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Abstract. Generating effective tests and inferring likely program specifications 
are both difficult and costly problems. We propose an approach in which we 
can mutually enhance the tests and specifications that are generated by itera-
tively applying each in a feedback loop.  In particular, we infer likely specifica-
tions from the executions of existing tests and use these specifications to guide 
automatic test generation. Then the existing tests, as well as the new tests, are 
used to infer new specifications in the subsequent iteration. The iterative proc-
ess continues until there is no new test that violates specifications inferred in 
the previous iteration. Inferred specifications can guide test generation to focus 
on particular program behavior, reducing the scope of analysis; and newly gen-
erated tests can improve the inferred specifications. During each iteration, the 
generated tests that violate inferred specifications are collected to be inspected. 
These violating tests are likely to have a high probability of exposing faults or 
exercising new program behavior. Our hypothesis is that such a feedback loop 
can mutually enhance test generation and specification inference. 

1   Introduction 

There are a variety of software quality assurance (SQA) methods being adopted in 
practice. Since there are particular dependences or correlations among some SQA 
methods, these methods could be integrated synergistically to provide value consid-
erably beyond what the separate methods can provide alone [28, 32, 35, 11]. Two 
such exemplary methods are specification-based test generation and dynamic specifi-
cation inference. Specification-based test generation requires specifications a priori 
[13, 25, 5]. In practice, however, formal specifications are often not written for pro-
grams. On the other hand, dynamic specification inference relies on good tests to infer 
high quality specifications [10, 31, 21]. There is a circular dependency between tests 
in specification-based test generation and specifications in dynamic specification 
inference. 

In addition, when formal specifications are not available, automatic test generation, 
such as white-box test generation or random test generation, does not sufficiently 
address output checking. Without specifications, output checking is limited to detect-
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ing a program crash, or an exception is thrown but not caught. In other words, there is 
a lack of test oracles in automatic test generation without specifications a priori. 

In this research, without a priori specifications, we want to mutually enhance test 
generation and specification inference. At the same time, from a large number of 
generated tests, we want to have a way to identify valuable tests for inspection. Valu-
able tests can be fault-revealing tests or tests that exercise new program behavior. The 
solution we propose is a method and tools for constructing a feedback loop between 
test generation and specification inference, using and adapting existing specification-
based test generation and dynamic specification inference techniques. We implement 
the method for three types of inferred specifications: axiomatic specifications [10], 
protocol specifications [31], and algebraic specifications [21]. We demonstrate the 
usefulness of the method by initially focusing on the unit test generation and the 
specification inference for object-oriented components, such as Java classes. 

2   Background 

2.1   Formal Specifications  

A formal specification expresses the desired behavior of a program. We model the 
specification in a style of requires/ensures. Requires describe the constraints of using 
APIs provided by a class. When requires are satisfied during execution, ensures de-
scribe the desired behavior of the class. Requires can be used to guard against illegal 
inputs, and ensures can be used as test oracles for correctness checking. 

Axiomatic specifications [22] are defined in the granularity of a method in a class 
interface. Preconditions for a method are requires for the method, whereas post-
conditions for a method are ensures for the method. Object invariants in axiomatic 
specifications can be viewed as the pre/post-conditions for each method in the class 
interface. The basic elements in requires/ensures consist of method arguments, re-
turns, and class fields. 

Protocol specifications [6] are defined in the granularity of a class. Requires are the 
sequencing constraints in the form of finite state machines. Although extensions to 
protocol specifications can describe ensures behavior, there are no ensures in basic 
protocol specifications. The basic elements in requires consist of method calls, in-
cluding method signatures, but usually no method arguments or returns. 

Algebraic specifications [18] are also defined in the granularity of a class. Ensures 
are the AND combination of all axioms in algebraic specifications. In the AND com-
bination, each axiom, in the form of LHS=RHS, is interpreted as “if a current call 
sequence window instantiates LHS, then its result is equal to RHS”.  The basic ele-
ments in ensures consist of method calls, including method signature, method argu-
ments and returns, but no class fields. Therefore, algebraic specifications are in a 
higher-level abstraction than axiomatic specifications are. Usually there are no ex-
plicit requires in algebraic specifications. Indeed, sequencing constraints, which are 
requires, can be derived from the axiom whose RHS is an error or exception [4]. 
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2.2   Dynamic Specification Inference 

Dynamic specification inference discovers operational abstractions from the execu-
tions of tests [20]. An operational abstraction is syntactically identical to a formal 
specification. The discovered operational abstractions consist of those properties that 
hold for all the observed executions. These abstractions can be used to approximate 
specifications or indicate the deficiency of tests. 

