
JBOOMT: Jade Bird Object-Oriented Metrics Tool*
Tao XIE, Wanghong YUAN, Hong MEI, Fuqing YANG

(Department of Computer Science & Technology, Peking University, Beijing 100871)

Abstract: Focusing on software productivity and software quality control has spurred the research
on software metrics technology. The increasing importance being placed on object-oriented
software development has led to the research on the object-oriented software metrics and the
development of automated tools to support object-oriented metrics. To effectively aid the software
evaluation, a software metrics tool is supposed to support the metrics model. The objective of Jade
Bird Object-Oriented Metrics Tool (JBOOMT) is to provide an automated software metrics
support for users and managers to measure the design or source code of the object-oriented
program and thus evaluate the quality of the software according to the specified hierarchical
metrics model. A mechanism is provided for metrics users to customize the preferred metrics
model and browse the details of the metrics model. This article introduces the design of JBOOMT
and discusses its implementation built in the Jade Bird Program Analysis System (JBPAS).

Keyword software metrics, object-oriented metrics, reusability metrics

1. Introduction
Measurements have been widely used in many engineering disciplines, yet in the computer

software industry there still have been some doubts about their use in this field. During recent
years, the interests in software metrics have grown both greatly and steadily in software industry.
With the project programmer and manager focusing on software productivity and software quality,
there exist needs for better technique of software development and software metrics during the
process of development. Recently object-oriented technology is becoming increasingly popular in
industrial software development environments. This technology offers support to provide software
product with higher quality and lower maintenance costs. Since the traditional software metrics
aims at the procedure-oriented software development and it can not fulfil the requirement of the
object-oriented software, a set of new software metrics adapted for the characteristics of object
technology is greatly in want. Accordingly object-oriented metrics then becomes an essential part
of object technology as well as good software engineering.

To apply the object-oriented metrics technology in practice effectively, an automated
object-oriented metrics tool is necessary to support the activities during the process of software
evaluation. Currently there already exist some metrics tools to aim at this objective. However,
most of them only produce certain unstructured independent metrics results. To attain some
meaningful metrics data in customer and management level, it is required to formulate metrics
models to incorporate the related metrics categories into an integrated framework. An
object-oriented metrics tool to support such models is greatly desired. Jade Bird Object Oriented
Metrics Tool (JBOOMT) is designed to measure the design or source code of the object-oriented
program automatically and thus evaluate the quality of the software according to the specified

* Sponsored by State 9th Five-Year Plan, State 863 high technology program, and Ricoh Company, Ltd., Japan.

hierarchical metrics model. A mechanism is provided for metrics users to customize the preferred
metrics model and browse the details of the metrics model by using a metrics model database in
the tool.

This paper describes our research and experiences in developing JBOOMT. It is organized as
follows. First, section 2 details the design of JBOOMT, which comprises three modules: analyzing,
calculating and displaying. Section 3 discusses the Jade Bird Program Analysis System (JBPAS)
which JBOOMT is built in and the application of JBOOMT in component-based software
development environment briefly. Section 4 discusses some related research work. Finally, section
5 gives the conclusion.

2. Jade Bird Object-Oriented Metrics Tool
Jade Bird Object-Oriented Metrics Tool (JBOOMT) is designed and developed to support

object-oriented software quality assessment. The tool makes it easy for the hierarchical model to
be defined or constructed, and put into practice.

After metrics user customizes the metrics model whose lower level metrics can be selected
from a list of implemented metrics, user can store its specification in the model database.
According to the specified model, the tool calculates the related program information and derives
the values of the model from the information database which contains comprehensive information
of the program, which are then stored into metrics result database. Figure 1 shows the architecture
of JBOOMT.

Source

Code

Display

Calculate

Information

Database

Metrics

Result

Analysis

Model

Database

Metrics

Result

Database

Figure 1. The architecture of JBOOMT

As shown in figure 1, the metrics measurement consists of three phases: analyzing,

calculating and displaying. According to these three phases, the tool is divided into three
corresponding modules.

