Object: ID: 200 Name: teaching …

ID: 300 Name: studying …

Figure 8. Program Information Database after Linking

5. Related Work

The Ada Maintenance Tool kit (AMT)[12], a set of software tools for analyzing the effect
of changes to Ada code, is designed around incremental paring based on structure tree, not on
database. Other systems that don’t employ database are two cross-reference tools: CSope[13]
for C programs and MasterScope[14] for Interlisp programs. The shortcoming of these systems
lies in the fact that program information is kept in a specific form difficult to be handled by
other tools.

The C and C++ Information Abstractors (CIA[15] and CIA++[16]) are two stand-alone
systems that use a database to store extracted program information. However, CIA and CIA++
only form a conceptual model that focuses on global objects (files, macros, global variables,
types and functions). The program information is enough to provide extensive coverage of
program dependencies, but isn’t comprehensive to other applications, say, reengineering.
Similar stand-alone systems include FAST[17] for Fortran and OMEGA[18] for Model, a
Pascal-like language.

XREF/XREFDB[2] is an integrated system for maintaining object-oriented programs, and
is built around a program database. Other systems that are built around a database include
ENCORE[19] and the Harvard Programming Development System[20]. However, these
systems are designed to a specific requirement and cannot be easily employed widely in other
fields.

6. Current Status and Future Work

We have implemented the C++ front end, the information manager, and the prototype
versions of three analysis tools: the program understanding system, the reverse engineering
tool, and the component extractor. The front end, the information manager and the program
understanding system are built through reengineering of the BDCom-C++ system with the help
of BDCom-C++ itself. These implemented analysis tools run on PC under Windows 95
platform, and are currently being widely used at CASE Lab, Peking University to analyzing

C++ programs and restructure existing software. The main problem of the system is that for
large C++ programs, the program information database becomes considerably huge and suffers
from response time.

Our future plans includes the following:
1. Summary the essential information needed by all analysis tools to form a conciser

EER model.
2. Enhance the information manager and add a series of query optimizations to

increase database performance.
3. Implement other analysis tools of JBPAS cited in section 2, encapsulate all JBPAS

tools to OLE applications, and integrate them in an integrated environment.
4. Reuse techniques and code from this system to construct similar systems for other

object-oriented language, for example, Smalltalk and Java.

References
[1] L. Cleveland, “A program understanding support environment,” IBM System J., 1989: 28(2): 324-344.
[2] M. Lejter, S. Meyers, and S. P. Reiss, “Support for Maintaining Object-Oriented Programs,” IEEE Trans.

Software Eng., 1992: 18(12): 1045-1052.
[3] David Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, Chris Chen, Young-Si Kim, and Young-Kee Song,

“Developing an Object-Oriented Software Testing and Maintenance Environment,” Communications of the
ACM, Oct. 1995, Vol. 38, No. 10, 75-87.

[4] Jim Q. Ning, Andre Engberts, and Wojtek Kozaczynski, “Recovering Reusable Components from Legacy
Systems by Program Segmentation,” Proceedings: Working Conference on reverse engineering, Baltimore,
Maryland, May 21-23, 1993, 64-72.

[5] James H. Cross II, “Reverse Engineering Control Structure Diagrams,” Proceedings: Working Conference
on reverse engineering, Baltimore, Maryland, May 21-23, 1993, 107-116.

[6] Mei Hong, Yuan Wanghong, Wu Qiong, and Yang Fuqing, “BDCom-C++A C++ Program Understanding
System,” Chinese Journal of Electronics, Vol.6, No.2, April 1997, 64-69.

[7] S. W. Dietrich and F. W. Calliss, “A Conceptual Design for a Code Analysis Knowledge Base,” Software
Maintenance: Research and Practice, vol. 4, pp. 19-36, 1992.

[8] E. Chikofsky and J. Cross, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE Software, 7(1),
Jan. 1990, 13-17.

[9] Peter Coad and Edward Yourdon, Object-Oriented Design, Yourdon Press, 1991.
[10] Hafedh Mili, Fatma Mili, and Ali Mili, “Reusing Software: Issues and Research Directions,” IEEE trans. On

SE, Vol. 21, No. 6, June 1995, 528-562.
[11] Kraig Brockschmidt, Inside OLE 2, Microsoft Press, 1994.
[12] A. von Mayrhauser, K. Archie , and N. Weber , “Incremental Parsing for Software Maintenance Tools,” J.

Systems Software 1993; 23 ;235-243.
[13] J. L. Steffen, “Interactive Examination of a C program with CSope,” In Proc. USENIX Assoc. Winter Conf.,

Jan 1985, 170-175.
[14] W. Teitelman and L. Masinter, “The Interlisp programming environment,” Computer, Vol. 14, No. 4, Apr.

1981, 25-34.
[15] Y. F. Chen, M. Y. Nishimoto, and C. V. Ramamoorthy, “The C information abstraction system,” IEEE Trans.

Software Eng., 1990: 16(5): 325-334.
[16] J. E. Grass and Y. F. Chen, “The C++ information abstractor,” in USENIX C++ Conf. Proc., pp. 265-277,

1990.
[17] J. C. Browne and David B. Johnson, “FAST: A Second Generation Program Analysis System,” In Proc.

Second Int. Conf. Software Engineering, 1977, 142-148.
[18] M. A. Linton, “Implementing Relational Views of Programs,” In Proc. ACM SIGSOFT/SIGPLAN Software

Engineering Symp. Practical Software Development Environment, May 1984, 132-140.
[19] S. B. Zdonik and P. Wegner, “A Database Approach to Languages, Libraries, and Environments,” Tech. Rep.

CS-85-10, Brown University Department of Computer Science, 1985.
[20] T. E. Cheatham, Jr., “An Overview of the Harvard Program Development System,” in Software Engineering

Environments, H. Hunke, Ed. New York, North-Holland, 1981.