Ernst et al. [10] develop a dynamic invariant detection tool, called Daikon, to infer 
likely axiomatic specifications from executions of test suites. It examines the variable 
values that a program computes, generalizes over them, and reports the generaliza-
tions in the form of pre/post-conditions and class invariants. 

Whaley et al. [31] develop a tool to infer likely protocol specifications from 
method call traces collected while a Java class interface is being used. These specifi-
cations are in the form of multiple finite state machines, each of which contains 
methods accessing the same class field.  Ammons et al. [1] develop a tool to infer 
likely protocol specifications from C method call traces by using an off-the-shelf 
probabilistic finite state automaton learner. Hagerer et al. [19] present the regular 
extrapolation technique to discover protocol specifications from execution traces of 
reactive systems. 

Henkel and Diwan [21] develop a tool to derive a large number of terms for a Java 
class and generate tests to evaluate them. The observational equivalence technique [3, 
9] is used to evaluate the equality among these terms. Based on the evaluation results, 
equations among these terms are proposed, and are further generalized to infer axioms 
in algebraic specifications. 

2.3   Specification-Based Test Generation 

We categorize specification-based test generation into test generation for functionality 
and test generation for robustness. Test generation for functionality generates tests 
that satisfy requires, and checks whether ensures are satisfied during test executions. 
Test generation for robustness generates tests that may not satisfy requires, and 
checks whether a program can handle these test executions gracefully, such as throw-
ing appropriate exceptions. 

We divide the test generation problem into three sub-problems: object state setup, 
method parameter generation, and method sequence generation.  Object state setup 
puts the class under test into particular states before invoking methods on it. Method 
parameter generation produces particular arguments for methods to be invoked. 
Method sequence generation creates particular method call sequences to exercise the 
class on certain object states. Axiomatic specifications provide more guidance on 
both method parameter generation and object state setup, whereas algebraic specifica-
tions provide more guidance on method sequence generation. Protocol specifications 
provide more guidance on both object state setup and method sequence generation. 

Dick and Faivre develop a tool to reduce axiomatic specifications to a disjunctive 
normal form and generate tests based on them [8]. Boyapati et al. develop a tool to 
generate tests effectively by filtering the test input space based on preconditions in 
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axiomatic specifications [5]. Gupta develop a structural testing technique to generate 
test inputs to exercise some particular post-conditions or assertions [16]. A commer-
cial Java unit testing tool, ParaSoft Jtest [24], can automatically generate test inputs to 
perform white box testing when no axiomatic specifications are provided, and per-
form black box testing when axiomatic specifications are equipped. 

There is a variety of test generation techniques based on protocol specifications, 
which is in the form of finite state machines [25]. There are several test generation 
tools based on algebraic specifications. They generate tests to execute the LHS and 
RHS of an axiom. The DAISTS tool developed by Gannon et al. [13] and the Daistish 
tool developed by Hughes and Stotts [23] use an implementation-supplied equality 
method to compare the results of LHS and RHS. A tool developed by Bernot et al. [3] 
and the ASTOOT tool developed by Doong and Frankl [9] uses observational equiva-
lence to determine whether LHS and RHS are equal. 

3   Feedback Loop Framework 
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Fig. 1. An overview of the feedback loop framework 

Our approach can be viewed as a black box into which a developer feeds a program 
and its existing tests, and from which the developer gets a set of valuable tests, in-
ferred specifications, and reasons why these tests are valuable. Then the developer 
can inspect the valuable tests and inferred specifications for problems. Our feedback 
loop framework consists of multiple iterations. Each iteration is given the program, a 
set of tests, and specifications inferred from the previous iteration (except for the first 
iteration). After each iteration, a complete set of new tests, a valuable subset of new 
tests, reasons for being valuable, and new inferred specifications are produced. The 
subsequent iteration is given the original tests augmented by the complete set of new 
tests or the valuable subset of new tests, as well as the new inferred specifications. 
Optionally the developer can specify some iteration-terminating conditions, such as a 
stack size being equal to the maximum capacity, or the number of iterations reaching 
the specified number. The iterations continue until user-specified conditions are satis-
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fied and there is no new test that violates specifications inferred in the previous itera-
tion. 

Figure 1 shows an overview of the feedback loop framework. The framework de-
fines four stages for each iteration: trace collection, specification inference, test gen-
eration, and test selection. Human intervention is only needed for inspecting selected 
tests and inferred specifications in the end of the feedback loop. But human interven-
tion may be incorporated in the end of each iteration and should improve results. 