In the analyzing phase, the analysis front end analyzes source code, extracts program
information and stores it into the program information database through the database server 〖1〗.
A front end is developed to analyze the source code syntactically and semantically which includes
both the interface and implementation part of the program.

In the calculating phase, according to the selected model in the model database which have
already been customized by metrics user, all the values of the model are calculated from the
information database and then are stored into metrics result database. The model database is used
to store the definition of some hierarchical models and the metrics result database is to store the
result values of the calculated hierarchical model.

The metrics models are classified as method, class and system level metrics model based on
the scope of the measured object. When one specific method of a class is assessed by calculating
the metrics data from the information within one method of the class, the corresponding model is
classified as method metrics model. If one class is evaluated, the required information for
obtaining the metrics data is often limited within the scope of one class, then the model is
classified as class metrics model. Similarly in order to evaluate the whole software system, the
scope of the information extends to more than one class, and this metric model is called system
metrics model. Each model is organized as a hierarchical diagram. The value of upper level node
is calculated based on the lower level node.

In some popular models, items in the model except for the items of the bottom metrics level
can generally be calculated from the values of lower level items according to the corresponding
weight value assigned to them. The values of the bottom metrics level can be directly calculated
from the source code information. The value of each item in the model should be normalized so
that it yields a value between 0 to 1. A value close to 0 indicates that the measured characteristic
may cause problems, while a value close to 1 indicates that the corresponding characteristic is
kept inside its limits.

Figure 2 shows the representation of hierarchical structure in model database and metrics
result database. It defines the structure information of the hierarchical model.

Reusability 1 0 0 0 0

Adaptability 1 1 1 0 0

Structure complexity 1 2 2 1 0

Documentation quality 1 2 2 2 0

Modularity 1 2 1 1 0

Understandability 1 1 2 0 0

McCabe complexity 1 3 2 1 1

 Mainkey LevelNo L1 L2 L3

Figure 2. The representation of tree structure of model in relational database

To simplify the explanation, the representation of a 4-level model is illustrated in figure 2.
On the left part of the figure there is a sample metrics model in which the nodes’ structure
information is stored in a relational database with the format in the right section of the figure. The
hierarchical structure is specified by determining the values of Mainkey, LevelNo, L1, L2 and L3.
Mainkey is the unique identifier of the tree and the nodes from different trees has different
Mainkey but all nodes of the same tree have same Mainkey value. LevelNo represents the number
of the level in which the node is located, which is counted beginning from 0 (root node level). For
example, the node “Adaptability”, whose LevelNo value is 1, is located at 1 level of the tree.

Sequence number of a node is defined as the order (from right to left, and from top to
bottom showed in figure 2) of this node in the children list of its parent node. For example, the
sequence number of node “Understandability” is 2 and “Structure complexity” is 1. Li of a node
represents the sequence number of its i-level ancestor node. And when this node has no i-level
ancestor node, if this node itself is at i level, then Li is the sequence number of this node, and
otherwise Li is set as 0. For example, “McCabe Complexity” node has 3 ancestor nodes:
“Reusability” at 0 level, “Understandability” at 1 level and “Structure complexity” at 2 level,
therefore, “McCabe Complexity” node’s values of L1, L2 and L3 are 2, 1 and 1 respectively.

When a 6-level is represented, it also required the value of L4 and L5. In fact, the value of
L4 and L5 is set to 0 in the example showed in figure 2. The values from L1 to L5 is reserved in
the database of JBOOMT which means JBOOMT support at most 6 levels metrics model for in
the real world the metrics models are generally less than 6 levels.

The nodes in the model tree can be classified into two types: internal node and external
node. External node has no offspring nodes and internal node has at least one offspring node. The
value of each internal node can be calculated from weighted children nodes which are associated
with specific weight values. As for each external node, its value can be obtained directly from
source code by means defined in metric type table.

As proposed by Karlsson 〖2〗, All metrics should be of one of the following types, and each
type of metrics should be normalized to yield values ranging between zero and one according to
following specified formula.