In the trace collection stage, the given tests are run on the instrumented Java pro-
gram and traces are collected from the executions. Object states are defined by some 
particular relevant class field values. The values of method arguments, returns, and 
object states are recorded at the entry and exit of a method execution. To collect ob-
ject states, we instrument invocations of this.equals(this) at the entry and exit of each 
public method in the Java class file. Then we monitor the class field values accessed 
by the execution of this.equals(this). These values are collected as object states. The 
collected method arguments, returns, and object states are used in the specification 
inference stage and the test generation stage. 

In the specification inference stage, the collected traces are used to infer specifica-
tions. The axiomatic and protocol specification inference techniques in Section 2.2 
are used in this stage. Instead of using the algebraic specification inference technique 
based on observational equivalence [21], we develop a tool prototype to infer alge-
braic specifications based on an implementation-supplied equality method. Since it is 
expensive to execute the equality method to compare object states among all method 
executions, we use object states collected in the trace collection stage to compare the 
object states offline.  Based on a set of pre-defined axiom-pattern templates, the tool 
looks for equality patterns among collected object states, method arguments, and 
returns of methods. We infer algebraic specifications by using these equality patterns 
as axioms. 

In the test generation stage, inferred specifications are used to guide test generation. 
Jtest [24] is used to automatically generate tests based on axiomatic specifications. In 
protocol and algebraic specification-based test generation, we grow new object states 
and method parameters based on the collected traces in the present iteration. In addi-
tion, we generate the method sequences based on inferred protocol and algebraic 
specifications. 

Because inferred preconditions in axiomatic specifications may be overconstrained, 
only generating test inputs that satisfy them would leave some interesting legal test 
inputs out of scope. One solution is to remove all the inferred preconditions before 
the specifications are used to guide test generation. Then both legal and illegal test 
inputs can be generated. Allowing some illegal inputs can still be useful in testing 
program robustness. However, removing inferred preconditions makes test generation 
based on preconditions unguided. In future work, we plan to investigate techniques to 
remove or relax parts of inferred preconditions. There are similar overconstrained 
problems with protocol specifications. To address these problems, we can deliberately 
generate some method sequences that do not follow the transitions in the inferred 
finite state machines. For example, we can generate test sequences to exercise the 
complement of the inferred finite state machines. The test generation based on in-
ferred algebraic specifications also needs some adaptations. If not all the combina-
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tions of method pairs are exercised, we need to generate tests to exercise those un-
covered method pairs besides those method pairs in the inferred axioms.  

In the test selection stage, the generated tests are executed, and checked against the 
inferred specifications. Two types of tests are selected for inspection. The first type of 
test is the test whose execution causes an uncaught runtime exception or a program 
crash. If the test is a legal input, it may expose a program fault. The second type of 
test is the test whose execution violates ensures in axiomatic specifications or alge-
braic specifications. If the ensures violated by the test are overconstrained ones, this 
may indicate the insufficiency of the existing tests. If the violated ensures are actual 
ones and the test is a legal input, it may expose a program fault. These selected tests 
are collected as the candidates of valuable tests. In the end of the feedback loop, the 
developer can inspect these selected tests and their violated specifications for prob-
lems. If a selected test input is an illegal one, the developer can either add precondi-
tions to guard against this test input in the subsequent iteration, or adopt defensive 
programming to throw appropriate exceptions for this test input. If a selected test 
input is a legal one and it exposes a program fault, the developer can fix the bug that 
causes the fault, and augment the regression test suite with this test input after adding 
an oracle for it. If a selected test input is a legal one and it does not expose a fault but 
exercise certain new program behavior, the developer can add it to the regression test 
suite together with its oracle. Besides selecting these two types of tests, the developer 
can also select those tests that exercise at least one new structural entity, such as 
statement or branch. 

In our experiments with the feedback loop for axiomatic specifications, the number 
of selected tests is not large, which makes the human inspection effort affordable [34]. 
In addition, the selected tests have a high probability of exposing faults or exercising 
new program behavior. We observed the similar phenomena in our preliminary ex-
periment with the feedback loop for algebraic specifications. 

The selected tests, or all the newly generated tests from the present iteration are 
used to augment the existing tests in the subsequent iteration. The inferred specifica-
tions from the present iteration are also used in the specification inference stage of the 
subsequent iteration. In this specification inference stage, conditional specifications 
might be inferred to refine some of those specifications that are violated by the gener-
ated tests in the present iteration. 