1). Upper limit metric which is characterized by a break-off value a and a 50% limit b.
When the measured value m reach the break-off value a, the normalized value M will start to
decrease. For some instances in point, the inheritance depth of class and McCabe’s cyclomatic
number fall into this type. From the qualitative perspective, the lower the measured value is, the
better the quality of the evaluated object is and it means that the normalized value is much closer
to the value 1. Figure 3 shows the relation between the computed metric M and the measured
software measurement m.

1.0

0.5

a a+b m

M

Figure. 3 Upper limit metric〖2〗
The formula for this type of metric is described as:

M (m) =
1

1 + e (x× (m - y))

In this formula, the parameters x and y can be calculated from these two relations: M(a)=
0.99 and M(a+b) = 0.5. In this case, it is necessary to demarcate the thresholds of a and b
according to the specific metric.

2). Optimum value metric which is characterized by center value a and 50% limits at a+b
and a-b. Qualitatively speaking, when the measured value is too small or too large, the quality of
the considered object is not good enough. The measured value around a is viewed as the ideal
value. Some examples in this case are the average member function size measured by LOC per
member function and relative number of comments in a method. Figure 4 illustrates the relation
between the computed metric M and the measured software measurement m.

a a+b ma-b

1.0

0.5

M

Figure 4. Optimum value metric〖2〗
The formula for this second type of metric is defined as:

M(m) = e －x×(m – a) z

The parameter z specifies the squareness of the graph. And parameter x also can be

calculated from these two relations: M(a+b)=0.5 and M(a-b) = 0.5. Similarly the thresholds of a
and b also should be demarcated according to the specific metric.

3). Linear dependency metric which is characterized by the intercept b of the measured
value m coordinate. It is a simpler type of metric whose typical examples are the inheritance
generality and the relative number of system-dependent code lines. The formula for this type of
metrics is simply defined as M(m)= 1-m/b. Figure 5 illustrates the relation between the computed
metric M and the measured software measurement m.

a=0

1.0

b m

M

Figure 5. Linear dependency metric
The information of the available metrics is stored in metric type table of model database.

According to the three kinds of metrics model, there are also three corresponding scopes of
metrics. System scope of metrics mainly deals with the metrics of the project scope such as total
number of files or modules, functions, macros, classes, source lines of code, and average derived
classes per class, average parameters per function etc. Class scope of metrics generally comprises
the metrics of a class like Weighted Methods per Class (WMC), Depth of Inheritance Tree of a
class (DIT), Number Of Children of a Class (NOC) and Response For a Class (RFC) etc. 〖3〗.
Additionally method scope of metrics consists of the metrics of a method in a class such as
number of messages sent of a method, lines of code of a method etc.

The metric scope and parameters for normalization such as the metric type, “a” value and
“b” value should be stored in the metrics type table. The information about the hierarchical
structure and the associated weight value should be stored in the model table and if node type is a
measurable metrics type, the related metrics ID from metric type table also should be specified in
model table. The structure of the tables in model database is showed in figure 6.

Metrics Type Table ……

Type

3:Method 1 McCabe 1 9 2

ParamBParamA NameMetricID Scope

1 3 2 1 1 McCabe 1 1

1 2 2 1 0 Structure complexity 0.5 0

1 1 2 0 0 Understandability 0.6 0

1 2 1 1 0 Modularity 1 0

1 1 1 0 0 Adaptability 0.4 0

1 0 0 0 0 Reusability 1 0

MetricIDNodeName WeightL2 L3L1LevelnoMainkey

Model Table

……

Figure 6. Structure of tables in model database

After metrics user selects the model, which is required to calculate, the tool statistically

calculates the value from the raw information database using SQL database query language
according to the specification of the metrics model customized by the metrics user. Because the
information database contains complete information of the source code, it is satisfactory enough
to derive desirable metrics results from the information database. When the measured data is
available, the normalized value ranging between 0 to 1 can be calculated by the way defined in
the metrics type table. Finally, the derived metrics result can be stored in the metrics result
database for later use, whose structure is similar with the model database.

In the displaying phase, The interface component loads the metrics data from metrics
database and provides visual presentation such as chart, graph or illustration to display the metrics
results. The values of each node in the hierarchical model can be displayed to metrics user. At
same time user can easily tailor the thresholds and default values of the metrics through the
graphic user interface. The tool presents the result from different perspectives to facilitate

program assessment. Figure 7 show the representation of a metrics model in the tool.

Figure 7. An example of metrics model showed in JBOOMT

3. Jade Bird Program Analysis System
The Jade Bird project is a key science and technology project supported by government and

has gone through the Sixth, Seventh and Eighth national “Five-Year Plans”. The goal of Jade Bird
project is to establish the fundament for Chinese software industry, popularize software
industrialization technology and mode, and provide necessary instrument and equipment of
industrialized production to Chinese software enterprises. The research and development of Jade
Bird III System is a key part of Jade Bird project during the national “Ninth Five-Year Plan”. The
Jade Bird III system supports software industrialization production based on
component-architecture model 〖4〗.

JBPAS (Jade Bird Program Analysis System) is a program understanding system for C++
programs, which is an important part of Jade Bird System III. It consists of three major
components: a front end, a database server and a set of analysis tools. Its architecture is shown in
figure 8. The essential part of the information extractor is the C++ front end, which analyzes C++
source code by means of incremental parsing, extracts program information and stores it into the
program information database. There are several code analysis tools based on the front end and
more are anticipated to appear in the future. JBPAS is to support research in software maintenance,
software reuse, reverse engineering, software metrics, and so on. The front end parses source code
statically and extracts program information according to the conceptual model into incremental
database. Finally, all incremental databases are linked to construct the information database.
JBPAS employs EER (Enhanced Entity-Relationship) model to form C++ programs’ concept
model, which is relatively comprehensive to support many requirements of program information.
〖1〗.

C++ Front End

Database Server

Analysis Toolset

PUS RDDG OOTS OOMT CEX CToC++ DPEX C++ToOLE

Figure 8. JBPAS Architecture
The toolkit of the JBPAS includes Program Understanding System (PUS), Reverse Design

Document Generator (RDDG), Object-Oriented Test Supporter (OOTS), Object-Oriented Metrics
Tool (OOMT), Component Extractor (CEX), C To C++ Translator (CToC++), Design Pattern
Extractor (DPEX), and C++ To OLE Translator (C++ToOLE). All the above analysis tools share
the same program information database through the information manager. And the information
manager provides database access interface for other tools, which facilitates the integration of
external analysis tools.

JBOOMT is one of the tools in the toolkit of JBPAS and it has been built in JBPAS.
JBOOMT has been applied in the component-based software development environment together
with other tools in JBPAS. JBOOMT together with Jade Bird Program Understanding System can
be used to aid user to understand the legacy systems. JBOOMT can also assist to extract reusable
component from existing system. A reusability metrics model can be formulated and then
supported by JBOOMT. A set of candidate reusable components is identified by applying this
metrics model. Among this set of candidate components, users can use Jade Bird Reverse
Engineering Tool (JBRET) to help to reengineer the components. After the adaptation and
improvement on the selected components in the reengineering process, components are qualified
before inserting into the component library.

4. Related work
In this section we will discuss some related work in the field of software metrics tools.
PROMIS (Program Metric Support) 〖5〗, an automatic software analysis tools generator, is

implemented by some extensions of a conventional compiler-compilers. It enables one to describe
the desired software analysis tool and its underlying software metrics by applying an extended
version of a conventional formal specification language. The specification is used as input and
then PROMIS generate a software analysis tool written in a specific programming language by
using LEX and YACC. PROMIS mainly deals with some simple conventional programming
languages such as C language, but it doesn’t seem to be practical to analyze some object-oriented
programming languages such as C++, which have rather complex syntax.