4   Related Work 

There have been several lines of work that use feedback loops in static analyses. Ball 
and Rajamani construct a feedback loop between program abstraction and model 
checking to validate user-specified temporal safety properties of interfaces [2]. 
Flanagan and Leino use a feedback loop between annotation guessing and theorem 
proving to infer specifications statically [12]. Wild guesses of annotations are auto-
matically generated based on heuristics before the first iteration. Human interventions 
are needed to insert manual annotations in subsequent iterations. Giannakopoulou et 
al. construct a feedback loop between assumption generation and model checking to 
infer assumptions for a user-specified property in compositional verification [14, 7]. 
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Given crude program abstractions or properties, these feedback loops in static analy-
ses use model checkers or theorem provers to find counterexamples or refutations. 
Then these counterexamples or refutations are used to refine the abstractions or prop-
erties iteratively. Our work is to construct a feedback loop in dynamic analyses, cor-
responding to the ones in static analyses. Our work does not require users to specify 
properties, which are inferred from test executions instead. 

Naumovich and Frankl propose to construct a feedback loop between finite state 
verification and testing to dynamically confirm the statically detected faults [26]. 
When a finite state verifier detects a property violation, a testing tool uses the viola-
tion to guide test data selection, execution, and checking. The tool hopes to find test 
data that shows the violation to be real. Based on the test information, human inter-
vention is used to refine the model and restart the verifier. This is an example of a 
feedback loop between static analysis and dynamic analysis. Another example of a 
feedback loop between static analysis and dynamic analysis is profile-guided optimi-
zation [30]. Our work focuses on the feedback loop in dynamic analyses. 

Peled et al. present the black box checking [29] and the adaptive model checking 
approach [15]. Black box checking tests whether an implementation with unknown 
structure or model satisfies certain given properties. Adaptive model checking per-
forms model checking in the presence of an inaccurate model. In these approaches, a 
feedback loop is constructed between model learning and model checking, which is 
similar to the preceding feedback loops in static analyses. Model checking is per-
formed on the learned model against some given properties. When a counterexample 
is found for a given property, the counterexample is compared with the actual system. 
If the counterexample is confirmed, a fault is reported. If the counterexample is re-
futed, it is fed to the model learning algorithm to improve the learned model. Another 
feedback loop is constructed between model learning and conformance testing. If no 
counterexample is found for the given property, conformance testing is conducted to 
test whether the learned model and the system conform. If they do not conform, the 
discrepancy-exposing test sequence is fed to the model learning algorithm, in order to 
improve the approximate model. Then the improved model is used to perform model 
checking in the subsequent iteration. The dynamic specification inference in our 
feedback loop is corresponding to the model learning in their feedback loop, and the 
specification-based test generation in our feedback loop is corresponding to the con-
formance testing in their feedback loop. Our feedback loop does not require some 
given properties, but their feedback loop requires user-specified properties in order to 
perform model checking. 

Gupta et al. use a feedback loop between test data generation and branch predicate 
constraint solving to generate test data for a given path [17]. An arbitrarily chosen 
input from a given domain is executed to exercise the program statements relevant to 
the evaluation of each branch predicate on the given path. Then a set of linear con-
straints is derived. These constraints can be solved to produce the increments for the 
input. These increments are added to the current input in the subsequent iteration. The 
specification inference in our work is corresponding to the branch predicate con-
straints in their approach. Our work does not require users to specify a property, 
whereas the work of Gupta et al. requires users to specify the path to be covered. 
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5   Conclusion 

We have proposed a feedback loop between specification-based test generation and 
dynamic specification inference. This feedback loop can mutually enhance both test 
generation and specification inference. The feedback loop provides aids in test gen-
eration by improving the underlying specifications, and aids in specification inference 
by improving the underlying test suites. We have implemented a feedback loop for 
axiomatic specifications, and demonstrated its usefulness [33, 34]. We have devel-
oped an initial implementation of feedback loop for algebraic specifications, and plan 
to do more experiments and refine the implementation. In future work, we plan to 
implement and experiment the feedback loop for protocol specifications. At the same 
time, the following research questions are to be further investigated. In the first itera-
tion, the inferred specifications can be used to generate a relatively large number of 
new tests. In the subsequent iterations, the marginal improvements on tests and speci-
fications come from the specification refinement and object state growth. We need to 
explore effective ways to maximize these marginal improvements. We also plan to 
investigate other SQA methods, such as static verification techniques, in evaluating 
the quality of the inferred specifications in iterations [27]. 
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