OOMetric 〖6〗is an object-oriented metrics tool for Smalltalk and C++. It can collect some
OO-specific metrics data according to class level metrics and method level metrics. It also
provides a user interface to allow user to tailor the thresholds of the metrics. The means by which
the tool displays its metrics results is to export them to some industry-standard formats such as
PDF and RTF. But it doesn’t provide enough support for user to evaluate the integral attribute in

higher assessment level which metrics users mostly concern with. It only gives metrics user a list
of basic unstructured metrics data.

QMOOD++ (Quality Model for Object-Oriented Designs represented in C++) metrics and
analysis tool 〖7〗, is a software program automates the process of design selection, design metrics
data collection, visualization of design structure, and display of results. The QMOOD
relationships, weights, and the equations for computation of quality attributes are implemented
through a spreadsheet program, which is easy to modify. The design metrics used to assess design
properties are specified in spreadsheet program and can be changed to use data from different
metrics. This tool supports the QMOOD quality model well enough, but it seems not to
incorporate other hierarchical metrics models easily. And additionally QMOOD++ only collects
metric data from the design information, but doesn’t analyze the information from the
implementation of classes.

5. Conclusion
 Currently the hierarchical metrics model is effectively and practically applied in the
evaluation of the object-oriented software, so it is significantly important to implement an
automated tool to assist the process of evaluation based on the specific hierarchical model.
Although there exist many object-oriented metrics tools to assist the software measurement in
software industry, most of them simply collect unstructured metrics values, but don’t provide a
well-defined approach to relate these metrics to the external quality attributes of the software,
which is most concerned by metrics users.

To meet this objective, an automated object-oriented metrics tool, JBOOMT, is designed and
implemented to support hierarchical metrics models for object-oriented software quality
assessment, which can be easily customized by metrics user. Moreover this tool applies the
analysis frond-end to analyze not only the design information of the source code, but also the
implementation information. For this reason the tool can get complete information of the source
code stored in the information database, and this makes it feasible to add many more new metrics
based on the information database. JBOOMT has been applied in the component-based software
development environment assisting the component metrics, reusable component extraction in
legacy system etc.
 Currently a front-end for C++ programming languages has already been developed. Because
the analysis component and the metrics calculating component is relatively independent by
interacting with each other through the information database, it is easy to extend the tool to
support other object-oriented programming language by replacing the current front-end with the
new one.

References
[1] Fuqing Yang, Hong Mei, Wanghong Yuan, Qiong Wu, and Yao Guo. Experiences Writing

C++ Compiler Front End. ACM SIGPLAN Notices, 1998, 33(9): 95-102
[2] Even-Andre Karlsson. Chichester. Software Reuse: A Holistic Approach -Measuring the

Effect of Reuse Chapter. New York: Wiley, 1995: 113-180
[3] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE

Trans. Software Eng., 1994, 20(6): 476-492

[4] Fuqing Yang, Hong Mei, Keqin Li, Wanghong Yuan, Qiong Wu. Jade Bird III: A System
Supporting Component Reuse. Computer Science, 1999, 26(5): 50-55

[5] Peter Kokol, Viljem Zumer, Janez Brest, Marjan Mernik. PROMIS: A Software Metrics
Tool Generator. ACM SIGPLAN Notices, 1995, 30(5): 37-42

[6] Mark Lorenze, Jeff Kidd. Obejct-Oriented Software Metrics. Englewood: Prentice Hall,
1994

[7] J. Bansiya. A Hierarchical Model For Quality Assessment Of Object-Oriented Designs.
[Ph.D. Dissertation].Huntsville:University of Alabama in Huntsville, 1997.

Tao XIE M. S. student in computer science at Peking University. He received the B.S.

degree in computer science in 1997 from Fudan University. His current
research interests are in software reuse, software metrics and program
analysis.

Wanghong YUAN M. S. student in computer science at Peking University. He received the B.S.

degree in computer science in 1996 from Peking University. His current
research interests are in software reuse and object-oriented technology.

	References

